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Just as it is necessary that he who wants to read first learns the letters of 
the alphabet, and having continually repeated them, makes use of them in 
pronouncing everything out loud, so it is necessary that he who wants to 

become familiar with all of the mathematical disciplines must first 
understand these elements of geometry perfectly and fully. 

 

Christopher Clavius on Euclid’s Elements 
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ABSTRACT OF THE DISSERTATION 
 
 

Pure and Applied:  
Christopher Clavius’s Unifying Approach to Jesuit Mathematics Pedagogy 

 
 

by 
 
 

Audrey Marie Price 
 

Doctor of Philosophy in History (Science Studies) 
 
 

University of California, San Diego, 2017 
 

Professor Robert Westman, Chair 
 
 
 
 

This dissertation examines the pedagogical project of Christopher Clavius 

(1538-1612) as a key step in the development of modern mathematics.  In it, I show 

that Clavius united two contemporary approaches to mathematics: one that saw the 

field as an abstract way of discovering universal truths, and one that saw the field as 

an art, that is a tool for practical purposes.  To do so, he combined pure and applied
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mathematics throughout his textbooks.  The union of mathematics as a science and 

mathematics as an art was motivated by the needs of the nascent Jesuit school system 

in which Clavius was the professor of mathematics at the flagship school, the Collegio 

Romano.  This unification permeated Clavius’s work, leading him to write textbooks 

on practical mathematics in addition to his commentaries on pure mathematics and 

theoretical astronomy.  Moreover, Clavius combined the different aspects of 

mathematics within his individual textbooks.  This is apparent in his 1574 

commentary on Euclid’s Elements, a text that formed the foundation for Jesuit 

mathematics education.  In this textbook, Clavius’s changes to and commentary on the 

Euclidean text along with his diagrams show the pure abstract forms of mathematics to 

have potential applications in both sciences, like theoretical astronomy, and arts, like 

cartography.  Through a comparison of Clavius’s commentary on Euclid to two other 

closely contemporary commentaries on the same text, one by Federico Commandino 

(1509-1575) and the other by Sir Henry Billingsley (d. 1606), I show that Clavius’s 

combination of the abstract and physical facets of mathematics created an image of 

mathematics on par with philosophy as well as a versatile tool for philosophers and 

artisans alike.  This vision of mathematics combines those found in Commandino’s 

and Billingsley’s commentaries, which respectively emphasize mathematics as a 

science and mathematics as an art.  In so doing, Clavius provided his readers with a 

realist approach to mathematics, paving the way for increasingly more mathematical 

descriptions of the world that emerged during the Scientific Revolution and that relied 

on progressive advances in abstract mathematics. 



 

Introduction 
 

Known by his contemporaries as the Euclid of their times, Christopher Clavius, 

the mathematics professor at the Jesuits’ Collegio Romano in the latter half of the 

sixteenth century, was a prolific author and pedagogue.  Despite his contemporary 

fame, Clavius is largely absent from grand narratives of the Scientific Revolution, 

since, as one of the last Ptolemaic astronomers, he landed on the wrong side of history.  

Furthermore, even when Clavius is included in narratives of the Scientific Revolution, 

he is often portrayed as backwards-thinking, or, at best, one among many promoters of 

mathematics, ignoring his own contemporary reputation.  This is especially true in 

early surveys of the Scientific Revolution, including Herbert Butterfield’s Origins of 

Modern Science and Alexandre Koyré’s From the Closed World to the Infinite 

Universe.  And, while he often appears in studies of men like Copernicus, Tycho 

Brahe, Galileo, and Kepler, he has rarely been the principal subject of historical 

study.1  Even in his excellent, recent study of Clavius’s astronomy, James Lattis still 

                                                
1 Clavius is notably absent from Thomas Kuhn’s The Copernican Revolution (Thomas Kuhn, The 
Copernican Revolution: Planetary Astronomy in the Development of Western Thought.  (Cambridge, 
MA: Harvard University Press, 1957) and Herbert Butterfield’s The Origins of Modern Science 
(Herbert Butterfield. The Origins of Modern Science, Revised Edition. New York: The Free Press, 
1957.)  In The Scientific Renaissance Marie Boas Hall mentions Clavius and his students only as 
arbiters of Galileo’s discoveries; they accepted his telescopic discoveries as real, but rejected his 
interpretations of them. Marie Boas Hall, The Scientific Renaissance: 1450-1630, (New York: Dover 
Publications, Inc, 1994), 323-326.    More recently, Clavius appears in such narratives, but usually only 
as an example of one of many scholars promoting mathematics.  See Peter Dear, Revolutionizing the 
Sciences: European Knowledge and Its Ambitions, 1500-1700, Second Edition. (Princeton: Princeton 
University Press, 2009), 65-66.  Floris Cohen also includes Clavius, but he does make explicit in his 
narrative that Clavius’s promotion of mixed mathematics was not a fundamental break with Aristotelian 
natural philosophy and did not necessarily lead to the Scientific Revolution.  H. Floris Cohen, How 
Modern Science Came Into the World: Four Civilizations, One 17th-Century Breakthrough, 
(Amsterdam: Amsterdam University Press, 2010), 143-151.   
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gives his subject significance as one of a dying breed of astronomer-theologians 

determined to defend Ptolemy, explicitly stating that “Clavius was the last important 

Ptolemaic astronomer,” one who “helped set the standards by which innovators, such 

as Copernicus and Galileo, would be judged.”2  Historians often extend similar 

treatment to Clavius’s students, several of whom were involved in disputes with 

Galileo.  In fact, in discussions of Galileo, Clavius’s students, especially Oratio Grassi 

and Christoph Grienberger, are often used as foils to show off Galileo’s rare talent for 

uncovering the truth.3   

And yet, as Lattis also expresses, during his lifetime, Clavius was a well-

respected mathematician in his own right, and, as the professor of mathematics at the 

Jesuits’ Roman college, he was an influential figure.  Detailed studies of sixteenth-

century mathematics do often include Clavius as a prominent figure in the 

mathematical culture of his day.  For example, Antonella Romano presents Clavius as 

                                                
2 James Lattis, Between Copernicus and Galileo: Christoph Clavius and the Collapse of Ptolemaic 
Cosmology (Chicago: University of Chicago Press, 1994), xiv. 
3 For example, see Dijksterhuis’s discussion of Grassi and Galileo’s dispute over what he terms 
Galileo’s “avowal of atomistic ideas.”  In that example Galileo expressed an idea that “describe[s] very 
accurately what was henceforth to be a fundamental principle in the mechanistic conception of the 
world” while Grassi denied such “perilous” ideas because they conflicted with “the dogma of the 
Eucharist.”  E.J Dijksterhuis, The Mechanization of the World Picture. trans. C. Dikshoorn (Oxford: 
The Clarendon Press, 1964), 423-424.  More recently, in Galileo’s Telescope, Massimo Bucciantini and 
his co-authors, while acknowledging that Clavius and his students were well-respected mathematicians, 
point out the Jesuits’ conservatism regarding the composition of the moon.  They described Clavius’s 
position that the moon did not have a uniform density as a thesis that “offered easy refuge to those who 
wanted to the back the notion of the basic difference between celestial and sublunar bodies.” (p. 205).  
In other words, the Jesuits were firmly rooted in defending ancient Aristotelian notions, even when 
confronted with evidence that others believed readily contradicted those notions.  See Massimo 
Bucciantini, Michele Camerota, and Franco Giudice, Galileo’s Telescope: A European Story, trans. 
Catherine Bolton. (Cambridge, MA: Harvard University Press, 2015). Of Course, as William Shea’s 
description of Galileo’s Assayer shows, categorizing the Jesuits as “ancients” and Galileo as a modern 
goes back to Galileo himself.  See William R. Shea, Galileo’s Intellectual Revolution: Middle Period, 
1610-1632, (New York: Science History Publications, 1977), 75.   
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the primary voice for the promotion of mathematics within the Society of Jesus, and 

William Wallace identifies Clavius and his students as a significant source for Galileo 

at the start of the latter’s career.4  These readings agree with Lattis’s claim that it was 

his role as a pedagogue that made Clavius a significant contributor to the astronomical 

discourse of his day, especially as a founder of school of astronomy with international 

reach within the Jesuit system.5  Such a characterization of Clavius begins to 

illuminate his importance.  However, sixteenth-century mathematics included a great 

deal more than astronomy, and Clavius’s significance as a pedagogue needs to be 

studied in the broader discipline, including the quadrivial sciences of geometry, 

arithmetic, music, and astronomy and a variety of additional mixed sciences, such as 

geography, perspective, and mechanics and their corresponding mathematical arts.  In 

this dissertation, I begin that project by examining the first edition of Clavius’s 

commentary on Euclid’s Elements as the earliest text in which he outlined the vision 

of mathematics that defined his entire pedagogical project. 

 As is common with many sixteenth-century figures of scientific interest, little 

is known of Clavius’s early life.  Besides his birth in Bamberg in 1538, we can only 

speculate about him until he was received into the Society of Jesus in Rome in 1555.  

Ordained in 1564, he completed his vows specific to the Jesuit Order in 1575.  In his 

brief biography of Clavius, Lattis suggests that the young German was likely attracted 

                                                
4 Antonella Romano, La Contre-Réforme Mathématique: Constitution et Diffusion d’une Culture 
Mathématique Jésuite à la Renaissance.  (Rome: École Française de Rome, 1999); William Wallace.  
Galileo and His Sources: The Heritage of the Collegio Romano in Galielo’s Science.  (Princeton: 
Princeton University Press, 1984).   
5 Lattis, Between Copernicus and Galileo, 219. 

3



 

 

to the Society by enthusiastic visiting preachers, including the Jesuit Peter Canisius 

(1521-1597), who were attempting to secure the Catholic Church’s hold over German 

principalities before the Peace of Augsburg (1555) formally recognized the Lutheran 

presence in the Holy Roman Empire.6   

Whatever his motivation for joining, Clavius found an opportunity to pursue an 

education in the Society of Jesus.  Nearly immediately upon entering the Society, 

Clavius was sent to study in Coimbra, where he learned grammar and rhetoric and 

may have begun his training in philosophy.  By 1561 he was back in Rome where he 

completed the philosophy and theology course required of the Jesuit novitiate.  It is 

not clear where or when Clavius began his study of mathematics, although it is 

possible that he met the mathematician and astronomer Pedro Nuñez (1502-1578) 

while at Coimbra.  It is also possible that he studied with mathematically-inclined 

Jesuits during his time in Rome.  According to Lattis, Clavius himself claimed that he 

was self-taught.    

Shortly after his return to Rome, Clavius’s studies in mathematics paid off as 

he was asked first to teach the subject at the Collegio Romano (starting in 1563) and 

later to serve on the pope’s commission on calendar reform (starting in the early 

1570s).  While the development of the Gregorian calendar, which is still in use today, 

has proven to be Clavius’s most long-lasting work, most of his career was devoted to 

his work in pedagogy.  Clavius became the professor of mathematics at Rome in 1563.  

                                                
6 Ibid., 13-14.  I have drawn the following biographical sketch from Lattis’s work.  An annotated 
chronology of Clavius’s life with a more complete record of his travels can be found in the first volume 
of Clavius’s correspondence edited by Ugo Baldini and P.D. Napolitani.  Christoph Clavius: 
Corrispondenza ed. U. Baldini and P.D. Napolitani (Pisa: Universtià di Pisa, 1992), Vol. 1. 
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Although he was not always the instructor for the general mathematics course, he was 

active in the teaching an advanced mathematics to select students in his academy until 

his death in 1612.7  At various times, he held the status of scriptor, which granted him 

a reprieve from teaching in order to write for the benefit of the Society.  While his first 

textbook, his commentary on Sacrobosco’s Sphere was published in 1570, he began 

writing more prolifically after 1574 when he spent a few months in Messina working 

with Francesco Maurolico (1494-1575), a humanist and geometer known for his work 

translating and editing Greek mathematical texts.8  There he helped his older colleague 

with the printing of textbooks that the Jesuits teaching in Messina had requested.  

Clavius left Messina with a number of manuscripts on a variety of mathematical 

topics, including Euclid, gnomonics, the 1572 nova, and optics.  He later incorporated 

many of these manuscripts into his own textbooks.9  The heart of his pedagogical 

project, Clavius’s textbooks are the best source for understanding his goals for 

mathematics within the emergent Jesuit school system. 

While Lattis’s examination of Clavius’s introductory astronomy textbook, the 

commentary on Sacrobosco’s Sphere, begins a much-needed examination of both 

Clavius as a teacher and of the role his pedagogy played in sixteenth- and seventeenth-

century mathematics, Lattis’s focus on astronomy means that he makes only brief 

                                                
7 When Clavius was not the instructor, that task was assigned to one of his collaborators in his academy.  
Christopher Grienberger and Otto van Malecote were among those who taught the general course.  See 
Ugo Baldini, “The Academy of Mathematics of the Collegio Romano from 1553 to 1612” in Jesuit 
Science and the Republic of Letters ed. Mordechai Feingold, (Cambridge MA: The MIT Press, 2003), 
48; 72-74. 
8 Paul Lawrence Rose, The Italian Renaissance of Mathematics: Studies on Humanists and 
Mathematicians from Petrarch to Galileo, (Geneva: Librairie Droz, 1975), 159-179. 
9 This entire biographical sketch has been drawn from Lattis, Between Copernicus and Galileo, 1-29.  
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mention of Clavius’s other textbooks and their role in the Jesuit curriculum.  

Moreover, although Clavius, from his position as the mathematics professor at the 

Collegio Romano during the half-century in which the Jesuits created their curriculum, 

had tremendous influence on the mathematics portion of the Ratio Studiorum, i.e. the 

Jesuits’ official curriculum, his pedagogical project went beyond what that course of 

study accommodated and is best exemplified in the collection of textbooks he wrote to 

cover the wide range of mathematical topics he suggested for Jesuit schools.   

From 1570, when he published his first edition of his commentary on 

Sacrobosco’s Sphere, until 1608, when he published his Algebra, Clavius wrote over a 

dozen textbooks on topics from introductory geometry and astronomy to practical 

geometry and arithmetic, timekeeping, and the construction and use of various 

astronomical instruments.  He continued to revise his work, publishing several editions 

of many of his books before they appeared in their final forms in the first four (of five) 

volumes of the Opera Mathematica published over the years 1611 and 1612, the year 

of his death.  These 1611 and 1612 versions represent his final word on what 

constituted a nearly complete mathematics curriculum.  (The fifth, non-pedagogical 

volume holds his work on calendar reform.)   

In the Opera, he organized his texts by category rather than order of study. 

Volume one contains all of his texts on theoretical geometry, the branch of 

mathematics Clavius believed to be foundational to all other mathematical studies.  It 

contains his commentaries on Euclid’s Elements and on Theodosius’s Sphere, as well 

as treatises on sines, rectilinear triangles, and spherical triangles.  Volume two 

6



 

 

encompasses the texts relevant to concerns of a mundane nature: two explicitly 

practical texts –  the Geometria practica and the Epitome arithmeticae practicae – and 

the Algebra, which Clavius viewed as a means to extend mathematical study, 

especially arithmetic.10  Volumes three and four consist of his various works on 

astronomy, which Clavius believed to be the pinnacle of the mathematical sciences.  

As he put it in his commentary to the Sphere of Sacrobosco, “Moreover, of these four 

mathematical sciences [the quadrivium] (from which, indeed, all others dealing in any 

way whatever with quantities flow and are propagated), astronomy is obviously the 

broadest on account of the multitude of things which it considers; and on account of 

that it is the most worthy.”11  The commentary on Sacrobosco and the Astrolabium in 

the third volume serve as the introduction to astronomy, and Gnomonics, and two 

horology books in the fourth offer a study of the applications of astronomy to 

timekeeping.12   

                                                
10 In his preface to the Algebra Clavius said that this study treated all of mathematics, but he spent most 
of his preface explaining how algebra went beyond arithmetic because, unlike the quadrivial study of 
number, algebra possessed the ability to explain things.  See Christopher Clavius, Algebra (Rome: 
Bartholomaeum Zannetum, 1608), 1-3.;  N.B.  The list of topics in each volume found at the beginning 
of Volume 1 claims that Volume 2 would also contain Clavius’s response to Joseph Scaliger on the 
topic of cyclometry (the study of the measurement and use of circles), but the treatise is not found in 
second volume.   Christopher Clavius, Opera Mathematica V tomis distributa ab auctore denuo 
correcta, et plurimis locis aucta (Mainz: Antonius Hierat and Reinhardus Eltz, 1612). )(4v. 
11 Evidence for the high esteem in which Clavius held astronomy can be found throughout his work.  It 
is perhaps most pronounced in his preface to his commentary on the Sphere of Sacrobosco, in which he 
outlines his thoughts on the history and nature of astronomy.  Christopher Clavius, In Sphaeram Ioannis 
de Sacro Bosco Commentarius (Rome: Victorium Helianum, 1570), 2.  “Harum autem quatuor 
scientiarum Mathematicarum (ex quibus quidem omnes aliae quoque modo de quantitate agentes 
manant, ac quas considerat: & ob id dignissima.”    
12 Clavius had also written a third book on horology, the Compendium brevissimum of 1603, that did 
not make it into the Opera Mathematica.  Christopher Clavius, Compendium brevissimum 
describendorum horologiorum horizontalium ac declinantium (Rome: Aloysium Zannetum, 1603). 
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While it is clear from the composition of Clavius’s Opera Mathematica that he 

saw astronomy as the fulfillment of the promise of mathematics, it also is apparent that 

Clavius saw mathematics as both an abstract study and a practical discipline in which 

pure geometry served as the basis for developing mathematics as a versatile means to 

approach the study and manipulation of the universe.  The combination of theoretical 

and practical components of mathematics is already present in astronomy.13   The 

commentary on Sacrobosco provided instruction on how to see the order in the 

celestial sphere and on how to understand man’s place in it, while the various books 

on timekeeping showed one way in which astronomy could be applied to daily life.  

But, astronomy, as a mixed science, was itself an application of pure geometry.  The 

commentary on Euclid provided the tools to understand abstract mathematical ideas, 

including equants and epicycles in astronomy, and illustrated a standard of 

demonstration that yielded certain knowledge.  And, pure mathematics could also be 

turned to studies and manipulations of the physical world, as was done practical 

geometry and arithmetic.  By writing on each of these topics, Clavius used his 

pedagogical texts to create a complete picture of the mathematical sciences and arts of 

his day, a project that went far beyond providing the means to continue the study of 

astronomy or a defense of a Thomistic Aristotelian cosmology.  His work therefore 

needs to be contextualized within the sixteenth-century development of the 

mathematical disciplines.  Such a contextualization places Clavius at the center of the 

                                                
13 For a discussion of the two sides to astronomy, see Robert Westman, The Copernican Question: 
Prognostication, Skepticism, and the Celestial Order (Berkeley: University of California Press, 2011), 
34-43. 
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Scientific Revolution historiography.  In fact, Ugo Baldini has claimed that Clavius’s 

textbooks, which were developed to present a complete summation of “all the 

important contributions” to a topic, represent “an essential contribution” to the 

development of “the modern scientific textbook” and the shift from the use of classics 

to the use of textbooks.14  As this dissertation will show, Clavius’s commentary on 

The Elements is very similar to a modern textbook in that it defines its field through its 

presentation and commentary on significant contributions to the study of Euclidean 

geometry.  And, the definition that Clavius provided for his discipline united pure and 

mixed studies, thereby making possible the development of a realist-mathematical 

science based on the abstract concepts of pure mathematics. 

Any discussion of the Scientific Revolution must acknowledge the challenge 

of encapsulating a two-hundred-year period of intellectual development in a single 

term, let alone a term that is as loaded as “Scientific Revolution.”  Indeed, to convey 

such challenges, Steven Shapin famously opened his book The Scientific Revolution 

with the provocative claim, “There was no such thing as the Scientific Revolution, and 

this is a book about it.”15  The use of the word “scientific” suggests that the sixteenth 

and seventeenth centuries are properly seen as the time in which modern science was 

born, but in those centuries, the word “scientia” meant all systematic knowledge.  And 

natural philosophy, which is often taken as the early modern ancestor of modern 

science, included elements of theological study and practices like alchemy that would 

                                                
14 Ugo Baldini, “The Academy of Mathematics,” 67.  Of course, Clavius’s commentary on Euclid’s 
Elements, was a commentary on a classic text.  However, Clavius’s additions are so extensive that his 
students could hardly claim to be studying from a classical version of The Elements.   
15 Steven Shapin, The Scientific Revolution (Chicago: The University of Chicago Press, 1996), 1.   
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not be considered part of science today.16  Floris Cohen has recently defined natural 

philosophy as any knowledge structure “of comprehensiveness, of an aimed-for 

totality, of prestructured patterns emerging from very general, basic principles, with an 

anchoring in the phenomenal world being sought in assorted bits and pieces of 

apparently well fitting empirical evidence.” 17  To see sixteenth- and seventeenth-

century natural philosophy as a direct analog to modern science is to anachronistically 

emphasize those elements of that knowledge structure that reflect features of modern 

science.  To avoid such confusion, Cohen uses the term “nature-knowledge” to cover 

the variety of studies he discusses in his description of the Scientific Revolution.18  

The use of the word “revolution” suggests dramatic and sudden change, but two 

centuries is a long time and continuity can be identified between medieval and early 

modern knowledge production.19  Furthermore, narratives of the Scientific Revolution 

once focused on a history of ideas removed from their social context.20  But as many 

                                                
16 Rupert Hall saw the Scientific Revolution as the disassociation of a rational science from “magic and 
esoteric mystery,” which suggests that during the sixteenth and seventeenth centuries magic was still an 
essential part of knowledge.  Rupert Hall, The Scientific Revolution 1500-1800: The Formation of the 
Modern Scientific Attitude, Second Edition. (Boston: Beacon Press, 1962), xii.  Lynn Thorndike 
devoted eight volumes to an in-depth examination of the relationship between magic and science.  Two 
of these are on the sixteenth century in which he discusses astrology, alchemy, cabala, and divination 
among other occult interests of men of the period, including such luminaries as Pico della Mirandola, 
Francesco Barozzi, and Francis Bacon.   In this work he comes to the conclusion that natural knowledge 
was still very much informed by belief in “occult virtues.”  Lynn Thorndike, A History of Magic and 
Experimental Science, Vols. V and VI.  (New York: Columbia University Press, 1941), 591.   
17 Cohen, How Modern Science Came Into the World: 9.  
18 Ibid., xviii-xix. 
19See Pierre Duhem, “From To Save the Phenomena: Essay on the Concept of Physical Theory from 
Plato to Galileo.” In Essays in the History and Philosophy of Science,” Translated by Roger Ariew and 
Peter Barker, 131-156 (Indianapolis: Hackett Publishing Company, 1996). 
20 See William Whewell, History of the Inductive Sciences, (London: John W. Parker, West Strand, 
1837);  Alexandre Koyre, From the Closed World to the Infinite Universe (Baltimore: The Johns 
Hopkins University Press, 1957);  Herbert Butterfield, The Origins of Modern Science, Revised Edition 
(New York: The Free Press, 1957).   
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more recent historians, including Shapin, have argued a revolution of ideas is 

meaningless without the context of its society.21  Thus, the history of the Scientific 

Revolution must also account for the social and cultural contexts in which ideas were 

explored, even when the details of those contexts may not seem remotely modern, let 

alone relevant to modern science.  

 But despite the difficulties associated with using the phrase “the Scientific 

Revolution” to describe changes in the pursuit of knowledge during the sixteenth and 

seventeenth centuries, to deny its existence is to throw the baby out with the bath 

water. While no single story could ever hope to cover all of the nuances of the 

development of modern science, the concept of the Scientific Revolution provides a 

framework in which historians can explore the labyrinthine paths pursued by 

mathematicians, natural philosophers, magicians, metaphysicians, and artisans as they 

sought to make sense of their universe.  As is always the case, some avenues of study 

proved more fruitful than others and attracted a great deal of attention and plenty of 

students over long periods of time.  Among these paths are those that form the basis 

for the traditional narratives of the Scientific Revolution, such as the rise of the 

inductive method and the mathematization and mechanization of knowledge and 

knowledge production.22  Other paths, including those that seem to bear little relation 

to modern science, failed over time to attract adherents because they seemed to lead 

nowhere or because cultural interests shifted the focus of philosophers to other studies. 

Among those paths historians can find the pursuit of alchemy and the more mundane 

                                                
21 Shapin, Scientific Revolution, 4. 
22 Whewell, History; Dijksterhuis, Mechanization. 
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study of natural history.23  Still other paths, including Clavius’s defense of Ptolemaic 

astronomy, appear from a modern perspective to be dead ends.  Through the 

beginnings, ends, and interconnections of these paths, a picture emerges of a period of 

intellectual unrest during which definitions of every facet of knowledge – what 

counted as knowledge, how and where knowledge was produced, who could create 

knowledge, who could possess knowledge, and why knowledge was worth pursuing - 

changed. 24  The phrase “the Scientific Revolution” thus takes on meaning not as a 

clear narrative of inevitable, linear progress from medieval to modern modes of 

thought but as a periodization for a time, from approximately 1500 to 1700, of 

significant cultural and intellectual shifts in the understanding of knowledge from 

which modern science emerged.25   

This is not to say that the changes that took place in the sixteenth and 

seventeenth centuries leading to modern science were a series of coincidental lucky 

breaks.  Cohen has convincingly argued for coherence in both his The Scientific 

Revolution: A Historiographical Inquiry and his How Modern Science Came into the 

World.  In his efforts to explain how and why modern science emerged in Europe and 

why the seventeenth-century changes to the pursuit of knowledge gave way to an “as-

                                                
23 Brian P. Copenhaver, “Natural Magic, Hermetism, and Occultism in Early Modern Science,” in 
Reappraisals of the Scientific Revolution, ed. David C. Lindberg and Robert S. Westman, (Cambridge: 
Cambridge University Press, 1990), 261-301. 
24 See Peter Dear, Revolutionizing the Sciences. Dear bookended his text with chapters titled “What was 
worth knowing” at the start of the sixteenth century (the first chapter) and at the start of the eighteenth 
century (the last chapter), allowing him to effectively illustrate changes in the state of knowledge that 
occurred in the two centuries he studied.   
25 See H. Floris Cohen, The Scientific Revolution: A Historiographical Inquiry, (Chicago: The 
University of Chicago Press, 1994), 2.  As Cohen explains, the concept of the Scientific Revolution 
emerged in the first half of the twentieth century as “an analytical tool expressly forged for grasping the 
essence of the emergence of modern science.”  
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yet-unbroken chain of scientific growth,” Cohen points to various features of 

European culture, including the value Europeans placed on manual labor and the value 

Renaissance artists gave to mathematics, which he called the “European Coloring.”26  

Those features of European culture serve as the background to what he identifies as 

the first three revolutionary transformations: the mathematization of nature, the rise of 

a natural philosophy based on corpuscularian thought, and the rise of a Baconian 

“fact-finding, practice-oriented mode of experimental science.”27  These three 

transformations led to three more revolutionary changes, the last of which, called “The 

Newtonian Synthesis,” allowed natural philosophy to give way to modern science, a 

precise mathematical study of nature.28  In this narrative of multiple revolutions, 

coherence emerges in large part from the changing role of mathematics within natural 

philosophy.  Indeed, the development of a realist-mathematical approach to natural 

knowledge is the first of the revolutionary transformations Cohen identifies.  It lays 

the groundwork for the “universe of precision,” which Cohen calls “one constitutive 

hallmark of our modern world.”29    

Clavius emerges in this transformation as an early contributor to the Scientific 

Revolution for his efforts “to enrich Aristotle’s doctrine with a dash of mathematical 

science.”   He did so by expanding the role of “mixed mathematics,” those branches of 

study with both quantitative and physical components.  Mixed mathematics later 

proved fruitful for those who sought to use mathematics to further nature-knowledge, 

                                                
26 Cohen, How Modern Science, xv; Cohen, Scientific Revolution, 509. 
27 Cohen, How Modern Science., xvi.  
28 Ibid., 637-716. 
29 Ibid., 160. 

13



 

 

including such luminaries as Galileo, Kepler, and Descartes.30  In my dissertation, I 

examine Clavius’s approach to mathematics pedagogy in order to clarify how he used 

pure mathematics to promote “mixed mathematics” as he sought to establish a place 

for his discipline within the Jesuits’ Aristotelian curriculum, the means through which 

he became an influential figure in the Scientific Revolution. 

The importance of pedagogy in the development of new theories has long been 

acknowledged within the history of science.  When Thomas Kuhn outlined the 

production of scientific knowledge, he gave pedagogy a central role in the 

establishment of “normal science” as puzzle-solving based on a particular paradigm.  

He asserted that the content of the paradigm was conveyed to new scientists through 

textbooks and practice problem-solving.31  Furthermore, in his narrative, a new 

paradigm can only be established when it is accepted into the schools in new 

textbooks, and when new generations of scientists, trained in the new paradigm, 

replace the aging subscribers to the old paradigm.32  Even if one rejects the notion that 

Clavius’s work was in any way “revolutionary,” his textbooks remain a valuable 

source for understanding the ways in which mathematics was taught to rising 

generations of scholars at the start of the Scientific Revolution.   

                                                
30 Ibid., 143-147.  Cohen is rightfully cautious about attributing too much to Clavius’s work.  In and of 
itself, Clavius’s work could well have led to nothing more than small expansions of Greek mathematics. 
(See pp. 148-151).  But he does acknowledge that “Clavius’s example may well have served to some 
limited extent as one stimulus among others for both Kepler and Galileo when embarking on the 
adventure of making mathematical science realist” (212).  
31 Thomas Kuhn, The Structure of Scientific Revolutions, Second Edition (Chicago: University of 
Chicago Press, 1970), 46. 
32 Kuhn, Structure of Scientific Revolutions.  See pages 136-140 for the role of textbooks in making 
revolutions invisible and pages 151-152 for the replacement of older generations.   
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Such a reading could lead to the claim that Clavius’s work an example of 

Kuhnian “normal science.”  However, a close examination of Clavius’s textbooks 

reveals that it would be a mistake to present his work as a simple representation of a 

pre-Scientific Revolution mode of thought.  As Lattis has shown, Clavius’s 

commentary on Sacrobosco’s Sphere engages deeply with the contemporary discourse 

on astronomy, including both the Copernican and the Tychonic hypotheses.  As I will 

show, Clavius’ commentary on Euclid’s Elements was a product of his engagement 

with a variety of contemporary approaches to mathematics.  Therefore, his work is 

better seen as a contribution to the rise of mathematics that marked the beginning 

stages of the Scientific Revolution than as an example of a pre-Revolution approach to 

mathematics.   Moreover its value as pedagogy lies in its potential for providing new 

scholars with a vision of mathematics as a model of knowledge that allowed them to 

contribute to the changes to knowledge production that were taking place during the 

Scientific Revolution.  Accepting Cohen’s view that the first revolutionary 

transformation was the rise of a realist-mathematical science, that is the development 

of a mathematical approach to describing the physical structure of the universe, 

Clavius’s textbooks, especially his commentary on Euclid, can be seen as part of the 

efforts to rewrite textbooks that necessarily accompanied that revolution.33     

Clavius’s curriculum and his textbooks can only be understood against the 

backdrop of the well-documented developments that were taking place in mathematics 

during the sixteenth century, especially the acceptance of mathematics’ ability to make 

                                                
33 See Kuhn, Structure of Scientific Revolutions, 137 for the argument that all revolutions are 
accompanied by the rewriting of textbooks.   
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true claims about the world.  In the sixteenth century, mathematics was defined to 

include both sciences and arts.  Within the quadrivium, which comprised the 

quantitative half of the liberal arts, geometry and arithmetic represented purely 

mathematical knowledge while astronomy and music belonged to the “mixed” 

branches of mathematics which combined mathematical and physical subjects.  Other 

such mixed mathematical studies included geography, perspective, and mechanics. In 

the sixteenth century, building on medieval arguments by scholars like Robert 

Grosseteste (1175-1253) and Roger Bacon (1214-1292), those engaged in the study of 

mathematics argued that their field was a discipline in its own right with the ability to 

make true claims about the world.34  Thus, the mathematical arts of the quadrivium 

could be, and were, called the mathematical sciences.  Yet, the practical value of 

mathematics to the physical world implied by the term “arts” was also widely 

recognized by sixteenth-century scholars.  Indeed, the mixed branches of mathematics, 

which often had immediate practical applications, were called “mathematical arts.”  

And so, in that period, scholars writing about mathematics treated the field as both a 

science, that is a source of universal truths, and an art, that is a source of practical 

value.  And while most scholars recognized both facets of their discipline, they often 

emphasized one or the other in any given work, keeping a distinction between 

mathematics as a science and mathematics as an art and illustrating which part of the 

field they each felt was more valuable.   

                                                
34 See Roger Ariew, “Christopher Clavius and the Classification of Sciences” Synthese, 83 (1990): 293-
300. 
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The distinction between mathematics as a science and mathematics as an art 

has been replicated in Scientific Revolution historiography.  One narrative of the 

Scientific Revolution tells of mathematization of knowledge from Copernicus to 

Newton.  Copernicus’s De Revolutionibus is often taken to mark the beginning of the 

Scientific Revolution, yet in its dedicatory letter written by Andreas Osiander, the 

reader was reminded that hypotheses need only provide a means to calculate positions 

of the planets that accorded with observation, and did not have to be true 

representations of the structure of the universe.35  In contrast, Newton’s Principia, 

often seen as the culmination of the Scientific Revolution, is a mathematical 

description of the universe.  Thus, the Scientific Revolution can be read as the period 

in which mathematics gained status as a discipline that could reveal philosophical 

truths about the universe.  That is precisely the argument Dijksterhuis outlined in his 

Mechanization of the World Picture.  He concluded, “The mechanization of the world-

picture during the transition from ancient to classical science meant the introduction of 

a description of nature with the aid of the mathematical concepts of classical 

mechanics; it marks the beginning of the mathematization of science, which continues 

at an ever-increasing pace in the twentieth century.”36 

                                                
35 Osiander’s comment was a standard disputation device, presenting Copernicus’s work as one theory 
among a variety of theories of the universe.  However, it made it possible for readers of Copernicus’s 
text to accept the utility of his mathematical model while ignoring or denying the philosophical claims 
of heliocentrism, thereby separating mathematics from philosophy.  (For a discussion of one such 
interpretation of Copernicus’s work, Philip Melanchthon’s, see Robert S. Westman, “The Melanchthon 
Circle, Rheticus, and the Wittenberg Interpretation of the Copernican Theory,” Isis 66 (June, 1975), 
172-174.)  In another article, Westman argued that Osiander’s letter denied astronomers – i.e. 
mathematicians – the right to draw conclusions about natural philosophy. See Robert Westman, “The 
Astronomer’s Role in the Sixteenth Century: A Preliminary Study,” History of Science 18 (1980): 108-
109. 
36 Dijksterhuis, 501.  
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Studies of mathematics itself also tend to focus on the rise of mathematics 

within the hierarchy of disciplines, an opportunity the discipline was afforded because 

of its dual classification as the quadrivial half of the liberal arts and, in Aristotle’s 

works, as one of three branches of philosophy (the others being divine and natural).37 

As Robert Westman discusses in The Copernican Question, disciplines in the 

sixteenth century were ranked hierarchically based on a variety of factors, including 

their certainty, antiquity, and the measure of abstraction of their subject matter.  

Together these features contributed to what sixteenth-century scholars called the 

nobility of their disciplines.   As the word “nobility” suggests, the hierarchy of 

disciplines was ordered based on the potential each discipline had to lead its students 

to virtue and appreciation for the divine.  Certainty, abstraction, and antiquity could all 

add to a discipline’s nobility, as could other factors, such as their practical value and 

their moral dignity.  Moreover, as Westman points out, “praising or satirizing the 

professions depended on which of these criteria were favored and in which 

combination.”38   

As I will discuss in Chapter 1, during the sixteenth century, mathematicians 

used the certainty, abstraction, and antiquity of their discipline to argue for its nobility, 

and, thus, its status alongside or above natural philosophy within the hierarchy of 

disciplines. Such arguments contradicted the claim that mathematics was subordinate 

                                                
37 For a discussion of medieval classification of disciplines, and specifically Thomas Aquinas’s efforts 
to address the difficulty of mathematics appearing as both a liberal art and a philosophical science, see 
Ralph McInery, “Beyond the Liberal Arts” in The Seven Liberal Arts in the Middle Ages ed. David L. 
Wagner (Bloomington: Indiana University Press, 1983), 248-272.  For Thomas Aquinas’ resolution of 
the dual nature of mathematics, see especially page 252. 
38 Robert Westman, The Copernican Question, 30.  
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to natural philosophy because the former could only describe phenomena while the 

latter could explain them.39  Paul Rose’s The Italian Renaissance of Mathematics 

traces mathematicians’ claims for the nobility of their discipline through an 

examination of the restoration of ancient mathematics in sixteenth-century Italy as he 

makes the case for the existence of mathematical humanism.  His discussion begins 

with Regiomontanus, who carried out an extensive project of translation of Greek 

mathematics using texts from Cardinal Bessarion’s library in the fifteenth century, and 

ends with a discussion of Galileo, the relationship of mathematics to physics, and the 

question of the certitude of mathematics that encapsulates the sixteenth-century 

elevation of the discipline.40  In this narrative, mathematics rises from the status of a 

lower discipline to an academic study of the physical world.  However, this version of 

the role of mathematics in the Scientific Revolution only shows the place of 

mathematics within the philosophy curriculum of universities.  It risks removing 

mathematics from its social and cultural context and ignoring the practical value of 

mathematics, which was often little esteemed by university-based philosophers and 

humanists.   

While the debate between Aristotelians and mathematicians over the status of 

mathematics was restricted to the educated Latinate classes, non-Latinate craftsmen 

also took an interest in the discipline during the sixteenth century.   Indeed, another 

narrative of the Scientific Revolution offers the mathematization of various activities 

                                                
39See Marcus Hellyer, Catholic Physics: Jesuit Natural Philosophy in Early Modern Germany (Notre 
Dame: University of Notre Dame Press, 2005), 116-117. 
40 Rose, The Italian Renaissance of Mathematics. 
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of craftsmen and engineers as a social project that shifted knowledge production from 

the contemplative philosophizing of medieval universities to the active practices of 

marketplaces, workshops, mines, and newly discovered territories, thereby uniting 

mathematics and physics within the arts.   This narrative often emerges in studies of 

the social context in which the “great” ideas of the traditional progress narrative 

emerged.  For example, E. G. R. Taylor described her The Mathematical Practitioners 

of Tudor and Stuart England as a “chronicle of lesser men…but for whom great 

scientists would always remain sterile in their generation.” In it she observed, “the 

history of any aspect of applied science and technics…must also be a history of 

attitudes, of the contemporary climate of opinion.”41  More recently, Deborah 

Harkness offered a study of knowledge production in London.  She claims, “The 

foundations of the Scientific Revolution in Elizabethan London depended on three 

interrelated social endeavors: forging communities, establishing literacies, and 

engaging in hands-on practices.”42  In her work, mathematics is featured as the key to 

mechanical ingenuity and new inventions for the English artisan class.  On a broader 

scale, Marie Boas Hall, for whom the most significant change of the Scientific 

Revolution was the change in the social identity of a “scientist,” devoted an entire 

chapter to the uses of mathematics, including astronomy, navigation, cartography, and 

various aspects of mechanics and studies of motion, in her book, The Scientific 

                                                
41 E.G.R Taylor, The Mathematical Practitioners of Tudor and Stuart England (Cambridge: The 
University Press, 1968).  (Reprint of the original 1954 edition.)  For the first quotation see page xi.  For 
the second, page 4.   
42 Deborah Harkness, The Jewel House: Elizabethan London and the Scientific Revolution (New Haven: 
Yale University Press, 2007), 6. 
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Renaissance.  According to Hall, the widespread study of these fields was the result of 

“the popularization of science and the new awareness of the needs of the technical 

man,” allowing mathematics to clearly illustrate what she believed to be the crucial 

shift of the Scientific Revolution, namely, the shift in identity of a “scientist” from a 

“classical scholar” in 1450, to a “new kind of learned man or a technical craftsman” 

by 1630.43  Each of these more applications-oriented readings, however, risk 

downplaying the role mathematics had in the academies and its connections to natural 

philosophy. 

Clavius’s pedagogical project united these two major strands of the 

development of mathematics, namely the elevation of mathematics within the 

hierarchy of disciplines and the application of mathematics to worldly affairs. His 

project was motivated by a desire to give a complete mathematics education to all 

Jesuit students, some of whom would go on to become scholars and represent the 

Society of Jesus in philosophical discourse in Europe, and others of whom would 

become international missionaries and might need knowledge of practical 

mathematics.  Thus, the multifaceted mathematics curriculum he wrote for the Jesuit 

schools was a reflection of the schools’ own varied purposes as the Jesuits’ primary 

missionary activity, and can only be understood in the context of Jesuit schools. While 

the most obvious purpose for Jesuit schools was to provide training in the catechism to 

all Catholic boys, it did not take long for them to shift from catechetical training 

grounds to intellectual academies. The shift can be in large part attributed to the 

                                                
43 Hall, Scientific Renaissance, 345.   
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Jesuits preference for teaching the sons of nobles, whom they believed could then lead 

others to follow the catechism through their example.  Thus, even though the lack of 

fees meant that Jesuit schools attracted sons of artisans and merchants for whom a 

Latin education could open future opportunities, the Jesuit curriculum became focused 

on the needs of the uppermost echelons of society, through whose education they 

hoped to stem the tide of Protestantism.  In this light, the development of the 

mathematics portion of the Jesuit curriculum is an example of Shapin and Schaffer’s 

argument in Leviathan and the Air Pump that “Solutions to the problem of knowledge 

are solutions to the problem of social order.”44  In order to achieve their social goal of 

strengthening the Catholic Church, the Jesuits had to devise a curriculum that could 

meet the various needs of their patrons while inspiring faith in the Catholic Church.  

Because the place of mathematics was contested, that portion of the curriculum offers 

valuable insight into how the Jesuits sought to use knowledge to promote their faith 

and a Catholic social order that could withstand the spread of Protestantism.    

The Jesuits took a two-pronged approach to knowledge in their curriculum.  

First, they sought to provide an education suitable to sixteenth-century standards for 

learned gentlemen.  This curriculum was humanistic and began with grammar before 

teaching humanities and rhetoric.  At the Jesuit universities, like the Collegio Romano, 

students could go on to study logic, philosophy (including mathematics), theology, 

and Hebrew.45  The rigor of the advanced portion of the curriculum was determined by 

                                                
44 Steven Shapin and Simon Schaffer, Leviathan and the Air Pump: Hobbes, Boyle and the 
Experimental Life, (Princeton: Princeton University Press, 1985), 332.  
45 Paul Grendler, Schooling in Renaissance Italy: Literacy and Learning, 1300-1600.  (Baltimore: The 
Johns Hopkins University Press, 1989), 377-381.  For a discussion of how Jesuit universities differed 
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the Jesuits’ mission to become active and respected contributors to the intellectual 

discourse of their times.  In this way, they hoped to appeal to the leaders whose sons 

they sought to teach.  Public academic exercises, including orations and disputations, 

served as venues for Jesuits to display their knowledge and skill and so to convince 

local leaders that their schools were superior to other options, including Protestant 

schools.46  Furthermore, as Martha Baldwin has shown, the Order also depended on 

the scholarly publications of their members to secure its reputation and patronage for 

its schools.47 The Jesuits were so actively engaged in the pursuit of natural knowledge 

that Mordechai Feingold has recently argued that “by and large, the scholarly activities 

and aspirations of Jesuits were indistinguishable from those of other contemporary 

savants, secular or ordained, irrespective of denomination.”48  In order to facilitate 

such work, at least some Jesuit schools needed to be equipped to train future scholars.  

In mathematics, Clavius headed a special academy for mathematics students at the 

Collegio Romano, which, as Ugo Baldini has shown, was as much a research group as 

it was a classroom.  Baldini argues that students in the academy not only followed 

Clavius’s rigorous mathematics curriculum, they also produced original mathematics 

research, on a variety of topics including geometrical topics, most notably statics, 

                                                
from other Italian universities, including the elevation of Thomas Aquinas’s work above that of Peter 
Lombard’s in the theology course and the extension of the philosophy curriculum to include 
metaphysics and logic, see George Gannss, Saint Ignatius’s Idea of a Jesuit University, (Milwaukee: 
The Marquette University Press, 1956), 153-187. 
46 Ibid., 368. 
47 Martha Baldwin, “Pious Ambition: Natural Philosophy and the Jesuit Quest for the Patronage of 
Printed Books in the Seventeenth Century” in Jesuit Science and the Republic of Letters ed. Mordechai 
Feingold, (Cambridge MA: The MIT Press, 2003), 285-321. 
48 Mordechai Feingold, “Jesuits: Savants” in Jesuit Science and the Republic of Letters ed. Mordechai 
Feingold, (Cambridge MA: The MIT Press, 2003), 2.   
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algebra, and topics like gnomonics that related to calendrical mathematics.  The 

academy also actively worked with numerous scholars interested in mathematics, 

including Galileo.49  

Second, since the Jesuits used their schools “not as one ministry among many, 

but as a super-category equivalent to that into which all the other consueta ministeria 

[customary ministries] fell,” they found it expedient to include some practical training 

to fulfill the requirements of their ministries.50   Those ministries included preaching, 

the various corporal works of mercy, administering the sacraments, and “any other 

works of charity, according to what will seem expedient of the glory of God and the 

common good.”51  The latter goal - contributing to the common good - led their 

schools to become integral parts of the cities in which they were established.  As John 

O’Malley notes, the schools should be understood as “civic institutions – usually 

requested by the city, in some form paid for by the city, established to serve the 

families of the city.”52  From the point of view of the mathematics curriculum, that 

civic role hinged on the practical branches of mixed mathematics, including 

geography, hydrography, and various components of military engineering.  Antonella 

Romano showed in her study of the center-periphery relationships between the norms 

prescribed by Roman Jesuits and French educational practice that French Jesuits 

                                                
49 Ugo Baldini, “The Academy of Mathematics,” 47-98.  Baldini’s description presents an image of a 
research group not unlike a modern laboratory, in which the professor outlined topics of interest and 
worked with the students to develop original contributions to those topics.  
50 John O’Malley, The First Jesuits, (Cambridge, MA: Harvard University Press, 1993), 200. 
51George Ganss, trans.  The Constitutions of the Society of Jesus, (Saint Louis: The Institute of Jesuit 
Sources, 1970), 66-67.  
52 John O’Malley, “Introduction” in The Jesuits II: Cultures Sciences, and the Arts 1540-1773, eds. 
John W. O’Malley, S.J.,  Gauvin Alexander Bailey, Steven J. Harris, and T. Frank Kennedy, S.J. 
(Toronto: University of Toronto Press, 2006), xxxi.  
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studied practical mathematics to meet the needs of their royal patrons.53  In turn, the 

patrons maintained their local financial support of the schools.  The Jesuit schools also 

needed a curriculum that included practical mathematics in order to train their own 

missionaries to Asia and the Americas.  Before a mission was even set up, practical 

mathematics – the demonstration of astrolabes and clocks, for example - was used to 

impress local leaders, as studies of Matteo Ricci’s career in China illustrate.54  Once 

missions were established (a task which benefitted from mathematical knowledge for 

the sake of timekeeping as well as building and establishing agriculture), the discipline 

was clearly necessary in some of the variety of intellectual pursuits in which Jesuit 

missionaries engaged.  For example, nearly 800 works of geography and natural 

history, many of which were written by missionaries or at least informed by data that 

they sent back to Europe, were published before the Society’s suppression in 1773.55  

Natural history did not necessarily require mathematics, but geography and any 

accompanying cartography did.  Astronomy was also used by missionaries, who could 

– in addition to enhancing European studies by providing observations from 

geographically distant points – use their own observations to establish timekeeping 

devices, develop calendars and almanacs.   In order to facilitate such activities, Jesuit 

colleges needed to provide rigorous training in mathematics.  

                                                
53 Romano, La Contre-Réforme Mathématique, 3. 
54 See Peter Engelfriet, Euclid in China: The Genesis of the First Chinese Translation of Euclid's 
Elements, Books I-VI (Jihe Yuanben, Beijing, 1607) and Its Reception Up to 1723 (Leiden: Brill 
Academic Publisher, 1998), 56-98.  
55 Steven J. Harris, “Mapping Jesuit Science: The Role of Travel in the Geography of Knowledge: in in 
The Jesuits: Cultures Sciences, and the Arts 1540-1773, eds. John W. O’Malley, S.J.,  Gauvin 
Alexander Bailey, Steven J. Harris, and T. Frank Kennedy, S.J. (Toronto: University of Toronto Press, 
2006), 212-240.  
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When Clavius proposed his curriculum and his textbooks as the mathematics 

program for Jesuit colleges, he kept the various needs of his school system in mind.  In 

this dissertation I show Clavius’s combination of pure and mixed mathematics to be 

the result of a pedagogical decision that positioned Jesuit mathematical training at the 

intersection of two sixteenth-century approaches to mathematics: one treated 

mathematics as a science, that is a contemplative source of truth, placing it alongside 

or even above natural philosophy in the hierarchy of disciplines, while the other 

conceived of it as an art, that is a tool with which to actively manipulate the physical 

world for personal and social benefit.  Peter Dear has described these two approaches 

of mathematics as two discourses.  In his view, “One of them was ‘natural 

philosophical,’ in the sense of its being contemplative and aimed at understanding the 

natural world; the other was instrumental and was geared toward the production of 

practical effects, whether to do with moving weights or improving agriculture.”56 

Thus, through pure mathematics, Clavius created a union between these “two mutually 

supportive, but analytically distinct, enterprises or discourses,” and his pedagogical 

work provides a window into the complexities of early modern mathematics and offers 

insights into how mathematics eventually gained a central position in the describing 

and manipulating the world.  And while Clavius’s own interest in the status of his 

discipline within the philosophy curriculum remains clear throughout his work, his 

inclusion of practical study shows how mathematics was necessary to both 

contemplative philosophy and active practices of artisans, thereby, allowing his work 

                                                
56 Peter Dear, “What is History of Science the History of?” in Isis. Vol. 96, no. 3 (September 2005), 
397.   
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to connect the two narratives that the historiography of the Scientific Revolution has 

provided.   

The influence of Clavius’s project is evident in the work of later Jesuit 

scholars.  For example, Dear has shown that Giuseppe Biancani (1566-1624), a 

member of Clavius’s academy in the late 1590s, expanded on Clavius’s arguments for 

the status of mathematics as a science (as opposed to an art).  Dear also explores the 

same themes in Christopher Scheiner’s work on astronomy and optics.  Scheiner 

(1573-1650), who did not arrive in Rome until after Clavius had died, had studied 

mathematics at Ingolstadt, illustrating that Clavius’s ideas were carried throughout the 

Jesuit school system.  In fact, Albert Krayer’s reconstruction of the astronomical 

library at the Jesuit university in Mainz shows that that university held nine of 

Clavius’s texts on that topic in 1630.57  Krayer also published Otto Cattenius’s lecture 

notes from the school year of 1610/1611.  Those notes indicate a close reliance on 

Clavius’s texts in the classroom.58  With those texts came Clavius’s vision of 

mathematics as both a source of true knowledge about the universe and as a utilitarian 

pursuit.  As Marcus Hellyer has shown, although Jesuit mathematicians clearly 

discussed the nature of the universe, they also maintained a practical emphasis in their 

teaching.59   

                                                
57 Albert Krayer, Mathematik im Studienplan der Jesuiten: Die Vorlesung von Otto Cattenius an Der 
Universität Mainz (1610/1611), (Stuttgart: Franz Steiner Verlag, 1991), 373-374.  Krayer’s 
reconstruction of the astronomical texts held by the library at the University of Mainz in 1630 shows 
that they held nine astronomy titles by Clavius, with multiple copies bringing the total to eighteen 
books.  Presumably at least some of Clavius’s non-astronomical works were also held in the library.   
58 Ibid., 181 – 360.   
59 Hellyer, Catholic Physics, 119-137. 
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Nor was Clavius’s influence limited to other Jesuit priests.  Roger Ariew has 

argued that Clavius’s combination of pure and mixed mathematics and his elevation of 

the discipline establishes the context in which René Descartes, who studied at the 

Jesuit college of La Flèche in the second decade of the seventeenth century, developed 

his understanding of mathematics.  Ariew noted that Descartes himself is supposed to 

have claimed that Clavius’s Algebra was his only education in the subject.60  

Furthermore, Clavius’s combination of mathematical sciences and arts was key to the 

development of a realist-mathematical science, a revolutionary transformation in 

which Galileo was a central figure.  And, like Descartes, Galileo can be seen to have 

been influenced by the Jesuits, especially Clavius, who, on account of the high esteem 

in which his contemporaries held him, was among the scholars to whom Galileo 

reached out when he was establishing his career.61  Wallace has argued that Clavius 

provided his younger contemporary with at least one set of lecture notes on logic from 

the Collegio Romano.  He has also suggested that Galileo requested and received other 

notes on mathematical topics from Clavius and his students.62  While we may never 

know how much material Clavius provided to Galileo, the former’s defense of the 

status of mathematics against natural philosophers almost certainly appealed to 

                                                
60 Roger Ariew, ““Christopher Clavius, The Promotion of Mathematics.” In Descartes’ Meditations: 
Background Source Materials, ed. Roger Ariew, John Cottingham, and Tom Sorell, (Cambridge: 
Cambridge University Press, 1998), 24.  The source Ariew included was not the Algebra, but rather a 
brief document Clavius wrote outlining the ways in which the Society could support mathematics 
within the schools and the importance of doing so.   
61 William Wallace, “Galileo’s Jesuit Connections and Their Influence on His Science,” in Jesuit 
Science and the Republic of Letters, ed. by Mordechai Feingold, (Cambridge, MA: The MIT Press, 
2003), 103-104.  Wallace notes that Clavius even helped Galileo secure a teaching position in the late 
1580s.   
62 Ibid., 104.  
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Galileo and helped him to cement his own “general understanding of what a science 

[including mathematics] was,” and may well have contributed to his realist approach 

to mathematical descriptions of the universe.63  

Although Descartes’ exposure to Clavius’s work occurred after the latter’s 

death and Galileo’s contact with Clavius began only in the late 1580s, it is possible to 

see the combination of contemplative and practical components of mathematics that 

defined Clavius’s pedagogical project in his early textbooks.  In order to sharpen our 

understanding of this relationship, I have chosen to compare his 1574 commentary on 

Euclid’s Elements with two closely contemporary commentaries on the same ancient 

text: the 1572 Latin commentary by the Italian humanist Federico Commandino 

(1509-1575) and the 1570 English commentary by the English haberdasher Henry 

Billingsley (d. 1606).  Each of those commentaries represents an approach to 

mathematics aligned with one of the two strands of the discipline presented side-by-

side in Clavius’s work.  Commandino’s Latin translation of Euclid was part of his 

efforts as a mathematician and a humanist to restore his chosen discipline to its ancient 

dignity through the translation of Greek texts.64  It showed mathematics to be a 

contemplative study and the branch of philosophy intermediate between divine and 

natural philosophies.65  Billingsley’s Euclid, as the first edition of The Elements 

                                                
63 Wallace, Galileo and His Sources, 148; See 136-148 for Clavius’s position on mathematics and how 
he and Biancani argued against Jesuit philosophers for the status of mathematics.   
64 Rose, Italian Renaissance, 185-221. 
65 Commandino, *3v. “Hinc triplex illud philosophiae genus, Divinum, quod quidem ut nomine, ita & re 
duo reliqua supra qua dici potest, antecellit; Naturale, quod tertium est, ac postremas ordine, ac 
dignitate habet partes, & medium, quod mathematicum appellatur: quoniam solum vere disci, ac sciri 
potest, ob summam rei subiecta constantiam, & certam demonstrandi rationem.”  
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intended for the non-Latinate merchant class of London, showed mathematics to be a 

practical discipline with potential concrete uses for artisans.  Many of those uses are 

enumerated in John Dee’s “Mathematicall Preface.”  Dee (1527-1608) was well-

known to his contemporaries as a philosopher with expertise in mathematics. His 

studies ranged from geometry to astrology and alchemy to cabala and hermetic 

philosophy.   The preface he wrote to accompany Billingsley’s commentary offers an 

analysis of the discipline of mathematics, including Dee’s version of its many 

branches, both theoretical and practical.  While the preface does combine 

contemplative and instrumental approaches to mathematics, as a survey of various 

branches of mathematics Dee identifies, it spends a great deal more space on the 

practical branches of mixed mathematics than on pure mathematics.  As such, it is a 

fitting preface to Billingsley’s practically-oriented text. 

While a study of a single edition of just one of Clavius’s texts cannot hope to 

provide a complete picture of his pedagogical project, an in-depth discussion of The 

Elements can throw Clavius’s goals for mathematics pedagogy into relief because 

Euclid’s role as a foundational text for all mathematical knowledge made it the subject 

of numerous sixteenth-century commentaries, including Clavius’s.  That role can be 

attributed to the structure and content of the text, which dates to the end of the fourth 

century BCE when Euclid of Alexandria, about whom little is known, is believed to 

have compiled the mathematical theorems of other more ancient scholars and added 

some of his own to create a comprehensive text on the foundations of geometry.66  

                                                
66 Shuntaro Ito, The Medieval Translation of The Data of Euclid, (Tokyo: University of Tokyo Press, 
1980), 7.  The Elements was not Euclid’s only work.  Books titled Optics, and Catoptrics, and The Data 
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Divided into thirteen books, Euclid’s work covers geometry from the definition of a 

point to the construction of solid figures.  The first six books study plane geometry.  

Three books (seven through nine) develop number theory and one book (ten) is 

devoted to the study of commensurability of magnitudes.  Books eleven through 

thirteen begin the study of solid geometry, ending with the construction of the five 

Platonic solids.67  Thus, the original text introduced a variety of mathematical topics 

which could be used as the foundation to studies in plane geometry (and its 

applications, such as optics), number theory, and solid geometry.  Over the years some 

of those further studies were appended to the text.  The two books added by Hypsicles 

of Alexandria in the second century BCE, exploring the relationships of the Platonic 

solids to each other, were usually included with the Euclidean text in the sixteenth 

century.  In 1566 the French mathematician Franciscus Flussas Candalla (1512-1594 

aka Comte François Foix de Candale), added a sixteenth book further comparing the 

Platonic solids to one another.  Some later commentators, including Clavius, appended 

that book to their own editions of Euclid to provide a more complete study of solid 

bodies.  The utility of that study is attested to by Kepler’s use of it in his Mysterium 

Cosmographicum in which he considered the structure of the cosmos in terms of the 

five regular solids inscribed in one another.68 

                                                
(a study of givens in geometrical problems) are also attributed to him based on the claims of other 
ancient authors and similarities between styles of the texts.  However, all that is known about the man 
himself is that he lived in Alexandria sometime between the time of Plato and the time of Archimedes. 
67 The Platonic solids are a tetrahedron (four faces), a cube (six faces), an octahedron (eight faces), a 
dodecahedron (twelve faces), and an icosahedron (twenty faces).  These are the only five solids that 
meet the criteria of being regular solids, meaning that all edges and angles are equal, and having the 
same number of faces of the polyhedron meet at each vertex.   
68 Johannes Kepler, Prodromus dissertationum cosmographicarum contiens mysterium 
cosomographicum de admirabili proportione orbium coelestium.  (Frankfurt: Erasmus Kempferus, 
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In the mid-sixteenth century, there was something of a revival of interest in 

The Elements.  Although the text has a long history in the university mathematics 

education, it was not until after 1453 when the fall of Constantinople brought Greek 

scholars, most notably Cardinal Bessarion who was the patron of Regiomontanus, to 

Western Europe, that European scholars had the opportunity to translate Euclid from 

Greek versions.69  The first such translation by Bartolomeo Zamberti (1473-1539) 

appeared in 1505 in Venice.  It was based on a fourth-century CE commentary by 

Theon of Alexandria found among the texts that Bessarion and other scholars had 

brought to the West. 70   However, sixteenth-century scholars also had medieval 

versions of the text available to them.  Indeed, many of the commentators from that 

time likely first learned The Elements from a version of Campanus of Novara’s 

thirteenth-century translation.  Campanus’s version, which was based on Arabic texts, 

was the most common version of The Elements, and the source for most Latin 

                                                
1621), p. 52.  He mentions Candalla’s addition in his thirteenth chapter where he describes the 
inscription of the Platonic solids into one another.  He begins the section with a discussion of 
propositions in the fifteenth book for which he cites Campanus, the most used medieval translator of 
Euclid.  It is not clear from his text which version or versions of Euclid he used.  The reference to 
Campanus is as follows, “Iam recta connectens centra figurae & basis est radius, sive semidiameter 
inscripti per ultimam lib. 15. Campani in Euclidem.”  (p. 50).  The reference to Candalla reads, “His 
adde quae Candalla, & quae alii de corporibus iam demonstrarunt, ut quod potentia NM diametiehtis in 
sphaera….” (p. 52).   
69 Lon R. Shelby, “Geometry” in The Seven Liberal Arts in the Middle Ages, ed. David L. Wagner 
(Bloomington: Indiana University Press, 1983), 205.  In the Middle Ages mathematics education was 
limited in universities.  As Shelby explains, Aristotelian studies were the primary focus, so mathematics 
took a backseat.  Still, for those scholars interested in theoretical geometry, Euclid was the main source.  
Prior to the twelfth-century, when Adelard of Bath, Hermann of Carinthia and Gerard of Cremona 
translated the text from Arabic into Latin, medieval universities often taught from remaining fragments 
of Boethius’s fifth-century translation.  These were superseded in the thirteenth century by Campanus 
of Novara’s translation. 
70 Cardinal Bessarion was a patron of Peurbach, through whom he became patron to Regiomontanus.  
The latter’s extensive translation project was based on the cardinal’s library.  See Ernst Zinner, 
Regiomontanus: His Life and Work trans. Ezra Brown (Amsterdam: Elsevier Science Publishers, 
1990),13, 29, 51-52.   
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editions, including the first printed edition of 1482.71  Sixteenth-century 

commentators, therefore, grappled with choosing between or combining medieval and 

ancient sources, making a commentary on The Elements a means through which 

mathematical scholars could demonstrate their own erudition. Furthermore by the mid-

sixteenth-century, the elevation of the status mathematics within universities and the 

rise of a desire for mathematical literacy among artisans had created such a demand 

for these texts that new editions poured out of print shops.  In the introduction to his 

own 1908 version of Euclid, Thomas Heath lists twenty-two editions, in Greek, Latin, 

and vernacular languages, published across Europe in the sixteenth century.  Twenty 

of those were published between 1533, when the first printed Greek edition appeared, 

and 1575, when Commandino’s Italian translation of his earlier commentary 

appeared.72   

With so many versions of Euclid’s text available, it is not immediately clear 

why Clavius felt he needed to write his own commentary on The Elements for Jesuit 

students.  He actually gave two justifications for his commentary in his letter to the 

reader; one reflected his interest in mathematics as a contemplative study, and the 

other pointed to the utility of mathematics.  First, he claimed (without any examples) 

                                                
71 H.L.L. Busard, Campanus of Novara and Euclid’s Elements. (Germany: Franz Steiner Verlag, 2005), 
32. 
72 Thomas Heath, The Thirteen Books of Euclid’s Elements, Introduction and Books 1 and 2.  (London: 
Cambridge University Press, 1908), 97- 113;  Heath’s list is not complete.  He selected those which he 
felt were important editions for the transmission of the Greek text in one way or another.  Thus, only 
Clavius’s 1574 Euclid appears in Heath’s Introduction, even though the 1589 version was substantially 
changed. 1575 certainly was not the last year of the sixteenth century in which versions of The Elements 
were printed, but because Heath observed that Commandino’s commentary became the source for many 
future publications, it gave him a convenient point at which to move his list forward to establish his 
work’s place in the translations of Euclid.  
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that it was unfortunate that most editions of The Elements were deeply flawed and 

difficult to read and understand.  Since he argued that all of mathematics was built on 

the foundation of The Elements and that those who had not mastered Euclid would 

never be able to understand other mathematical authors, such as Archimedes and 

Ptolemy, Clavius took it upon himself to create an accurate and clear edition.73  

Regarding editions based on Campanus’s texts, he expressed concern that in places the 

authors listed the propositions according the order found in Arabic, rather than Greek, 

texts, thereby corrupting Euclid’s method, which he later claimed gave mathematics 

the certainty necessary to allow it to uncover universal truths. Furthermore, in typical 

humanist fashion, he also said that even versions based on the Greek text of Theon of 

Alexandria, were incomplete and corrupted through errors made by copyists.74   His 

edition sought to restore the original Greek order and complete the text.  Second, he 

                                                
73 Christopher Clavius, Euclidis Elementorum (Rome: Vincentium Accoltum, 1574), a4v. “Cum enim 
longa, diuturnoque experientia nobis esset perspectum, atque exploratum, eam esse utilitatem, atque 
adeo necessitatem horum elementorum, ut frustra quisquam se speret, ipsorum praesidio, acutissimas, 
subtilissmasque Archimedis, Apollonii, Theodosii, Menelai, Ptolomaei, caeterorumque illustrium 
Mathematicorum demonstrationes posse percipere.”  
74 Ibid.,a5r.  “Sed alter secutus in omnibus est traditionem Arabum, qui magna ex parte Euclidis 
ordinem, ac methodum perverterunt, verbaque propositionum eiusdem locis non paucis immutarunt, ut 
verus, germanusque auctoris sensus perdifficile possit intelligi; id quod maxime in decimo libro 
perspicitur: Alter (Theonem intelligo) pene innumeris mendis, uitii que incuria librariorum ita est 
depravatus, & propter nota graecas, quae in eius demonstrationibus adhibentur, obscuras illas, ac male 
expressas adeo impeditus, ut magnam difficultatem inexercitatis ingeniis, perplexitatemque gignat. Quo 
fit, ut Euclidem sine maximo labore, ac studio nemo percipiat.” The first Latin translation based on 
Greek texts, Bartolomeo Zamberti’s 1505 version, may have been based on the work of Theon and is 
likely the version that Clavius had in mind for this critique, as it was at the center of a debate over the 
merit of translations based on Greek texts versus the merits of those based on the Arabic texts in the 
early years of the seventeenth century.  (Heath, Thirteen Books, 98-100).  The concern over errors that 
had been introduced into ancient texts through mistakes made in copying, translating, and interpreting 
texts was common to all kinds of humanism.  Biblical humanists, notably Robert Estienne, were 
devoted to the pursuit of more accurate scriptures based on Hebrew and Greek manuscripts through 
which they sought to correct the Vulgate.  See Basil Hall, “Bibilical Scholarship: Editions and 
Commentaries” in The Cambridge History of The Bible: The West from the Reformation to the Present 
Day ed. S.L. Greenslade (Cambridge: The University Press, 1963), 39-93.  For Estienne see especially 
pp. 63-67. 
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claimed that “on account of the singular utility” of Euclid, the text should be used as a 

handbook.  Therefore, he made the unique choice to have his commentary printed in 

two small volumes so that it could be easily carried by its owner even on long 

journeys to far-flung Jesuit missions.75   

However, neither of the justifications Clavius gave can explain the final 

version of his commentary.  Despite his promise to create an accurate version of 

Euclid’s text, it is misleading to describe Clavius’s commentary as a translation of The 

Elements.  Rather, it is a new text composed of the propositions and proofs found in 

ancient and modern versions of The Elements with the addition of several of Clavius’s 

own proofs.  His text contains references to numerous other versions of Euclid, 

ancient, medieval, and contemporary.  His most frequent citations are to Theon of 

Alexandria, Campanus of Novara, and Federico Commandino, but he also referenced 

numerous other mathematicians of his own era, including Francesco Barozzi (1537-

1604), John Dee (1527-1608), Peter Ramus (1515-1572), and Jacques Peletier (1517-

1582).  Such extensive citation of his own contemporaries, far beyond what is found in 

other commentaries of the day, fit his goals as a teacher by providing his students with 

the means to create a picture of the current state of discipline.76  Furthermore, Clavius 

                                                
75 Clavius, Euclidis Elementorum,a5v. “Nam cum Euclides, propter singularem utilitatem, instar 
enchiridii, manibus semper debeat circumgestari, neque unquam deponi ab his, qui fructum aliquem 
serium ex hoc suavi Matheseos studio capere volunt, in eoque progredi; id vero in hunc diem 
exemplaribus omnibus maiore forma impressis, necdum factum videamus; hoc nostra editio certe, si 
nhil aliud, attulerit commodi, atque emolumenti.  Sunt enim hi nostri commentarii in universum 
Euclidem conscripti commodiore nunc forma, quam vulgo caeteri, (id quod magnopere a nobis, qui nos 
audierunt, efflagitabant,) volumineque editi, ut facile iam queant, nulloque negotio, e loco in locum, 
cum res tulerit, ferri atque portari.”   
76 Clavius’s citations of Theon and Campanus are hardly unusual.  Most commentators relied on some 
combination of versions of Theon’s and Campanus’s texts and pointed out the older scholars’ changes 
to what was believed to be Euclid’s original text.  This is very much in-keeping with the practices of 
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did not always leave the proofs or comments exactly as he found them in any of his 

sources.  Besides occasionally pointing out and correcting mistakes in others’ works, 

he often compressed or even entirely rewrote proofs in an effort to improve their 

clarity and make them more useful to his readers.77  In chapter three, I will discuss 

how Clavius changed the demonstration to the Pythagorean Theorem to make it more 

accessible.  And while Clavius’s encyclopedic treatment of Euclidean proofs fits with 

his desire to create a useful handbook, his justification neither explained what he 

meant by the utility of geometry nor when he expected his students to need a 

handbook on geometry.  In this study, I will bring Clavius’s goals into focus by 

comparing his commentary to those of Commandino and Billingsley. 

Of the three texts considered here, Commandino’s was the closest to a simple 

translation of the Greek text.  His translation was made from Simon Gyrnaeus’s 1533 

Greek edition, which was based upon Theon’s text.78  Commandino’s goal fit the 

humanist project of restoring ancient knowledge, and, consequently, he made far 

fewer additions than Clavius, and those he did make were drawn exclusively from 

ancient sources. Anthony Grafton has shown that such practices were common to 

                                                
authors at the time, most of whom claimed to engage in extensive study of ancient texts to develop their 
own intellectual habits.  (While Campanus was a medieval scholar, versions of his commentary on the 
ancient text of The Elements were relatively easily accessible in the sixteenth century.  The first 
translation based on Theon’s Greek text (by Bartolomeo Zamberti) had only become available in 1505.  
In some cases references to Campanus were purely critical of divergences between his text and 
Theon’s.)  See Anthony Grafton, Commerce with the Classics: Ancient Books and Renaissance Readers 
(Ann Arbor: The University of Michigan Press, 1997) for a discussion of various approaches, including 
adding notes drawn from other ancient texts and seeking to correct errors in the Greek, humanist 
scholars took to reading ancient texts.   
77 Thomas Heath praises Clavius’s efforts to improve the clarity of proofs with his concluding 
evaluation of the text: “Altogether his [Clavius’s] book is a most useful work.”  Heath, Thirteen Books, 
105. 
78 Ibid., 105. 
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humanist scholars.79  And Paul Rose has shown that mathematical humanists, like 

their counterparts in biblical humanism, believed a return to the Greek texts was a 

means to rediscover “the eternal truths of God, man and the universe” that had been 

lost through neglect and misinterpretations and miscopies of texts in the Middle 

Ages.80   Such a project was inherently suspicious of changes to ancient texts.  Indeed, 

in his dedication letter for The Elements, Commandino assured his patron that 

remaining faithful to the ancient proofs made his edition superior to those of Candalla 

and other recent commentators who had eschewed the Greek demonstrations in favor 

of their own.81   

Commandino’s desire to restore mathematics as a source of truths about the 

world was not uncommon among mathematically inclined humanists of the sixteenth 

century.  Similar sentiments had been expressed over a century earlier in 

Regiomontanus’s famed 1464 Padua Oration, in which the German humanist 

described the discipline of mathematics from its ancient origins to the activities of its 

modern practitioners, praising its value for the erudition of any learned man.82  Since 

                                                
79 Citing only ancient sources fits with the humanist interest in using ancient knowledge as their own 
intellectual foundations, and he seems to have been in good company in using ancient additions to the 
original text to create his own commentary.  Anthony Grafton notes in Commerce with the Classics that 
Lorenzo Valla’s marginal glosses on his translation of Thucydides were copied from the scholia of 
Greek commentaries on the text.  (Grafton, Commerce, 17).   
80 Rose, Italian Renaissance, 6.  Rose provides a helpful discussion of the relationships between 
humanists and mathematicians in his first chapter in which he describes Renaissance attitudes towards 
mathematics.   
81 Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus Chriegher German, 1572), 
*2v - *3r. “At Candalla vir & generis nobilitate, & rerum cognitione insignis, licet omnes Elementorum 
libros, qui postulari a latinis videbantur, latinos fecerit, locupletaueritque, parum tamen (ut audio) eo 
nomine commendatur, quod longius iter ab Eulide averterit; & demonstrations quae in graecis codicibus 
habentur, velut inelegantes, & mancas suis appositis reicerit.” 
82 For a brief discussion of the Oration, including a summary, see Zinner, Regiomontanus, pp. 69-74.  
Another excellent discussion is found in J. Byrne, “A Humanist History of Mathematics? 
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that lecture was first published in 1537, it is possible that Commandino had come 

across it while he studied for his medical degree, a course that would have required 

some study of mathematics, at the University of Ferrara.83  However, while 

Commandino received a doctorate in medicine, he did not cultivate a practice as a 

physician, choosing instead to pursue a career in various courts as a mathematician 

(though his skills as a physician were sometimes required), and, ultimately settling in 

the Urbino court where he was employed by the duke as a tutor.84  He may even have 

received a pension from his patron.  That position gave him access to the Duke’s 

substantial library, the time to translate numerous texts, and a number of noble 

students who could assist with his restoration project.85  When his commentary on The 

Elements was published in 1572, he had already published works of Archimedes, 

Ptolemy, and Apollonius and had commentaries on works of Aristarchus, Hero of 

                                                
Regiomontanus’s Padua Oration in Context” in The Journal of the History of Ideas, Vol. 67, No. 1, 
January 2006,  57-60. 
83 Paul Rose identified a miscellany published in Nuremberg in 1537 as the source that preserved the 
Oration through today.  See Rose, 95 and n.55 on p. 113.  The source is Rudimenta Astronomica 
Alfragrani.  Item Albategnius astronomus peritissimus De Motu Stellarum (trs. Plato of Tivloi)… cum… 
additionibus Joannis de Regiomonte.  Item Oratio Introductoria in Omnes Scientia Mathematicas 
Joannis de Regiomonte Patavii habita, cum Alfraganum publice praelegeret.  Eiusdem Utilissima 
Introductio in Elementa Euclidis, (Nuremberg, Johannes Petreius, 1537).   
84 Such a career path was not uncommon for someone interested in mathematics.  For a discussion of 
the connection between mathematics and medicine see Robert Westman, “The Astronomer’s Role in 
the 16th Century: A Preliminary Survey,” History of Science (1980), 119-120. Alex Marr locates 
sixteenth- and seventeenth-century mathematical practitioners in the “court, the battlefield, the 
marketplace, the workshop, and the studio.”  According to Marr, this diversity of places of practice is 
part of the reason that the early modern era lacked a clear definition of “mathematician.”  See 
Alexander Marr, Between Raphael and Galileo: Mutio Oddi and the Mathematical Culture of Late 
Renaissance Italy, (Chicago: University of Chicago Press, 2011), 16. 
85 For a brief discussion of the duke’s library, including Cardinal Bessarion’s contributions to it, see 
Rose, Italian Renaissance, 54-55.  For the duke’s patronage of Commandino, see pages 202-206.  In his 
dedication to his 1566 translation of Apollonius, Commandino explicitly praised the dukes of Urbino 
for their library (Rose 203). Before Commandino returned to his native Urbino, he had worked in 
Verona, Rome, and Parma.  His primary patron during those years was the cardinal Ranuccio Farnese 
(1530-1565). 
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Alexandria, Theodosius, and Pappus underway.86 After Commandino’s death in 1575, 

his students, especially Guidobaldo del Monte, continued Commandino’s 

mathematical work and began to build on the Greek texts that their master had 

restored.  Rose notes that they focused on mechanics and the works of Archimedes, 

but their interest seems to have remained in abstract mathematical truths instead of the 

practical of mathematics, and Djiksterhuis observed that the mechanical work done by 

Commandino benefitted “mathematics rather than mechanics.”87  Del Monte himself 

was unconcerned by the precise physical details that could allow the construction and 

use of the machines he described, preferring to keep “mechanical sciences” found in 

his theoretical writings and “mechanical arts” required to actually construct machines 

separate from one another.88 

Even though Billingsley and Commandino relied on the same 1533 version of 

The Elements for their translations, the Englishman’s text presented a vision of 

mathematics at odds with that found in Commandino’s.  Where Commandino and his 

students were interested in mathematics as a branch of philosophy intermediate 

between divine and natural philosophy and, thus, as a source of universal truths, 

Billingsley intended his readers to use his translation of Euclid’s Elements as a 

foundation to improve mathematical arts.  In sixteenth-century England those arts 

                                                
86 Ibid., 185-221. In his first chapter on the Urbino school, Rose discusses all of Commandino’s 
numerous translations and restorations of Greek mathematics texts. 
87 Ibid., 222-242.  The chapter is titled “The Urbino School II: Guidobaldo dal Monte and the 
Archimedean Renaissance.”  Rose claims that “Guidobaldo’s attitude to mathematical instruments 
paralleled his attitude towards machines (as will be seen).  Through these material devices, he felt, 
abstract mathematical truth could be made completely visible” (p. 224).  Djiksterhuis, Mechanization, 
324. 
88 M. Henninger-Voss, “Working Machines and Noble Mechanics: Guidobaldo del Monte and the 
Translation of Knowledge.” Isis, Vol. 91, No. 2 (June, 2000), pp. 233-259. 
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included navigation, astrology, horology, gunnery and other military applications, 

cartography (and geography), and practical mensuration.89  Thus, where Commandino 

added little to the text, Billingsley, seeking to provide his reader with as much 

potentially useful material as he could, added commentary of his own and included the 

comments of numerous other authors, including Campanus and Candalla, on most of 

the propositions in Euclid’s text. Billingsley’s vision of mathematics as the foundation 

of various arts fit into a broader pattern of increased interest of merchants and artisans 

in the discipline as a means to profit.90  He himself was a merchant active in the civic 

life of London, who, on his title page, styled himself as “H. Billingsley, Citizen of 

London.”91  He served as Sheriff and Lord Mayor of London in the 1580s and 1590s, 

and starting in 1589, he was one of the Queen’s four customs farmers for the port of 

London.92  He also established scholarships for poor students to attend St. John’s 

College, Cambridge, where he had studied in the early 1550s, and gave property to the 

same college.93  His edition of Euclid can be seen as an early attempt to provide useful 

services to his fellow Londoners, the “good wittes” among his colleagues who could 

use the mathematical arts to improve their various crafts.94  

Unlike his contemporary English mathematical writers Thomas and Leonard 

Digges and Robert Recorde, Billingsley did not have an established reputation for 

                                                
89 For a discussion of the various mathematical arts practiced in England in the latter half of the 
sixteenth-century see Taylor, Mathematical Practitioners, 7-48. 
90 Harkness, Jewel House, 98. 
91 Henry Billingsley, The Elements of Geometrie of the most auncient Philospher Euclide of Megara, 
(London: John Daye, 1570), frontispiece. 
92 Custom farmers collected the taxes due on imported goods and paid a rent to the Crown for the 
privilege of receiving the customs money.  
93 Heath, Thirteen Books, 110. 
94 Billingsley, “To the Reader,” iiv. 
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knowledge of mathematics when he published his commentary.95  In order to give the 

book legitimacy in the eyes of potential readers, John Dee, who was well-known for 

his expertise in mathematics, was asked to write the preface.96  According to Nicholas 

Clulee, it is not clear whether Billingsley or the printer, John Daye, approached Dee, 

but either way, the request led to some collaboration between Billingsley and Dee in 

the production of the first English edition.97  Dee not only wrote the preface, he also 

provided several additions to the text, most of which appear in the later books on solid 

geometry.  While Billingsley explicitly had a non-university based audience in mind, 

Dee’s “Mathematicall Preface” was targeted to both Billingsley’s intended readers and 

university philosophers.  In it he set out to give a complete description of mathematics, 

both its science and its arts.  He claimed to be the first to give a description that 

included all mathematical arts.98  

Today, historians can read the “Mathematicall Preface” as a treatise on early 

modern philosophy of mathematics, and in that capacity, it has been the subject of a 

great deal of study as part of efforts to understand John Dee’s complicated position 

within the Scientific Revolution.  Clulee has elegantly analyzed the preface to show 

                                                
95 The limited role Billingsley played in mathematical practice of is day is apparent in the narrative 
portion of Taylor’s Mathematical Practitioners in which he is only mentioned in passing (p. 34).  While 
he is included in her list of biographies, his commentary on The Elements is not included in her list of 
works (p. 171).  It is only mentioned in her entry for John Dee’s “Mathematicall Preface” (p. 320).   
96 Although both Billingsley and Dee had studied at St. John’s College, they seem to have been in 
Cambridge at different times.  John Dee was there in the 1540s, and Billingsley didn’t start his studies 
until 1551.   Thus it is likely that they did not meet until they were both working in London.   
97 Nicholas Clulee, John Dee’s Natural Philosophy: Between Science and Religion.  (London: 
Routledge, 1988), 146.   
98 John Dee, “Mathematicall Preface” in Henry Billingsley, The Elements of Geometrie of the most 
auncient Philospher Euclide of Megara, (London: John Daye, 1570), second page  (no number or 
indicator).   

41



 

 

that Dee’s intent in studying mathematics was to understand nature and the divine 

through “the hidden springs and ultimate reasons behind the processes and very 

existence of the cosmos.”99  That is, Dee himself understood mathematics as an 

abstract source for the discovery of truths about the universe.  And, therefore, despite 

the fact that he acknowledged that Billingsley’s intended audience would be more 

interested in the practical uses of mathematics than in its philosophical import as a 

source of universal truths, he frequently digressed from his stated purpose of  

“recit[ing] describ[ing] and declar[ing] a great Number of Artes, from our two 

Mathematicall fountains [arithmetic and geometry], derived into the fields of Nature”  

to offer his observations on the links between mathematics and natural philosophy.100  

The preface’s philosophical location of mathematics as the intermediate branch of a 

tripartite division of knowledge into the supernatural, the mathematical, and the 

natural exactly mimics that found in the work of the Neoplatonist Proclus (412-485).  

The resemblance has been used in arguments that Dee was a philosopher whose 

Neoplatonic commitments combined mathematics and experience allowing him to 

create a philosophy that was a precursor to modern science.101  The preface also 

contains traces of Dee’s interest in hermeticism and alchemy, to which some 

                                                
99 Clulee., 231.  Lynn Thorndike’s description of John Dee’s interest in the soul and the “imaginative 
spirit” offers a similar vision of Dee’s interest uncovering the hidden secrets of the universe through 
any means available to him, including mathematics and natural magic.  See Lynn Thorndike History of 
Magic and Experimental Science, vol. 6, p. 391.   
100 Dee, “Mathematicall Preface,” in Billingsley, The Elements of Geometrie of the most auncient 
Philospher Euclide of Megara, (London: John Daye, 1570), a.iii. For a brief discussion of Dee’s 
digressions see Clulee, John Dee’s Natural Philosophy¸146-148. 
101 See I.R.F Calder, “John Dee Studied as an English Neoplatonist” (PhD diss., London University 
1952) for an in-depth study of the role Dee’s interests as unified by his central Neoplatonist 
mathematical idealism.   
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historians, notably Frances Yates, have credited his significance.102    Nevertheless, the 

majority of the “Mathematical Preface” is devoted to Dee’s description of the uses he 

identified for mathematics as a promise of future profit for the intended non-Latinate 

merchant readers.  Thus, because it was written as a preface for Billingsley’s English 

Euclid, the “Mathematicall Preface,” emphasizes the mathematical arts, including 

astrology, navigation, geography, navigation, and architecture, as “arts of social 

utility” for which geometry is the foundation.103  In this dissertation, I will study the 

preface in its intended role as a preface to an introductory mathematics text for a non-

Latinate audience, which, following Dee, will lead me to emphasize the practical 

applications of mathematics as opposed to its status within the hierarchy of disciplines.   

As this dissertation will show, Clavius positioned his approach to The 

Elements between those of his two contemporaries, using arguments for both the 

nobility and utility of mathematics as a means to justify its study.  In order to more 

completely understand the vision of mathematics Clavius presented in his commentary 

on Euclid, I have divided my dissertation into two parts.  In the first part, I study 

Clavius’s pedagogical project as an attempt to create a complete mathematics 

curriculum for the Jesuit schools.  In the first chapter, I focus on arguments for the 

nobility of mathematics.  I establish his ideal curriculum as a part of the sixteenth-

century debate over the status of mathematics within the hierarchy of disciplines.  This 

chapter explores the promotion, by Clavius and others, of the study of mathematics as 

                                                
102 Clulee., John Dee’s Natural Philosophy, 8, 166-167.  For a helpful discussion of the Yates thesis see 
Cohen, Scientific Revolution, 169-176.   
103 Clulee, John Dee’s Natural Philosophy, 148. 
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a source of certain knowledge that could bridge the concrete world of physics and the 

abstract ideas of metaphysics.  Such arguments were commonly made by 

mathematical humanists, including Commandino, and they appear in Clavius’s preface 

to The Elements.  As a result of his conviction that mathematics was a source of truths 

about the physical and the divine, he created an ambitious ideal for Jesuit schools: a 

three-year mathematics curriculum with an emphasis on astronomy, the branch of 

mathematics that he believed was the most noble because of the proximity of the 

heavenly bodies to the divine. 

In the second chapter I turn to the role of practical mathematics in Clavius’s 

curriculum.  Here I explore how Clavius understood practical aspects of his discipline 

as part of his vision of mathematics as a noble intellectual pursuit.  Thus, his 

arguments for practical mathematics were designed to make his discipline appealing to 

the princes whom the Jesuits hoped to teach, not the craftsmen to whom Dee and 

Billingsley sought to appeal.  Nevertheless, like the English authors, Clavius presented 

practical mathematics as a social good.  That argument and the Jesuits’ own needs for 

the applications of mathematics led the authors of the Ratio Studiorum to maintain a 

place for a branch of practical mathematics in their curriculum, even as they 

diminished the place of mathematics in each successive draft. 

Chapter three begins the second part of my dissertation, in which I offer a close 

comparison of the three versions of The Elements.  In this chapter, I examine the 

structures of the three commentaries, the aids which the authors provided the readers, 

and the mathematical content of the first book.  Since all three authors assert that 
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Euclid’s text had not been meaningfully changed since it was written in the fourth 

century BCE, the differences between the mathematical content of each text, in 

everything from the definitions to the proofs, are indicative of the differences in their 

approaches to mathematics and help to illustrate what they each hoped the reader 

would gain from the text.  In this chapter I argue that Clavius’s approach to 

mathematics emerges as a combination of the approaches of his contemporaries, 

making his text a work that could be used to teach mathematics to all Jesuit students, 

whatever their backgrounds or projected career paths. 

 In the fourth chapter I study the relationships that each author developed 

between geometry and arithmetic.  As the two branches of the quadrivium classified as 

pure mathematics, each of these fields of mathematics could be argued to have a 

foundational role in the study of mathematics.  However, humanists seemed to favor 

geometry in their arguments for the status of mathematics as a branch of philosophy, 

and arithmetic frequently appeared in cases for the utility of mathematics.  Thus, the 

relationship described between geometry and arithmetic indicates the value each 

author ascribed to mathematics.  Indeed, Commandino favored geometry, reducing 

arithmetic to a tool for its study.  Billingsley argued the opposite, saying that the 

necessity of number to the study of magnitude made arithmetic the single foundational 

branch for all of mathematics.  In this chapter I argue that Clavius again takes a middle 

road between his two contemporaries.  For him, arithmetic and geometry are 

analogous fields of study, and each can serve as an aid to the other.  In the context of 

The Elements, arithmetic aids geometry. 
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Finally, in the fifth chapter I look at the use of visualizations in The Elements 

to understand how each author saw the place of mathematics within the hierarchy of 

disciplines.  This chapter relies on the images each author presents for the definitions 

and two propositions in the first book as well as the definitions and one proposition in 

the solid geometry books.  In this chapter I argue that where Billingsley’s use of 

visualizations grounds mathematics in the concrete physical world, and 

Commandino’s images are mere aids to the development of abstract, universal ideas, 

Clavius’s images unite universal ideas and physical objects in mathematics, allowing 

him to place the discipline at the intersection between metaphysics and physics.   

Throughout my study I have attempted to take a “moderate historicist” 

approach by examining how Clavius, a well-respected mathematician of his day, 

understood and presented his own discipline.104  This dissertation is thus a case study 

of Clavius as one mathematician who sought to combine mathematical theory and 

practice for a specific institutional reason: the needs of the Jesuit schools.  It illustrates 

how a mathematical scholar with no explicitly “revolutionary” goals united two 

contemporary trends in his discipline that historians have since recognized as essential 

to the Scientific Revolution.105  Driven by the Jesuits’ needs, Clavius used his 

                                                
104 John H. Zammito, A Nice Derangement of Epistemes: Post-Positivism in the Study of Science from 
Quine to Latour. (Chicago: The University of Chicago Press, 2004), 5.  Zammito critiques postmodern 
theory, both in the philosophy of language and in social constructivism, as hyperbolic and advocates a 
“more moderate historicism” to counteract the cycles of extravagant theorizing and scaling back he 
identifies in the history of philosophy of science and science studies.  I interpret this to mean attempting 
to describe our actors and time periods in terms of what they believed they were doing rather than 
fitting them into a larger theory of the development of science.    
105 Peter Dear, “What is History of Science the History of?” 390-406; Peter Dear, Discipline and 
Experience: The Mathematical Way in the Scientific Revolution. (Chicago: The University of Chicago 
Press, 1995).  In both of these sources Dear discusses the combination of theory and practice.  In the 
article, it is the early modern separation of theorica and practica that Dear sees as a major stumbling 
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pedagogical program and textbooks to use pure mathematics as a unifying foundation 

for the mathematical sciences, which he identified as noble, and the mathematical arts, 

whose utility was increasingly recognized in the sixteenth century.   

Because The Elements was the first text Clavius required in his curricula and 

the text most likely to be taught in Jesuit schools it became the focus of my study as 

the text that introduced Clavius’s vision of his discipline to students.  While much 

remains to be done to understand how Clavius’s readers worked through and 

understood his texts, comparing his commentary on Euclid’s Elements to two other 

important contemporary works allowed me to uncover differences in the presentation 

of the foundations of mathematics.  These differences illustrate that, in his efforts to 

make Euclid accessible to a variety of students, Clavius practiced what he preached 

and combined the theoretical and the practical components of his discipline throughout 

his commentary.   

  Clavius’s sustained combination of these two facets of mathematics makes 

his work a case study in the intersection of the intellectual and social components of 

the Scientific Revolution.  Intellectual histories of the Scientific Revolution focus on 

the nobility of mathematics and its rise within the hierarchy of disciplines.  Social 

histories are more likely to focus on the increased interest in practical mathematics. 

                                                
block to identifying “science” before the nineteenth century, and thus early modern efforts to combine 
the two elements of knowledge appear to be the reason that modern historians identified the seventeenth 
century as the Scientific Revolution.  In the book, Dear traces the origins of experimental science to an 
early modern notion of experience as a general understanding of “how things happen in nature, rather 
than a statement of how something had happened on a particular occasion.”  In chapter 2 he studies 
Jesuits’ use of experience in an effort to make the case that astronomy and optics were sciences by an 
Aristotelian standard.   In the process Dear describes, the Jesuit mathematicians relied on Clavius’s 
combination of mathematical arts and mathematical sciences.   
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Because his work unites the two approaches to mathematics, it illustrates the limits of 

relying on any one historical narrative.  This dissertation, therefore, offers Clavius’s 

pedagogical work as one bridge between the philosophical and social narratives of the 

role of mathematics in the Scientific Revolution and seeks to present a more complete 

picture of the place of mathematics in early modern thought.  
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Chapter One 
 

Christopher Clavius and the Jesuit 
Mathematics Curriculum: 
A Mathematician’s Ideal 
 
 
“Indeed, if the nobility and excellence of a science is to be judged by the certitude of 
the demonstrations of which it makes use, the mathematical disciplines would without 
doubt have the foremost place among all others.”1 

Christopher Clavius, Euclidis Elementorum, 1574   
 

In 1599, the Society of Jesus published the definitive draft of the Ratio 

Studiorum.  Intended as the curriculum for all Jesuit schools around the world, it was 

produced over a period of nearly twenty years with many Jesuit priests contributing 

expertise, opinions, and advice.   During the drafting process, Christopher Clavius, the 

most eminent sixteenth-century Jesuit mathematician and the professor of mathematics 

at the Jesuits’ flagship Collegio Romano, exerted the greatest influence on the position 

of mathematics in the curriculum.  Indeed, while today he is primarily remembered for 

his work on calendar reform in the early 1580s, the vast majority of his work was 

dedicated to developing a complete curriculum for Jesuit schools.  By the time he 

began the calendar reform, he had been teaching mathematics almost continuously for 

                                                
1 Christopher Clavius, Euclidis Elementorum Libri XV Accessit XVI de solidorum Regularium 
comparatione (Rome: Vincentium Accoltum, 1574), bv.  “Si vero nobilitas, atque praestantia scientiae 
ex certitudine demonstrationum, quibus utitur, sit iudicanda, haud dubie Mathematicae disciplinae inter 
caeteras omnes principem habebunt locum.”   
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eighteen years, and had published his two most famous commentaries, the 

Commentary on the “Sphere” of Sacroboso (first edition 1570) and the Commentary 

on Euclid’s Elements (first edition 1574), both of which were intended as textbooks 

for all Jesuit schools.2  In these and other textbooks written to accompany his 

mathematics curriculum, Clavius embraced contemporary arguments by humanist 

mathematicians outside the Order about the status of mathematics as a discipline 

comparable to natural philosophy.  Based on these arguments, he established his ideal 

course of study, in which mathematics from geometry to astronomy was presented as a 

means to prepare students for the study of theology and understanding the divine. 

Clavius’s curriculum was built on the work of his Jesuit predecessors, Jerome 

Nadal (1507-1580) and Balthazar Torres (1518-1561), who had created numerous 

opportunities for Jesuit students to pursue mathematics as part of the Society’s 

ambition to save souls through education.  Their suggested programs of mathematics 

lasted over two years and covered a wide range of topics, giving Clavius a precedent 

to suggest an even broader three-year course of study.  Clavius’s curriculum, for 

which he wrote several of the accompanying textbooks, covered topics from geometry 

and practical arithmetic to perspective and astronomy.  In his estimation, mathematics, 

especially in the sub-branch of astronomy, could aid all Jesuit students in their pursuit 

of knowledge of the divine.  After all, astronomy studied the heavens, the part of 

                                                
2James Lattis, Between Copernicus and Galileo: Christoph Clavius and the Collapse of Ptolemaic 
Cosmology (Chicago: The University of Chicago Press, 1994), 3. While Lattis’s interest is in Clavius’s 
work on astronomy, he does note that the mathematician was known for his work as a pedagogue.  In 
fact, Lattis points out that Clavius’s contemporaries knew him as “the Euclid of his times” because his 
corpus of textbooks covered nearly all branches of early modern mathematics. 
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Creation that best illustrated the nobility of the divine.3  This argument contributed to 

the ongoing debate over the status of his discipline, the question of the certitude of 

mathematics.  That debate arose from the clash between the traditional view of 

mathematics - propounded by the Aristotelian Alessandro Piccolomini (1508-1579) - 

as a lower discipline that could describe but not explain the natural world and a 

renaissance during the fifteenth and sixteenth centuries of the view of ancient 

mathematics – expressed by the Platonist Francesco Barozzi (1537-1604) – as a source 

of sure truths.  Treatises, written by these two authors in 1547 and 1560 respectively, 

spurred Jesuit authors to consider the issues at length in order to determine the place of 

mathematics in their curriculum.4  Indeed, Clavius’s arguments for the status of 

mathematics as intermediate between the physical and divine were clearly based on 

those found in Barozzi’s text as well as in the works of other mathematically inclined 

humanists.   

This chapter examines Clavius’s vision of mathematics and its ideal role in 

Jesuit schools as a product of both earlier Jesuit mathematics curricula and the debates 

over the status of the discipline.  I will trace the development of the mathematics 

curriculum in Jesuit colleges before Clavius assumed his professorship in Rome in 

                                                
3 Christopher Clavius, In Sphaeram Ioannis de Sacro Bosco Commentarius (Rome: Victorium 
Helianum, 1570), 8-9.  “Tertio, quem corpora coelestia sunt propinquiora nobilissimo ac primo enti, 
puta, Deo glorioso; Immo secundum Averroem corpus coleste est mediator, ac ligamentum superiorum 
cum inferioribus, & locus aeternorum, ac divinorum; omnes etenim philosophi, ac nationes etiam 
quantumuis barbarae, in coelo Deum tanquam in sede collocant propria.  Quamvis enim Deus non huic 
vel illi loco sit alligatus, sed ubivis locorum (quod nullis aliis convenit rebus) existat; ponitur tamen in 
coelo, tanquam in nobiliori mundi parte, ubi maxime suam omnipotentiam, & bonitatem manifestat, ut 
Theologi asserunt.”   
4 Piccolomini’s 1547 treatise is the Commentarium de certitudine mathematicarum disciplinarum, and 
Francesco Barozzi’s 1560 response is entitled Opusculum in quo uno Oratio et duae Quaestiones altera 
de certitudine, et altera de meditate mathematicarum continentur.   
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order to understand how he built on the work of previous mathematics teachers.  Then 

I will turn to the renaissance of mathematics and consequent debate over the certitude 

and status of mathematics as presented in fifteenth- and sixteenth-century 

mathematical texts, including arguments philosophers made against mathematics.  

Using the prefaces to his commentaries on Euclid’s Elements and Sacrobosco’s 

Sphere, I will examine how Clavius placed his work within those contemporary 

debates. Finally, using suggestions Clavius made for how mathematics should be 

taught, I will discuss his vision for how the Society could make his ideal curriculum 

possible and how it could take full advantage of the benefits he believed the study of 

mathematics offered.  Before considering the place of mathematics in the Jesuit 

schools, however, it is necessary briefly to discuss the goals and organization of the 

school system. 

 

Jesuit Schools 

  Although the Order’s founder, Ignatius Loyola, had hoped to create a 

missionary order, the Society of Jesus saw teaching as part of its apostolic mission 

from its formal inception.  The papal bull creating the Society made provisions for 

colleges and universities to train its future members.5  It also drew the Jesuits towards 

the education of laymen.  Indeed, Pope Paul III mandated that one who wished to join 

the Society of Jesus must “purpose to become a member of a society principally 

instituted to work for the advancement of souls in Christian life and doctrine, and for 

                                                
5 “The Bull of Institution, 1540” in The Catholic Reformation, ed. John Olin, (New York: Fordham 
University Press, 1992), 207. 
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the propagation of the faith by public preaching and the ministry of God’s Word, by 

spiritual exercise and works of charity, more particularly by grounding in Christianity 

boys and unlettered persons, and by hearing the confessions of the faithful, aiming in 

all things their spiritual consolation.”6  Moreover, members were to strive “above all 

things” for “the instruction of boys and ignorant persons in the knowledge of Christian 

doctrine, of the Ten Commandments, and other such rudiments as shall be suitable, 

having regard to the circumstances of persons, places, and times.”  The Jesuits 

interpreted the phrase on “grounding boys and unlettered persons” in Christianity as 

an exhortation to teach, and believed that the other rudiments were grammar and 

rhetoric.  When they deemed it appropriate to offer more advanced education, they 

added philosophy and more advanced lessons in theology.   

Despite the papal exhortation to teach, the Jesuits took several years to realize 

their school system, but, once begun, it came quickly to define their primary activity.  

Initially, the Society of Jesus only sent members to teach theology at a variety of 

existing universities.  In some cases, the Jesuits established residential colleges loosely 

connected to universities to provide for future members of the Order who were 

studying there, but no classes were offered at these colleges.7  In 1546, the Jesuit 

teaching mission took on a new form when the Duke of Gandia received approval for 

the use of ecclesiastical funds to found a Jesuit college in his Spanish realm, where 

there was no existing university.8  For the first time, Jesuit priests at this new school 

                                                
6 For this and the quotation that follows, see ibid., 204-205 (with my emphasis). 
7 John W. O’Malley, The First Jesuits (Cambridge, MA: Harvard University Press, 1993), 202. 
8 This Duke, Francisco de Borja, eventually joined the Society of Jesus and became the General of the 
order in 1565. 
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were teaching more than theology, and they were working with students who would 

not necessarily join the Order.9  From this point on, teaching became the overarching 

mission of the Jesuits, and every Jesuit had to assist.10  A short two years later, the 

Society of Jesus was asked to open a school in Messina, Sicily, and, just a few months 

after that, another in Palermo.  Both schools were approved, and more followed.11  By 

1556, the Jesuits had opened thirty-three schools; by 1581 the number had increased to 

150, and by 1599, when the definitive Ratio Studiorum was published, there were 245 

schools, including a few in America and Asia.12   

By the turn of the seventeenth century, even if the Jesuits had intended to 

pursue other activities, they could not spare any resources, especially human 

resources, from the tasks required to run the vast number of schools they had created.  

In fact, the Jesuits consistently struggled with teacher shortages as both the number 

and size of their schools rapidly increased.  By 1600 there were 8,500 Jesuits, most of 

whom staffed the various schools.  A Jesuit school offering the full curriculum from 

grammar to theology could not be run by fewer than fourteen Jesuits, unless some held 

two positions, which was usually not possible.  The 1599 Ratio Studiorum called for a 

rector, one or two prefects of study, seven professors in the higher faculties (sacred 

scripture, Hebrew, scholastic theology, cases of conscience, philosophy, moral 

philosophy, and mathematics), and five teachers in the lower studies of grammar and 

                                                
9 O’Malley, First Jesuits, 203. 
10 Ibid., 200. 
11 Ibid., 205-206. 
12 Allan P. Farrell, Introduction, The Jesuit Ratio Studiorum of 1599, trans. Allan P. Farrell 
(Washington DC: Conference of Major Superiors of Jesuits, 1970), iii. 
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rhetoric.  These lower studies could be, and often were, divided into multiple classes 

in large schools.13  Even so, because schools usually had well over 1,000 students, 

classes were large, around 200 students, so it was impossible for a single teacher to 

monitor the work of each student.14  To help mitigate the chronic teacher shortage, 

instead of increasing the number of classes taught, large classes were divided into 

groups of ten students, in which one member acted as captain and monitored the work 

of his group-mates.15   

Giving students leadership roles may also have been seen as a way to further 

the Jesuits’ goal of training students to become leaders in their local societies.16  Their 

hope was that graduates of their colleges would know how to live “satisfying lives as 

Christian gentlemen,” that is that they would seek to perfect their souls through 

virtuous living and would spread that knowledge to others through the examples they 

set.17  It was with these goals in mind, that the early Jesuits, especially Ignatius 

Loyola, considered what the best curriculum would be.  Ignatius himself had been 

educated in a medley of Spanish universities, where he was exposed to an older 

medieval curriculum, and at the University of Paris where he studied a humanist 

curriculum. In his guidelines for the Order’s schools, Ignatius attempted to take the 

best from both traditions.18 Ultimately, this resulted in a curriculum that was 

                                                
13 Ibid., 8-9, 25-46. 
14 John Donohue, Jesuit Education: An Essay on the Foundations of its Idea (New York: Fordham 
University Press, 1963), 63-66. 
15 Ibid., 66. 
16 O’Malley, First Jesuits 211-213. 
17 George Ganss, St. Ignatius’s Idea of a Jesuit University: A Study in the History of Catholic Education 
(Milwaukee: The Marquette University Press, 1956), 166. 
18Ibid., 11-17. 
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substantially similar to that taught at secular humanist schools, focusing on Latin and 

Greek and teaching from classical sources.  However, unlike those schools, the Jesuits 

colleges emphasized the importance of theology, and they were careful to expurgate 

morally questionable sources.19  

In Part Four of the Constitutions, Ignatius outlined a curriculum that described 

what should be taught (both to students intending to join the Society, known as 

scholastics, and to those who were not called to the Order, called externs) as well as 

the method for running the schools to best ensure that Jesuit teaching could lead 

students to salvation.20  In order to make the schools attractive to externs, teachers 

were to take an active interest in their students and their local setting, so that the 

curriculum could be adapted to local customs.21 And, in keeping with traditions from 

medieval universities, students at all but the lowest levels were required to participate 

in public disputations, and students who intended to receive a degree had to take 

public examinations.22  While Ignatius left the curriculum of externs open to the 

demands of local needs, his work was fairly detailed with respect to the program of 

study for the scholastics. He insisted on the grammar and rhetoric of various languages 

– including, but not limited to, Latin and Greek, without which no other study was 

                                                
19 Francesco Ceasaro, “Quest for Identity: The Ideals of Jesuit Education in the Sixteenth Century,” in 
The Jesuit Tradition in Education and Missions: A 450-Year Perspective, ed. Christopher Chapple 
(Scranton: University of Scranton Press, 1993), 18. 
20 According to Ignatius, the method of teaching was just as essential as the content of the curriculum to 
enabling students to reach the ultimate goal of salvation and to ensuring the success of Jesuit schools.  
See Ignatius Loyola, “Part Four of the Constitutions of the Society of Jesus,” in St. Ignatius’s Idea of a 
Jesuit University: A Study in the History of Catholic Education (Milwaukee: The Marquette University 
Press, 1956), 291. 
21 Ibid., 333. 
22 Ibid., 313-317. 
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possible.23  Usually a total of four years was spent in the humanities curriculum: two 

on grammar and two on rhetoric.  Once a student advanced to the higher faculties of 

the arts, he would spend three years on natural sciences that could be learned from 

reason (as opposed to revelation): logic, natural philosophy, and metaphysics.  Finally 

students would proceed to a four year course in scholastic and positive theology and 

sacred scripture.24  Some students could study some topics in greater detail as ordained 

by their superiors.25  This course of study became the foundation for the Ratio 

Studiorum.     

 

Mathematics in the Jesuit Schools before the Ratio Studiorum 

 In the sixteenth century, mathematics was composed of many branches.  The 

quadrivium (geometry, arithmetic, music, and astronomy) was the Latin standard of 

mathematics education in universities where, because mathematics received less 

scrutiny from humanists than the trivium, teachers were still using medieval texts, 

most notably those written by Boethius.26  Geometry and arithmetic were considered 

pure mathematics because of their lack of concrete objects of study.  Astronomy and 

music, “sensible” subjects, which were accessible through the senses, were considered 

mixed mathematics.  However, even the astronomy and music curricula treated their 

                                                
23 Sometimes Hebrew was added to Latin and Greek. 
24 Loyola, Part Four, 310.  For more information on the time spent on each portion of the curriculum see 
Ganss, 47-50. 
25 Loyola, Part Four, 307-308. 
26 Paul Grendler, Schooling in Renaissance Italy: Literacy and Learning 1300-1600 (Baltimore: Johns 
Hopkins University Press, 1989), 309.  The texts used likely included Boethius’s De arithmetica and his 
fragments of Euclid’s Elements. 
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sensible subjects as abstract entities.27  Understanding the motion of celestial bodies 

required the use of unobservable geometrical concepts such as equants and epicycles.  

The study of music dealt with abstract ratios and the harmony of the soul and the 

celestial spheres more than with practical instrument-making or the harmony of notes.  

In vernacular schools, one could find more practically oriented mathematics, 

especially “abbaco,” the practical arithmetic that enabled the advanced bookkeeping of 

Renaissance merchants.28 Other branches of practical, or mixed, mathematics, such as 

perspective, geodesy, and mechanics, could have been learned while studying 

philosophy when studying for a trade, but were not likely to have been available in 

any formal mathematical schooling.29   

Despite the variety of topics encompassed under the heading of mathematics, 

the discipline was mentioned only once in the Constitutions, and there was no 

indication as to which branches of it should be taught.  Ignatius included mathematics 

                                                
27 For a discussion of the role of theoretical astronomy within the quadrivium see Claudia Kren, 
“Astronomy: in The Seven Liberal Arts in the Middle Ages ed. David L. Wagner, (Bloomington: 
Indiana University Press, 1983), 218-247.  See also David C. Lindberg, The Beginnings of Western 
Science, Second Edition, (Chicago: The University of Chicago Press, 1992), 261-270 for comments on 
the role of astronomical theory in medieval education.  For a discussion of music as an abstract 
discipline see Theodore Karp, “Music” in The Seven Liberal Arts in the Middle Ages ed. David L. 
Wagner, (Bloomington: Indiana University Press, 1983), pp. 174-178.  Karp describes music as an 
abstract discipline and points out that according to medieval philosophers including Boethius and 
Cassiodorus, “it was not essential to be able either to play, sing, or compose in order to qualify as a 
musician!” (p. 177).   
28 Ibid., 306-309.  Some vernacular schools also taught surveyor’s geometry.  See J.V. Field, The 
Invention of Infinity: Mathematics and Art in the Renaissance (Oxford: Oxford University Press, 1997), 
14-16. 
29 For a discussion of perspective as part of both mathematics and physics see David C. Lindberg, 
Roger Bacon and the Origins of Perspectiva in the Middle Ages: A Critical Edition and English 
Translation of Bacon’s Perspectiva with Introduction and Notes (Oxford: Clarendon Press, 1996), 
xxxiv-xli.  Lindberg points out that Aristotle “placed optics on the boundary between physics and 
mathematics.”  Robert Grosseteste (c. 1168-1253) was one of the first Western scholars to call for the 
mathematization of optics, and Roger Bacon (c. 1214 – 1292) carried it out, though he combined it with 
a physical analysis (see page lii), keeping optics within the realm of philosophy. 
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as part of the arts and natural sciences curriculum, but explicitly limited it to the 

“moderation appropriate to secure the end we are seeking.”30  The nature of this 

“appropriate moderation” for the education of youths as well as for the betterment of 

their souls and society remained unclear.  This gave the mathematics teachers in Rome 

the opportunity to create extensive programs of study with the justification that each 

branch of mathematics could somehow be of use to the study of the divine or in 

preparation for the potential roles of Jesuit missionaries.  Indeed, in the 1550s when 

Jerome Nadal, who had taught mathematics while he was studying both in Alcalá and 

in Paris before the founding of the Order, was tasked with promulgating Ignatius’s 

Constitutions to the Jesuit schools, he gave “appropriate moderation” a very liberal 

interpretation and created rigorous mathematics courses.31  

 It is not clear what sparked Nadal’s interest in mathematics education.  Jesús 

Luis Paradinas Fuentes believes that Nadal was of Jewish descent and that the 

importance of astronomy to Hebrew culture gave him early exposure to and interest in 

mathematics.32  Antonella Romano suggests that, because of its practical implications, 

mathematics had provided a competitive edge for Jesuit colleges in the early 1540s in 

Padua and Venice, something Nadal would have known.33  Both explanations can be 

                                                
30 Loyola, Part Four, 332. 
31 Ganss, St. Ignatius’s Idea, p. 285; Antonella Romano, La Contre-Réforme Mathématique: 
Constitution et Diffusion d’une Culture Mathématique Jésuite à la Renaissance.  (Rome: École 
Française de Rome, 1999), pp. 50-51. 
32 Jesús Luis Paradinas Fuentes, "Las Matematicas en La Ratio Studiorum de los Jesuitas,” Fundación 
Orotava de Historia de la Ciencia,” LLULL: Revista de la Sociedad Española de Historia de las 
Ciencias y de las Técnicas 35, no. 75, (2012): 136, 
https://dialnet.unirioja.es/servlet/articulo?codigo=3943923. 
33 Romano, La Contre-Réforme Mathématique, 47-51. Those colleges were exclusively for Jesuit 
novices and were associated with existing universities.  The competitive edge that came from the 
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supported by Nadal’s rigorous program of study for mathematics, which covered pure 

mathematics (geometry and arithmetic) and a variety of branches of mixed 

mathematics, with an emphasis on astronomy.  Nadal’s plan, a scaled back version of 

which was implemented in the college he helped found at Messina, called for three 

mathematics lessons a day and suggested textbooks from recent as well as more 

traditional authors, including Orontius Finé, Peurbach, and Euclid.34  Mathematics 

complemented other philosophy courses in all but the first of the four years of 

philosophy studies.  Second-year philosophy students began their mathematics 

training with Euclid, practical arithmetic, and the principles of astronomy.  In their 

third year they studied music and perspective, with the theory of the planets and the 

astrolabe following in the last.  Nadal ended his program with the observation that 

upon completion of this course of study, philosophy students would “know at least the 

principles of all of mathematics,” but the inclusion of practical arithmetic and 

perspective betrays a utilitarian interest beyond that desire.35   

 Nadal’s position as an administrator (and as one of the founding Jesuits) gave 

him the means to promote mathematics throughout the Jesuit school system, but 

because he was no longer in the trenches as an instructor when he wrote his 

curriculum, it was only an ideal.  In practice, Nadal’s colleague Balthazar Torres, who 

held the mathematics chair at the Collegio Romano from 1553 to 1561, offered a 

                                                
inclusion of mathematics in the Parisian model of a humanist liberal arts education espoused by the 
Jesuits could thus gain the Society of Jesus an increase in numbers. 
34 Ibid., 55. 
35 Fuentes, “Las Matematicas,” 137. The quotation from Nadal is in Fuentes’ text in Spanish.  The 
English translation is mine based on Fuentes’ Spanish.   
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slightly modified program of study.  Torres’s two-and-a-half-year formal course 

included a logic lesson every morning and every afternoon some topic from pure or 

mixed mathematics.  Much of what he suggested followed Nadal’s plan closely, 

although it was somewhat shortened, at the expense of astronomy, to fit into a half 

year less.36  He particularly emphasized the practical branches of his discipline by 

teaching all mathematics topics in one class.37  Thus, even as students first learned 

foundational pure mathematics, they could see potential applications being developed 

by the more advanced students.38  However, perhaps fearing that such a class structure 

would not be conducive to advanced study, Torres suggested that talented students 

continue to study mathematics for a third year working closely with the professor in 

private study or small groups instead of sitting in a formal class.  Such study groups 

were possible because in the Constitutions, Ignatius had provided for dispensations 

from certain duties (usually teaching the lower disciplines) for students who showed 

talent in a particular area of study to focus on that field.39  These dispensations only 

applied to those studying the higher disciplines.  While Torres’s small groups were 

likely intended to help alleviate the difficulties colleges faced in finding capable 

mathematics professors, by establishing the means for students to devote their efforts 

                                                
36 Romano, La Contre-Réforme Mathématique, 77. 
37 Ibid., 74. While Ignatius intended the Collegio Romano to be a model for all other Jesuit schools 
(Ganss, St. Ignatius’s Idea, 34), it is not clear that mathematics instructors elsewhere followed Torres’ 
curriculum.  Indeed, the Constitutions left the curriculum open for adaptation to local needs.  Romano 
has shown that, at least in France, the mathematics curriculum followed the desires of local leaders.  For 
my purposes, however, it is sufficient to study the Collegio Romano’s mathematics curriculum because 
that is the curriculum Clavius inherited when he took over the professorship in Rome.   
38 Romano, La Contre-Réforme Mathématique, 80; Fuentes, “Las Matematicas,” 139. Of course, the flip 
side is that the more advanced students would always have easy access to the foundational material in 
pure mathematics that made the applications possible. 
39 Loyola, Part Four, 335. 
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to mathematics at the expense of other areas of study, they also claimed an elevated 

position for mathematics.40   

The chair of mathematics at the Collegio Romano passed to Christopher 

Clavius in 1563.  He took up the torch of Nadal and Torres and continued to promote 

the study of mathematics, creating an even more extensive curriculum.  In the early 

1580s, he wrote three possible mathematics curricula, each of which was designed for 

students of different levels and covered successively smaller amounts of 

mathematics.41   The most ambitious program was designed for those who were 

interested in pursuing the most perfect knowledge of mathematics; the second was for 

students who were not going to use mathematical knowledge extensively, but who still 

needed a firm foundation; the third was the shortest, requiring only two years of study, 

and provided what Clavius deemed to be only a basic knowledge of mathematics.42  

Clavius clearly did not believe that this last curriculum was truly sufficient.  He titled 

it “Third, briefest order adapted to fit even a course of mathematics that should be 

completed in two years,” a time-span Clavius ultimately felt was too short. At the end 

of that curriculum he suggested that “if the students are capable and desire to learn,” 

                                                
40 Romano, “La Contre-Reforme Mathematique,” 68-70.  Even with a mathematics academy in Rome, 
there remained a shortage of qualified teachers for the discipline, which meant that mathematics 
remained a marginal subject in most Jesuit colleges.   
41 Ibid., 103.  As will be discussed in the next chapter, even Clavius’s least rigorous suggested 
curriculum was not adopted by the Jesuit schools.  Thus, the only place in which his curriculum was 
taught was in his continuation of Torres’ private academy in Rome.  The development of that academy 
will be briefly discussed at the end of this chapter.  
42 Christopher Clavius, “Ordo servandus in addiscendis disciplinis mathematicis (1581),” in ed. 
Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione 
Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 110-115. 
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then the more rigorous second curriculum could be taught in two years, and, if they so 

desired, students could continue their study independently.43   

In the first curriculum, the extent of Clavius’s ambition for mathematics 

students is clear.  They should be exposed to much of then-known mathematics: all 

fifteen books of Euclid and the sixteenth book from the 1566 commentary of Francois 

Flussas Candalla, practical arithmetic, Sacrobosco’s Sphere (or another introduction to 

astronomy), use of various astronomical instruments including quadrants, speculative 

arithmetic, speculative music, algebra, trigonometry, spherical geometry (found in 

Clavius’s commentary on The Sphere of Theodosius), the structure of the astrolabe, 

horology, geography, measurement of plane and solid figures, perspective, various 

phenomena and problems of astronomy, the motions of the planets (including the 

Alphonsine Tables), the works of Archimedes on circles as well as mean proportions, 

doubling the cube, and squaring the circle, mechanics, and a study of cylindrical 

sections and their relationship to ellipses.44  These topics were broken down into 

                                                
43 Ibid., 114-115; “Ordo tertius brevissimus et ad cursum mathematices, qui duobus annis absolve debet, 
accommodatus.”  “Probo autem magis secundum ordinem quam hunc, si duobus annis absolvi posset.  
Posset autem, si discipuli sint capaces et cupidi discendi.”  
44 Ibid., 110-113. Speculative arithmetic stands in contrast to practical arithmetic.  It was the study of 
number theory, as opposed to the operations on those numbers.  This included numerology, as that field 
pertained to the study of scripture.  For speculative arithmetic Clavius suggested the work of the 
thirteenth century mathematician Jordanus de Nemore.  Similarly, speculative music means music 
theory instead of musical practice.  For that topic, he suggested the work of Jacques Lefèvre d’Étaples, 
who wrote a treatise on music theory in four books, Musica libris quatuor demonstrata. Since these 
authors were connected in his curriculum it is likely that Clavius had read the 1496 or 1514 printing of 
d’Étaples work on music with Jordanus’s work on arithmetic and a treatise on arithmetic by Boethius.  
The 1514 printing also included a second brief treatise by d’Étaples on arithmetic.  (In hoc opere 
contenta. Arithmetica decem libris demonstrata. Musica libris demonstrata quattuor. Epitome in libros 
arithmeticos divi Severini Boetii. Rithmimachie ludus qui et pugna numerorum appellat.  (Paris: Henrici 
Stephani: 1514).  For what I have called trigonometry, Clavius wrote “Tractatus sinuum, una cum 
eorum usu circa varia phaenomena et problemata ad primum mobile spectantia, absque 
demonstrationiubus.”  I am interpreting this item to cover most of what we would recognize today as 
basic trigonometry which is all based on the sine function. 
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twenty-two pedagogical units, for each of which Clavius indicated possible textbooks.  

He had clearly read extensively in his own mathematics education citing a wide range 

of authors, including Francisco Maurolico (whom he had visited in 1574), Michael 

Stifelius, Jacques Peletier, Regiomontanus, and Ptolemy.45   

The second curriculum was a little shorter with only nineteen pedagogical 

units.  He left out the works of Archimedes, mechanics, and cylindrical sections.  He 

also shortened one of his units on Euclid’s Elements to eliminate books seven through 

ten, which deal with number theory.  He was likely trying to avoid repeating material 

learned in the speculative arithmetic unit.  While Clavius clearly preferred the first 

curriculum to the second, he did not seem as dissatisfied with it as he did with the 

third option, which included only fifteen pedagogical units.  (In this curriculum he 

eliminated The Sphere of Theodosius, phenomena and problems of astronomy, the 

motions of the planets, and the unit on speculative arithmetic and music.)  However, 

Clavius’s dissatisfaction with the third program should not disguise how much 

material it covers.  In fact, even he seems to have feared that this third program would 

be rejected as too much material to squeeze into two years.  He therefore outlined 

explicitly how much time should be spent on each section of the curriculum.  In the 

first few months of the school year, from the beginning of term until the end of 

January, students were to learn the first four books of Euclid.  Then, until Easter they 

were to study practical arithmetic, the sphere and its applications to ecclesiastical 

                                                
45 Ibid., 110-113.  For Clavius’s visit to Maurolico see Lattis, Between Copernicus and Galileo, 19.  
Ugo Baldini dates Clavius’s trip to Messina, where Maurolico lived and worked, to the months between 
April and September of 1574.  See Ugo Baldini, Christoph Clavius Corrispondenza Vol. 1, Parte 1, ed. 
U. Baldini and P. D. Napolitani, (Pisa: Universtia di Pisa, 1992), 46.   
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computation, and the fifth and sixth books of Euclid.  From Easter to Pentecost 

students were taught geometric and astronomical forms, and finally, until the end of 

the year they studied perspective and horology.46  In the first year of study alone, they 

would have covered almost as wide a variety of mathematics as Nadal had laid out in 

his entire three-year course.  The second year was equally rigorous, continuing with 

two more books of Euclid, and adding trigonometry, geography, the use of astrolabes, 

conic sections, the theory of planets (including the use of the Alphonsine Tables), the 

classical Greek problems of squaring the circle and doubling the cube, practical 

algebra, and finding the area of planar and solid figures. It is clear from this outline, 

that the second year was designed to emphasize mixed mathematics by focusing on the 

practical applications – especially the practical uses of astronomy - of the pure 

mathematics that had been learned in the first year.   

While Clavius did offer a variety of textbooks for each topic in his curricula, 

one author recurs more than any other - Clavius himself.   Although at the time the 

curricula were written he had only published his commentaries on Euclid’s Elements 

and Sacrobosco’s Sphere, he mentions sixteen texts that he was in the process of 

writing or that he planned to write.  These cover almost every branch of his course of 

study, leaving only speculative arithmetic and speculative music exclusively to other 

authors (namely, Jordanus of Nemore and Jacques Lefèvre d’Étaples).47  While 

Clavius did not write all of the texts he planned, he did manage to cover most of the 

material listed in his curriculum.  Notably missing are the promised texts on 

                                                
46 Clavius, “Ordo servandus,”114. 
47 Ibid., 110-113. See note 44 for a brief explanation of speculative arithmetic and speculative music. 
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geography, perspective, and mechanics.  He did, however, write the Geometria 

practica, which could be seen as a foundation for all three of those topics.48  Clavius’s 

textbooks provided a legacy that would continue to promote the study of mathematics 

even after his death.  Jesuits around the world used them both in their schools and in 

their missionary work.  Non-Jesuits throughout Europe, even in Protestant states, read 

and taught from them.49  While the textbooks effectively covered the content of 

Clavius’s curriculum, they did not specify how that curriculum could best be taught or 

what the status of mathematics should be.  Before turning to how Clavius envisioned 

the implementation of his ideal curriculum, it will be helpful to study how he 

positioned his work in the contemporary conversation surrounding the status of 

mathematics beyond the Jesuit Order.  

 

The Renaissance of Mathematics and the Question of Its Certitude 

In the fifteenth and sixteenth centuries mathematics was the subject of an 

ongoing renaissance and restoration. For many mathematicians, finding, interpreting, 

and using recently rediscovered texts of Aristotle, Archimedes, Pappus, Euclid, 

Apollonius, and Proclus, among others was an obsession.50  According to those 

                                                
48 The Geometria practica published in 1604, was one of the last books Clavius wrote. He suffered an 
illness around that time.  It is possible that he wrote it to cover all of the topics for which he had not yet 
written textbooks because he feared he would not live long enough to complete individual texts for each 
topic.  Indeed, geography is represented in this book through the numerous problems on measuring 
altitudes of mountains and various distances. Since these measurements rely on how the human eye sees 
distances, the reader must also consider problems of perspective.  Mechanics is begun through 
discussions of how to relate shapes to each other, necessary considerations in building any machine. 
49 Lattis, Between Copernicus and Galileo, 5. 
50 Paul Rose, The Italian Renaissance of Mathematics: Studies on Humanists and Mathematicians from 
Petrarch to Galileo (Geneva: Librairie Droz, 1975), 1-2. 
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involved in this endeavor, greater comprehension of mathematics brought with it a 

greater appreciation for its knowledge and the desire to endow that knowledge with a 

status comparable to its perceived worth.  As more and more texts were translated and 

discussed, the mathematicians and humanists of the Renaissance were faced with a 

changing understanding of the relationships between mathematics and other forms of 

knowledge.   

In medieval European universities, mathematics had been regarded as a lower 

discipline.  Its primary function was to prepare scholars for the study of the higher 

forms of knowledge - theology, law and medicine. Indeed, mathematics professors 

were paid less than other professors, and they usually treated the position as a stepping 

stone to the more prestigious and lucrative chair in medicine.51  In the fifteenth and 

sixteenth centuries, mathematicians challenged their subordinate status.  They argued 

that their discipline was able to make sure claims about the world, and that this ability 

granted it epistemological status comparable to that of natural philosophy.  One of the 

earliest mathematicians to make such arguments was Regiomontanus, a German 

mathematician who had studied astronomy and logic at the University of Leipzig in 

the late 1440s and had then studied at the University of Vienna in the 1450s.52  There 

he worked with Georg Peurbach, whose knowledge of Greek and relationships with 

humanists enabled him to provide Regiomontanus with the skills and connections to 

                                                
51 Robert Westman, “The Astronomer’s Role in the 16th Century: A Preliminary Survey,” History of 
Science (1980), 119-120. 
52 Rose, Italian Renaissance, 90-93. 
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become a significant mathematical humanist.53  Combining these two courses of study, 

Regiomontanus undertook a restoration of mathematics through the translation of 

Greek mathematical texts.  He also established arguments in defense of mathematics 

in a 1464 oration at the University of Padua with which he began series of lectures he 

gave on astrology.54  He first argued that the study of mathematics was necessary to 

understand Aristotelian philosophy, but his lecture went far beyond a promise of 

utility to future study.55  It actually established a place for mathematics above natural 

philosophy in the hierarchy of disciplines.  According to Regiomontanus, of the 

disciplines accessible to human reason, only mathematics had the certainty necessary 

to grant insight into the divine.56  Of course, of the branches of mathematics, 

astronomy was naturally the best suited to the study of the divine because its subject 

was the heavens, and, in the form of astrology, it could provide direct insights into 

God’s plan.  

To illustrate the discipline’s certainty, Regiomontanus traced the history of the 

four branches of mathematics from the ancient to the early modern world with both 

mythological histories and references to the works of various mathematicians.  Many 

                                                
53 For Peurbach’s humanist connections see Franz Wawrik “Österreichishe Kartographische Leistungen 
im 15. Un 16. Jahrhundert,” pp. 105-106 and  Dieter Wuttke, “Verhältnis Humanismus un 
Naturwissenschaften,” pp. 134-135, in Der Weg der Naturwissenschaft von Johannes von Gmunden zu 
Johannes Kepler, ed. Günther Hamann and Helmuth Grössing, Verlag der Österreichisch Akademie der 
Wissenschaften, vol. 497, 1988.  For Regiomontanus’s significance as a mathematical humanist see 
Rose, Italian Renaissance, 90-117; Noel M. Swerdlow, “The Recovery of the Exact Sciences of 
Antiquity” in Rome Reborn: The Vatican Library and Renaissance Culture, ed. Anthony Grafton, 
(Washington, D.C: Library of Congress, 1993), 125-167. 
54 It also happens to be the only one of the series that has survived. 
55 For Regiomontanus’s arguments about the utility of mathematics in his “Oration,” see J. Byrne, “A 
Humanist History of Mathematics? Regiomontanus’s Padua Oration in Context” in The Journal of the 
History of Ideas, Vol. 67, No. 1, January 2006,  57-60. 
56 Ibid., 60-61 
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of the works he cited were Greek treatises which he had either translated or hoped to 

translate, but he also named some from the medieval and contemporary eras.  In his 

view, there was a continuous evolution of mathematics through all of the texts he 

named, which was made possible because mathematicians readily acknowledged the 

work of their predecessors as accurate.  Contrasting the wide acceptance of the truth of 

ancient mathematics with the constant disagreement among supporters of divergent 

versions of Aristotelianism, he argued that mathematics had a certainty natural 

philosophy could never possess.57   

By the mid-sixteenth century, Regiomontanus’s arguments had become part of 

the mathematical discourse of the day through a miscellany printed in Nuremberg by 

Johannes Petreius in 1537 as well as in Erasmus Reinhold’s edition of the Oration 

printed in Wittenberg in 1549.58  In fact, the influence of his Oration can be found in 

the works of other humanist mathematicians who sought to ennoble their discipline 

throughout the sixteenth century, including those of Clavius.  Mathematicians working 

                                                
57 For more on Regiomontanus’s arguments see Ibid., 41-61 and Rose, Italian Renaissance,  90-117.  
Byrne argues that Regiomontanus’s humanism was very much combined with the university 
mathematics of the mid-fifteenth century.  Notably, the histories Regiomontanus provided were not 
filled with references to ancient sources, and may well have been based on the medieval work of Isidore 
of Seville.  In Regiomontanus’s accounts, geometry can be traced to ancient Egyptians need to measure 
land after the flooding of the Nile.  Arithmetic traces its origins to Pythagoras.  Astronomy is given two 
possible origins, one, Hebraic, with God giving it to Abraham.  The other is Greek and based on the 
myth of Prometheus.  He traced the scientific foundations of mathematics to the Greeks, namely 
Hipparchus and Ptolemy.   
58 Rudimenta Astronomica Algranagi.  Item Albategnius astronomus peritissimus De Motu Stellarum 
(trs. Plato of Tivloi)… cum… additionibus Joannis de Regiomonte.  Item Oratio Introductoria in 
Omnes Scientia Mathematicas Joannis de Regiomonte Patavii habita, cum Alfraganum publice 
praelegeret.  Eiusdem Utilissima Introductio in Elementa Euclidis, (Nuremberg: Johannes Petreius, 
1537).  Johannes Petreius is the same printer who published the first edition of Copernicus’s De 
Revolutionibus in 1543.  See also Ed. Erasmus Rheinhold Oratio de Johannes Regiomontano 
Mathematico, in Renunciatione gradus Magisterii philosophicis, recitata ab Erasmo Rheinhold 
Salueldensi Mathematum professore, (Wittenberg: Vitum Creutzer, 1549).  
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outside of schools, notably, Federico Commandino and his students, also embraced 

Regiomontanus’s position.  They dedicated themselves to the revival of ancient Greek 

mathematics through the translation of Greek texts, a method they deemed viable 

precisely because mathematics contained certain, universal truths.59  Indeed, 

Commandino seems to have been drawn to mathematics, despite his training in 

medicine, precisely because mathematics could provide the certainty that the early 

deaths of several family members had convinced him medicine could not.60  

The arguments in favor of mathematics became so prevalent in the mid-

sixteenth century that Aristotelian philosophers felt the need to defend their discipline 

against the rise of mathematics.  Presenting their position, Alessandro Piccolomini’s 

1547 Commentarium de certitudine mathematicarum disciplinarum cast mathematics 

in a strictly pedagogical role.  According to Piccolomini, mathematics was useful as a 

pedagogical tool because, where natural phenomena required years of experiment and 

observation to understand, mathematical demonstrations could be understood quickly, 

and mathematical causes could be identified on inspection.  However, he argued that 

mathematics could not be more than a pedagogical tool because it could never address 

all four of the Aristotelian causes - formal, material, final, and efficient.61  Drawing 

                                                
59 Rose, Italian Renaissance, 185. 
60 Ibid., 188 
61 Alessandro Piccolomini, Commentarium de Certitudine Mathematicarum Disciplinarum: in quo de 
Resolutione, Diffinitione et Demonstratione; nec non de materia et fine logicae facultatis, quamplura 
continentur at rem ipsam, tum mathematicam tum logicam, maxime pertinentia, (Rome: 1547), 107-
109; For a clear analysis of the four Aristotelian causes, see Peter Dear, Revolutionizing the Sciences: 
European Knowledge and Its Ambitions, 1500-1700, Second Edition (Princeton: Princeton University 
Press, 2009), 13-14.  He explains the causes as follows.  The formal cause is the nature or form of the 
entity in question.  It relies on an understanding of the world as made up of categories of entities.  
Dear’s example is that Socrates is mortal because that is the nature of his form – that of a man. The 
material cause addresses the material that composes an entity.  Dear’s example here is that a chair burns 
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from Aristotle’s Posterior Analytics, Piccolomini identified only those demonstrations 

that could identify the Aristotelian causes as the “most powerful demonstrations” 

which could reveal the truth about the workings of nature.62   

According to Piccolomini, mathematics could not have a “most powerful 

demonstration” because it was unable to deal with phenomena, a shortcoming that he 

attributed to mathematics being inherently nominalist.  That is, he believed, that 

mathematical objects were never more than their names, which were abstract 

universals.  Therefore, mathematical definitions could not be applied to physical 

realities; mathematicians could not consider phenomena, and mathematical 

demonstrations could never discuss causes, either proximate or immediate, of any 

natural phenomena.63  Even worse, as Piccolomini noted, mathematical 

demonstrations of the same effect did not always proceed in the same way, meaning 

that the one effect could have different causes, a circumstance that he claimed left 

mathematics unable to distinguish between causes and effects.  Since the final and 

efficient causes of phenomena always remained obscure to mathematicians, its internal 

validity (which Piccolomini did not challenge) could not be extended to external 

validity, and mathematics could never be more than a tool for philosophers, nor could 

                                                
because it is made of wood. The final cause is “for the sake of which” something occurs.  It explains 
why a phenomenon happens or an entity exists the way it does.  Dear gives the examples of a sapling 
growing because it is striving to become a full grown tree or teeth being arranged the way they are to 
facilitate chewing.  The efficient cause is the action by which an effect is brought about.  Dear’s 
example is that the pulling of a trigger is the efficient cause for the firing of a gun. 
62Piccolomini, Commentarium, 87-89.  Piccolomini uses the term “demonstratio postissima.” The literal 
translation seems to be the best way to convey the superiority of such demonstrations over all others.  
Piccolomini does observe that the final and efficient causes are the same when dealing with natural 
phenomena. 
63 Ibid., 86. 
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it offer its own claims about the world.64  A quick survey of mathematical 

demonstrations sufficed for Piccolomini to claim that mathematics did not possess any 

demonstrations of the most powerful sort. 

Piccolomini’s attack on the certitude of mathemtaics received a direct response 

from Francesco Barozzi, an Italian mathematician known for his 1560 translation of 

Proclus’s commentary on the first book of The Elements.  In 1560 Barozzi published a 

collection of works titled Opusculum, which contained a lecture he had given in Padua 

in 1559 promoting mathematics as well as two brief treatises on the questions of both 

the certitude and the mediate nature of mathematics.  In the former treatise, he 

explicitly refuted all of Piccolomini’s arguments.65  Much of his defense of 

mathematics depended on the distinction between the universal and the particular with 

regard to mathematical demonstrations. He accused Piccolomini of making a hasty 

generalization about the universal traits of mathematical demonstrations from just a 

few particular examples.  Barozzi was willing to grant that the demonstrations 

Piccolomini provided were indeed not among the most powerful.  However, he 

reminded the reader (and Piccolomini) that all forms of knowledge rely on many kinds 

of demonstrations, not all of which are among the most powerful.66  He provided his 

                                                
64 Mathematical objects were seen as immaterial, so the material cause made little sense in the context 
of mathematics.  Piccolomini allowed that the formal cause could sometimes be addressed by 
mathematics as the form of a diagram could be used to as the cause of whatever result was claimed by 
the proposition. 
65 Francesco Barozzi, Opusculum in quo uno Oratio et duae Quaestiones altera de certitudine, et altera 
de meditate mathematicarum continentur, (Padua: E.G.P,1560). Although Barozzi is clearly directly 
engaging with Piccolomini’s work, he does not ever name the earlier author.  Instead his references 
throughout the text to “the most illustrious man” and “the more recent man” suggest that he saw himself 
as engaging primarily with Aristotle and Averroes.  
66 Ibid., 25-26.  In particular he cited demonstrations of the properties of quadrangles, circles, spheres 
and other shapes as demonstrations of the most powerful sort.   
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own examples to show that some mathematical demonstrations could be classified as 

“most powerful.”67 

In addition to arguing for the plurality of demonstrations in any discipline, 

Barozzi further promoted mathematics using Proclus’s arguments that mathematical 

demonstrations gained perfect certainty from the perfect nature of mathematical 

entities.  Barozzi’s versions of these arguments are reminiscent of Regiomontanus’s, 

and seem to have influenced many sixteenth-century mathematicians, including 

Clavius.  In order to convince his reader, Barozzi began by refuting Piccolomini’s 

charge of nominalism.  He argued that, a close examination of mathematical entities 

revealed essential forms, which, taking a Platonic stance, he claimed were real and, as 

explained by Plato in the Timaeus, pertained to part of the soul.68  Thus, mathematical 

knowledge, far from being a self-contained body of knowledge about of abstract 

concepts without any connection to the world, was closely related to divine knowledge 

and the plan of Creation.  Furthermore, he argued that because mathematics dealt with 

essences, its entities were perfect and stable, and, therefore, mathematical 

demonstrations could be perfectly certain.  Neither perfection nor complete stability 

could be found in the natural world, making it impossible for natural philosophy to 

offer certainty comparable to that of mathematics.69 

In his treatise on the mediate nature of mathematics, Barozzi, again drawing on 

Proclus, further claimed that the perfection and the stability of mathematical entities 

                                                
67 Ibid., 24-27. 
68 Ibid., 13-18. 
69 Ibid., 15. 
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gave mathematics more than the ability to create certain demonstrations; they also 

gave it an intermediate position between natural philosophy and divine knowledge that 

gave mathematicians insight into divine knowledge.  Mathematics gained its mediate 

nature, in his view, because it shared one quality, its accessibility to reason, with the 

natural sciences, and another, its immaterial and unchanging subject, with the divine 

sciences.  This meant that theorems and concepts could be demonstrated through the 

use of arithmetic and geometry, just as the claims of the natural sciences could be 

demonstrated through logic.70  But, unlike the demonstrations of natural philosophy, 

those in mathematics were always applicable and remained certain because, like 

perfect divine entities, mathematical entities were immaterial and unchanging.71   

While Barozzi took it upon himself to address Piccolomini’s arguments 

directly, he was far from the only sixteenth-century mathematician to reflect the 

positions Regiomontanus took in his oration.  A brief comparison of the prefaces to 

Commandino’s commentary on Euclid’s Elements, published in 1572, and Clavius’s 

commentary on the same text, published in 1574, shows that both sixteenth century 

mathematicians were engaged in Regiomontanus’s project of restoring to mathematics 

the nobility, and consequently the status, it gained from its antiquity, its certainty, and 

its subject matter.  Both Commandino and Clavius also embraced Barozzi’s project of 

defending mathematics as a source of certain knowledge.  Because Euclid’s Elements 

                                                
70 Mathematics today includes a branch called logic, but, in the sixteenth century, logic was a branch of 
the trivium.  It was based on the development of syllogistic arguments. Geometry and arithmetic did not 
use the syllogistic form, which separated their demonstrations from the logic-based definitions of 
philosophy.  However, as will be discussed in chapter 3, Clavius did show that mathematical proofs 
could be written as sequences of syllogisms. 
71 Barozzi, Opusculum 33. 
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was the first mathematics text in a typical Latin curriculum, it offered its 

commentators an invaluable opportunity to provide a broad discussion of the merits of 

mathematical study as part of the introduction.  Indeed, Clavius’s preface did such a 

thorough job of introducing the discipline that, at the end of his life, he used it to 

preface his collected works.72  However, where Commandino emphasized the 

restorative rhetoric of Regiomontanus and Barozzi claiming to revive the “polish and 

splendor” of mathematics by showing its close links to the study of the divine, Clavius 

focused on the versatility of mathematics as a branch of philosophy whose certainty 

allowed it to bridge the physical and divine worlds.73   

Following Regiomontanus’s appeal to history, both Clavius and Commandino 

appealed to mathematics’ ancient past as part of their arguments for its nobility.  

Commandino’s approach of inserting mathematics into Biblical history, a common 

practice for Renaissance scholars attempting to Christianize Platonic philosophy, 

emphasized the divinity of mathematics instead of its certainty.74  According to his 

narrative, antediluvian prophets, recognizing the nobility of mathematics, erected two 

columns, one of brick and one of stone, inscribed with mathematical knowledge in 

                                                
72 Clavius’s collected mathematical texts were published over the years 1611 and 1612 under the title 
Opera Mathematica.  It was a five volume compendium of all of his textbooks and his work related to 
calendar reform. Christopher Clavius, Opera Mathematica V tomis distributa ab auctore denuo 
correcta, et plurimis locis aucta (Mainz: Antonius Hierat and Reinhardus Eltz, 1612). 
73 Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus Chriegher German, 1572), 
*2r; “... non possum non vehementer dolere temporum nostrum conditionem, qua nobilis discipline 
cultus, & splendor squalore immenso, ac tenebris penitus contabescit…” 
74 D.P. Walker provides a discussion of how Renaissance scholars attempted to unite Platonism and 
Christianity, including the positioning of Moses as the source of Gentile knowledge in his The Ancient 
Theology.  D.P. Walker, The Ancient Theology: Studies in Christian Platonism from the Fifteenth to the 
Eighteenth Century, (Ithaca: Cornell University Press, 1972).   
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order to preserve it through predicted disasters.75  After the flood, Abraham, whom 

Commandino called “nearly divine,” began anew the study of mathematics.  He 

brought knowledge of it with him to Egypt where the subject was improved and 

eventually discovered by the Greeks.  Commandino then gave a list of those Greeks 

whose work, he claimed, created a golden age for mathematics.  This history of 

mathematics demonstrated the disciplines’ nobility.76 After all, what could be nobler 

than knowledge given to man by God? 

Clavius’s arguments stayed closer to Regiomontanus’s claims for mathematics, 

emphasizing mathematics’ continual progress through multiple cultures, rather than its 

divinity.  His section on the history of mathematics, titled “Inventors of the 

mathematical disciplines,” opened with the claim that mathematics “progresses little 

by little from the imperfect to the more perfect.”77  To illustrate mathematics’ 

progressive development across various cultures in antiquity, Clavius gave narratives 

for the invention of each of the four branches of the quadrivium in the ancient world, 

just as Regiomontanus had done in his Oration.78 According to Clavius, arithmetic was 

                                                
75 Clavius provided the same account in the preface to his commentary on Sacrobosco’s Sphere.  He 
credited it to Flavius Josephus.  See Christopher Clavius, In Sphaeram Ioannis de Sacro Bosco 
Commentarius, 3-4.  Regiomontanus also gave the same narrative for astronomy, but not for 
mathematics as a whole.  See Byrne, “A Humanist History,” 51.  It is not clear where Commandino 
drew his narrative from. His comment on the value of mathematics reads, “Quare nec primis illis 
temporibus, quae tam inculta creduntur, nobile matheseos studium incultum iacuit.” (Commandino, 
Euclidis Elementorum, *3v). 
76 Commandino, Euclidis Elementorum, *3v.  “Hoc post terrarum eluuionem apud chaldaeos summo 
praesertim Abrhami divini prope hominis studio ornatum, & acutum viguit. … Verum de his hactenus, 
neque enim historiam hic contexere propositum est.  Sed haec pauca attigimus, ut antiquam huius studii 
nobilitatem obiter quasi digito ostenderemus.” 
77 Clavius, Euclidis Elementorum, br.  “Immo vero singulas nequaquam summam adeptas esse 
perfeectionem statim ab initio, sed paulatim eas ab imperfectis ad perfectiora processisse, memoriae 
quoque proditum est.”  
78 For summaries of Regiomontanus’s histories see Byrne, “A Humanist History,” 47-53.  The various 
histories can be found in Rudimenta Astronomica Algranagi, α4v – β2r.  While the narratives found in 
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Phoenician; geometry was Egyptian.  In the Greek world, music and astronomy 

stemmed from myths about Mercury and Atlas, respectively.  Like Regiomontanus, 

Clavius also observed that there were multiple narratives for the origins of 

astronomy.79  By mentioning a variety of histories, Clavius illustrated the universality 

of his discipline that allowed it to flourish through various civilizations.  In addition to 

mathematics’ universal presence in ancient cultures, Clavius noted that mathematics 

spanned time as well.  He observed that mathematicians from Pythagoras to Proclus 

built on each other’s work, especially geometry, thereby ever-increasing the perfection 

and scope of the discipline.80  

Clavius’s use of the history of mathematics to demonstrate its universality ties 

into arguments for the certainty of the discipline, which was one of the key 

components of arguments for the nobility of mathematics.  Clavius argued that 

mathematics had survived with little to no change from antiquity to the modern era 

                                                
Clavius’s texts are similar to those in Regiomontanus’s lecture, they are not identical.  Clavius claims to 
have drawn his narratives for geometry and arithmetic from Proclus.  (See Proclus, A Commentary on 
the First Book of Euclid’s Elements, trans. Glenn Morrow, pp. 51-52.)  The similarities are most 
striking in the narratives for astronomy.  It is possible that Regiomontanus was Clavius’s source.  Byrne 
suggests that Regiomontanus may have used Isidore of Seville’s Etymologies.   
79 Clavius, bv.  “Astronomiam denique non pauci ab Atlante primum inventam esse autumant: Unde ob 
eximiam, qua primus inter mortals praeditus erat, Astronomia cognitionem, exortam esse volunt 
fabulam, illum suis humeris caelum sustinere; Alii putant, Chaldaeos diuturna observatione (quod etiam 
Cicero affirmat in libro de Divinatione) syderum scientiam adinvenisse.  Alii Aegyptios primos huius 
scientiae faciunt inventores: Alii Assyrios: Alii denique gloriam hanc, & laudem Babyloniis esse 
deferendam, censent.   
80 Ibid., br-v.  “Caeterum paulatim deinde Geometria capta est exploriri, & non contenta suis finibus, se 
se ad corpora etiam coelestia dimetienda convertit, tradiditque principia universae Astronomiae, 
Perspectivae, Cosmographiae, & aliis disciplinis quam plurimis, quae ex ispa veluti radices dependent.  
Hanc Thales Milesius ex Aegypto in Graciam primus transtulisse fertur: Deinde eam insignes 
Philosophi, ac Mathematici plurimis, acutissimisque demonstrationibus locupletarunt, atque exornarunt:  
Inter quos hi sunt praecipui ex ueteribus; Pythagoras, Anaxagoras Clazomenius, Hippocrates Chius, 
Plato, Oenopides, Zenodorus, Brito, Antipho, Theodorus, Theatetus, Aristarchus, Eratosthenes, Architas 
Tarentinus, Euclides, Serenus, Hypsicles Alexandrinus, Archimedes Syracusius, Apollonius Pergaeus, 
Theodosius Tripolita, Mileus Romanus, qui & Menelaus, Theon Alexandrinus, Ptolemaeus, Eutocius 
Ascalonita, Pappus, Proclus, & alii pene innumeri, quos omnes longum esset recensere.” 
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and could continuously serve as a foundation for further knowledge because its 

method, which was to reject any claim unless it was either so clear that it was beyond 

doubt or had already had its truth demonstrated without relying on any outside 

assumptions, created perfectly certain knowledge. 81  According to Clavius, 

mathematics was the only discipline to build knowledge by relying solely on 

previously demonstrated principles, making it the only reason-based discipline that 

could provide certain knowledge. Like Regiomontanus, he pointed out that while 

mathematics was widely accepted in much the same form as it had been written by the 

ancients, other fields, especially Aristotelian philosophy, were replete with 

disagreement because their methods allowed false assumptions to serve as foundations 

for arguments.82  Thus, certainty earned mathematics a place among the “disciplines” 

rather than the lower arts, and, at least when it came to certainty, that place was above, 

not just alongside, natural philosophy within the hierarchy of disciplines.83 

                                                
81 Clavius, Euclidis Elementorum, b2r, “Quod quam longe a Mathematicis demonstrationibus absit, 
neminem latere existimo.  Theoremata enim Euclidis, caeterorumque Mathematicorum, eandem hodie, 
quam ante tot annos, in scholis retinent veritatis, puritatem, rerum certitudinem, demonstrationum 
robur, ac firmitatem.  … Cum igitur disciplinae Mathematicae veritatem adeo expectant, adamant, 
excolantque, ut non solum nihil, quod sit falsum, verum etiam nihil, quod tantum probabile existat, nihil 
denique admittant, quod certissimis demonstrationibus non confirment, corroborentque, dubium esse 
non potest quin eis primus locus inter alias scientia omnes sit concedendus.” 
82 Clavius never stated that it would impossible for philosophers to attain the same degree of certainty, 
but it is quite likely that he believed that the nature of the material studied would make eliminating all 
but the perfectly certain propositions from philosophy impractical if not impossible.  He did recognize 
that philosophical disagreements arose from the practice building entire systems of knowledge on 
uncertain assumptions.  If those assumptions were removed, everything built on them would collapse.  
In order for philosophy to achieve the same level of certainty found in mathematics, philosophers would 
have to start from scratch. 
83 Clavius, Euclidis Elementorum, a7r, “Aliis autem placet, ideo has artes praecaeteris nomen scientia, 
& doctrina sibi vendicare, quod solae modum, rationemque scientiae retineant.  Procedunt enim semper 
ex praecognitis quibusdam principiis ad conclusiones demonstrandas, quod proprium est munus, atque 
officium doctrinae, sive disciplinae, ut & Aristoteles testatur; neque unquam aliquid non proabtum 
assumunt Mathematici, sed quandocunque aliquid docere volunt, si quid ad eam rem pertinet eorum, 
quae ante docuerunt, id summunt proconcesso, & probato: illud vero modo explicant, de quo ante nihil 
scriptum est.  Quod quidem alias artes, disciplinasve non semper observare videmus, cum plerunque in 
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Commandino also cited the stability of mathematics from antiquity to the 

sixteenth century as evidence of its certainty.  As Regiomontanus had once done for 

his listeners, Commandino reminded his reader that Euclid’s Elements had been 

written nearly two thousand years earlier, and yet even after so much time, the 

enemies of Euclid and mathematics had not been able to find significant errors in the 

work.84  However, in Commandino’s argument, certainty is only the by-product of the 

true source of mathematics’ nobility: the immateriality of mathematical objects which 

eliminated the inevitability of human error.  According to Commandino, because no 

one could study material objects without introducing misconceptions, natural 

philosophy could never be as accurate as mathematics. Furthermore, Commandino 

claimed that the nature of mathematical entities gave the discipline a nobility beneath 

only that of a direct study of the divine.  He argued that because mathematical 

concepts could be separated from the material changeability of the natural world, 

mathematics fell between the natural, whose subject matter is base and mutable, and 

the divine, whose subject matter is unchanging and perfect.  Since each of the three 

branches of philosophy - natural, mathematical, and divine - was as noble as the 

                                                
confirmationem eorum, quae ostendere volunt, ea, quae nondum sunt explicate, demonstratave, 
adducant.”  This quotation appears in the section titled “Mathematicae disciplinae cur sic dictae sint” or 
“Why the mathematical disciplines are so called.”  In this passage it appears that Clavius believed that 
through mathematical learning, one could discover the real nature of the universe.  James Lattis came to 
a similar conclusion about Clavius’s beliefs based on his study of the commentary on Sacrobosco’s 
Sphere.  (See Lattis, Between Copernicus and Galileo, 218.)  
84 Commandino, Euclidis Elementorum, *5v, “Iam duo fere annorum millia abierunt, ex quo Euclides 
inter vivos conumeratus est.  multos habuit adversarios, qui invidiae potius morbo, quam veritatis amore 
illius scripta omni studio labefactare sunt conati; nullam tamen adhuc in illis φευδογςαφἰαυ, nullum 
errorem, nullum paralogismum severi inquisitores deprehendere potuerunt.”  Regiomontanus had made 
a similar claim in his Oration.  See Regiomontanus, Oratio, 1537, p. β4r.  “Quod de nostris disciplinis 
nemo nisi insanus praedicare ausit quandoquidem neque aetas neque hominum mores sibi quicquidem 
detrahere possunt.  Theoremata Euclidis eandem hodie quam ante mille annos habent certitudinem.” 
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subject of its study, mathematical knowledge, as the step between natural and divine 

knowledge, possessed a dignity superior to that of natural philosophy but less than that 

of divine philosophy.85   

Similarly, Clavius argued that, due to the abstract nature of its content, 

mathematics was clearly a branch of philosophy that lay between metaphysics, in 

which “material is separate from fact and reason,” and physics, in which “fact and 

reason are united with sensible material.”86  While, like Regiomontanus, he allowed 

that the study of astronomy as a study of the connections between the perfect heavens 

and the flawed world, was a means through which the divine could be studied, his 

positioning of mathematics between physics and metaphysics was slightly more 

modest than Commandino’s claim that mathematics was intermediate between natural 

and divine philosophy.  Nevertheless, Clavius’s view positioned mathematics as a 

bridge between studies of the imperfect concrete world, the subject of natural 

philosophy, and studies of the perfect abstract world of ideas, the subject of 

metaphysics, thereby endowing his discipline with a status above that of natural 

philosophy within the hierarchy of disciplines.   

                                                
85 Commandino, Euclidis Elementorum, *3v, “Hinc triplex illud philosophiae genus, Divinum, quod 
quidem ut nomine, ita & re duo reliqua supra quam dici potest, antecellit; Naturale, quod tertium est, ac 
postremas ordine, ac dignitate habet partes; & medium, quod mathematicum appellatur: quoniam solum 
vere disci, ac sciri potest, ob summam rei subiectae constantiam, & certam demonstrandi rationem: Hoc 
quidem ut divinis substantiis inferius est (quid enim tam eximium, ut cum illis comparetur?) ita 
naturalibus praestat, atque sperius est; quae materiae funditus immersa, variam &  mutabilem eius 
sequuntur naturam.”  
86 Clavius, bv. “Metaphysices etenim subiectum ab omni est materia seiunctum & re, & ratione: 
Physices vero subiectum & re, & ratione materiae sensibili est coniunctum” In the sentence in which 
Clavius introduces the intermediate status of mathematics he actually says that it is intermediate 
between metaphysics (metaphysicam) and natural knowledge (naturalem scientiam).  In his description 
of the fields he replaces “natural knowledge” with “physics” (physices), which were interchangeable 
terms at the time.  
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The Question of the Certitude of Mathematics within the Society of Jesus 

Within the Society of Jesus, despite early rigorous programs of mathematics, 

Aristotelian philosophers seeking to defend the status of their discipline against the 

rise of mathematics found a voice in Benedict Pereira (1535-1610).  He offered his 

view of the limited role of mathematics in his 1579 work, De communibus omnium 

rerum naturalium principiis et affectionibus, libri quindecim.  There, he, like 

Piccolomini, placed the discipline in a supportive role to physics and metaphysics but 

denied it the ability to make its own knowledge claims about the physical world.  He 

began his discussion with the observation that all sciences build on each other to reach 

moral philosophy and the science of the soul.  These he claimed were the most highest 

forms of rational knowledge and were dependent on the knowledge found in natural 

philsophy.87  Mathematics belonged to a lesser domain, speculative philosophy, which 

was composed of mathematics, physics, and metaphysics.  Pereira believed that like 

physics - the study of the material products of divine thought – mathematics was based 

in matter, but, because it studied forms abstracted from matter, it like metaphysics – 

the study of the divine and immaterial – could be understood outside of material 

forms.  Interestingly, Clavius had used the same traits of mathematics to argue that 

                                                
87 Benedict Pereira, De communibus omnium rerum naturalium principiis et affectionibus, libri 
quindecim, (Paris: Micaelem Sonnium, 1579), 12-13.  “Porro, scientia non dicitur unioce, de 
subalternate & subalternata, quia subalternata, cum accipiat principia a subalternante, pendet 
essentialiter ab illa, nec potest sine adminiculo eius, scientiae nomen & rationem obtinere, at omnes 
scientiae practicae subalternantur speculativis, ut omnes fere artes mechanicae pendent a scientiis 
Mathematicis; & Medicina pendet a Philosophia naturali, scientia moralis magna ex parte pendet a 
scientia animae: nam diviso habituum, & virtutum moralium pendet ex distinction potentiarum animae.  
Distinctio etiam passionum, & quae de foelicitate traduntur, supponunt multa ex Philosophia naturali.”   
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mathematics was intermediate between the two philosophical disciplines.  For Pereira, 

this placed it at the bottom of the hierarchy, thereby limiting it to a supportive role for 

both of the other disciplines.  The properties mathematics shared with physics and 

metaphysics thus enabled it to train students who sought to understand the higher 

branches of philosophy, either material or immaterial, but were insufficient to allow it 

to make its own knowledge claims.88  Indeed, Pereira dismissed mathematical 

knowledge as trivial because he believed that quantities, the subject of mathematics, 

were merely accidents.  Thus, unlike the properties of matter studied by physics and 

the principles of nature studied by metaphysics, quantities could not be understood as 

essential to objects or phenomena, and mathematics could not be used to uncover any 

of the Aristotelian causes.89   

  Pereira furthered his arguments by using the stability of mathematical objects, 

the very trait that mathematicians claimed gave it certainty, to deny mathematics a 

foothold in reality.  In his view, not only are quantities not essential to physical 

entities, but mathematical objects are also abstracted from change.90  They, therefore, 

cannot cause change and so cannot explain causes – formal, material, efficient, or 

final. Although Pereira did not explicitly raise the charge of nominalism, the 

                                                
88 Ibid., 14-15. 
89 Ibid., 38-39.  Here Pereira reduced mathematics to quantity, which may not be intuitive to today’s 
mathematicians, but fits with a Renaissance understanding of the quadrivium in which arithmetic and 
music study discrete quantity, and geometry and astronomy study continuous quantity. 
90 Ibid., 115. Pereira used the word “motu” which is usually translated by motion or movement.  
However, in this case, I believe it is better interpreted as change, of which motion or movement are 
specific cases.  Since Pereira is discussing the inability of mathematics to address causal questions in 
general, a more general translation seems appropriate.  “Res Mathematicae, abstractae sunt a motu, ergo 
ab omni genere causae: Antecedens per se clarum est; consequentia patet ex eo quia omnes causae sunt 
connexae aliquo modo cum motu, id quod aperte declarat definitio cuiusque.” 
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contention that mathematical entities cannot be changed tied them to their definitions 

as effectively as Piccolomini’s accusation. Thus, in agreement with Piccolomini, 

Pereira argued that mathematics could not supply the most powerful demonstrations, 

because, in arguing solely from its own internal logic, it had no claim to external 

validity.  Mathematics, thus, remained a subordinate discipline, whose clear 

demonstrations could only provide training for youths who would go on to the more 

difficult and more meaningful demonstrations of physics and metaphysics. 

While Pereira raised a strong voice against the status of mathematics, Clavius 

positioned himself as the discipline’s defender within the Society of Jesus.  As 

discussed above, he provided arguments in support of the certainty of mathematics in 

his preface to The Elements analogous to those presented by Regiomontanus and other 

sixteenth-century mathematicians, including Barozzi.  Indeed,  the latter was one of 

Clavius’s most cited sources.  The two mathematicians corresponded, and Clavius had 

certainly read Barozzi’s translation of Proclus’s fifth-century commentary on the first 

book of The Elements – and possibly the Opusculum – when he wrote his own 

commentary on Euclid.91  Barozzi’s claims for the intermediate nature of mathematics 

appear fundamentally unchanged in Clavius’s text.  However, while the Italian’s 

arguments were largely devoted to the study of geometry, which he used to represent 

all of mathematics, Clavius endeavored to establish a complete curriculum and so 

argued for the value of studying a variety of branches of mathematics.  Nowhere were 

                                                
91 Ugo Baldini’s collection of Clavius’s letters shows five letters between Barozzi and Clavius in the 
years 1585-1587.  Christoph Clavius: Corrispondenza ed. U. Baldini and P.D. Napolitani (Pisa: 
Universtia di Pisa, 1992). 
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those arguments more pronounced than in the preface to his 1570 commentary on 

Sacrobosco’s Sphere, the introductory text to astronomy and the only text besides The 

Elements for which Clavius wrote a preface longer than a few pages.  There, Clavius 

(again echoing Regiomontanus) argued that, due to the divine nature of the celestial 

bodies and the certain foundations of geometry and arithmetic, astronomy allowed 

mathematics to bridge the natural and divine worlds.  Because astronomy was 

dependent on the prinicples of the other branches of mathematics, it served to 

demonstrate the power of the entire discipline – including abstract geometry and 

arithmetic – to contribute to knowledge about the universe.  It was through 

mathematics that an accurate description of the cosmos could be developed from the 

physical assumptions made about the basic structure of the universe.92  Thus, Clavius 

brought the arguments for the importance of the certitude of mathematics to fruition in 

astronomy, the branch of mathematics he believed to be most noble.   

                                                
92 In 1543 Copernicus famously cautioned that those who were not mathematicians could not judge the 
merit of his De Revolutionibus.  While Clavius was a staunch defender of the geostatic system (see 
Lattis, Between Copernicus and Galileo – Clavius did agree that the Ptolemaic system could not survive 
as it was presented in the Almagest, but he never abandoned the geostatic worldview.), Copernicus’s 
assertion that only mathematicians could judge his claims about the universe likely appealed to Clavius 
since asserting the truth of the structures of the universe outlined by astronomy (either helio- or geo-
static) required that the arguments for the certainty and nobility of mathematics be accepted as proof of 
the ability of mathematics to make claims about the world.  However, because astronomy was a branch 
of mixed mathematics, it also relied on physical assumptions.  While mathematics could create an 
accurate picture of the universe, choosing which mathematical description was accurate required a 
reliance on probable arguments.  Based on scripture and Aristotelian philosophy, Clavius argued that 
the Ptolemaic system was far more probable than the Copernican.  See Lattis, p. 141.  Nevertheless, the 
reliance on probable arguments to choose between mathematical descriptions of the universe does not 
detract from the certainty of mathematics.  Lattis also points out that deciding between the Copernican 
and Ptolemaic systems required physical assumptions only because both met the mathematical criteria 
of “economy of explanation… and practical utility” (p. 141).  Whichever system was chosen, it was 
only through mathematics that the physical assumption of the position or movement of the planets could 
be completely explained.  
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Indeed, Clavius’s preface to The Sphere offered the same arguments for the 

status of mathematics that we have seen in all the sixteenth-century texts studied here: 

the history and the certainty of mathematics endowed the discipline with nobility.  He 

opened with a discussion of the history of astronomy based primarily on Flavius 

Josephus’s Antiquities of the Jews, but recounted the same narrative for the history of 

mathematics that Commandino would later provide in his commentary on The 

Elements.  That account viewed Abraham as the father of astronomy, which, as a gift 

from God to the patriarchs, is a divine science.93   The certainty of mathematics clearly 

emerges as the story continues.  Abraham brought astronomy to the Egyptians, who, in 

turn, gave it to the Greeks.  The rediscovery of Greek texts, thus allowed modern 

mathematicians to continue building on a divine past knowledge.94      

In a section titled “De Praestantia Astronomiae” or “On the Excellence of 

Astronomy,” Clavius argued that astronomy excelled in the two standards on which 

the nobility of a subject as a whole was judged: the nobility of the object of study and 

the certainty of demonstrations.  To prove that celestial bodies were noble, Clavius 

relied primarily on Aristotle’s arguments for their incorruptibility and their position as 

the cause of all inferior phenomena (i.e., all terrestrial phenomena).  These arguments 

made the celestial bodies the most noble subject possible in the study of natural 

philosophy.  Moreover, he placed mathematics above natural philosophy in the 

hierarchy of disciplines because he believed that by studying the workings of the 

celestial sphere, an astronomer could contribute to theology.  Following the arguments 

                                                
93 Clavius, Sphaeram, 3.  
94 Ibid., 3-4.  
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of unnamed theologians, Clavius asserted that, while God exists in all places, He is 

most easily understood to belong in the heavens, the place where His omnipotence and 

goodness are most obvious.95 Thus, Clavius argued that the celestial bodies, as 

incorruptible entities, were closer to God than the imperfect terrestrial world, and, 

therefore, they acted as the mediators and connections between the superior and 

inferior, the divine and the human.96  In this way, astronomy, and with it the rest of 

mathematics, not only had a place alongside the disciplines of natural philosophy, but 

its inherent nobility gave it a status above natural philosophy.   

As for the certainty of demonstrations, here too, Clavius argued that astronomy 

exceeded natural philosophy.  In his view, astronomical demonstrations rested 

securely on the demonstrations of geometry and arithmetic, which were both 

developed by denying the truth of any claim that was not demonstrably true.  This 

secured for astronomy the highest degree of certainty in its own demonstrations.97  

Thus, according to Clavius, through both its innately noble subject matter and its 

certainty, astronomy, and so mathematics, supplied the bridge between uncertain 

human knowledge of the imperfect world and certain divine knowledge of God’s plan. 

                                                
95 Ibid., 8-9.  “Quamuis enim Deus non huic vel illi loco sit alligatus, sed ubivs locorum (quod nullis 
aliis convenit rebus) existat; ponitur tamen in coelo, tanque nobiliori mundi parte, ubi maxima suam 
omnipotentiam, & bonitatem manifestat, ut Theologi asserunt.”  
96 Ibid., 8 “Tertio, quam corpora coelestia sunt propinquiora nobilissimo ac primo enti, puta, Deo 
glorioso; Immo secundum Averroem corpus coeleste est mediator, ac ligamentum superiorum cum 
inferioribus, & locus aeternorum, ac diviniorum, omnes etenim philosophi, ac nationes etiam 
quantumuis barbarae, in coelo Deum tamque in sede collocant propria.” 
97 Ibid., 9. “Quod si modum demonstrandi, quo utitur Astronomia, consideremus, non solum omnes 
naturales disciplinas haec scientia longe superabit, sed nec inter Mathematicas scientias infima 
existimanda erit.  Adhibet in ad ea confimanda, de quibus agit, demonstrationes efficacissimas, 
Geometricas nimirum, & Arithmeticas, quae ex sententia omnium philosophorum primum certitudinis 
gradum obtinent.  Quare non sine ratione ex utorque capite, nempe nobilitate subiecti, & certitudine 
deomonstrandi, voluit Ptolemaeus ad initum Almagesti, Astronomiam simpliciter inter reliquas 
scientias esse primam.” 
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Clavius’s Ideal 

The nobility and certainty of mathematics established for it a privileged place 

in Clavius’s curricular thinking.  These features made it a necessary foundation for the 

abstract studies of philosophy and theology and the more concrete tasks of public 

administration.  Using the works of ancient philosophers and theologians as evidence, 

Clavius laid out his argument in a section entitled “The various uses of mathematical 

disciplines” in his preface to The Elements.98 He first treated metaphysics and 

theology, reprising his earlier arguments about the intermediate status of mathematics 

between physics and metaphysics, and coupling them with a discussion about human 

cognition.  Crediting Proclus (whose work he had most likely read in Barozzi’s 

translation), Clavius contended that human intellect cannot immediately grasp abstract 

concepts.  It must first seek to understand the concrete.  Only from there, through the 

intermediate mathematical concepts, could it reach the abstract.99  Thus, no study of 

metaphysics or theology could be fruitfully conducted without the prior study of 

mathematics.  Clavius extended this argument from metaphysics to theology by citing 

several church fathers, including Augustine and Jerome, on the use of various 

branches of mathematics in theology. He never explained exactly how mathematics is 

used within the study of theology, but for each topic listed, from numerology to music, 

                                                
98 Clavius, Euclidis Elementorum, b2-b3r.  The section title is “Utilitates variae mathematicarum 
disciplinarum.” 
99 Clavius, Euclidis Elementorum, b2v “Quam ob rem, antequam a rebus physicis quae materiae 
sensibus obnoxiae sunt coniunctae, ad res metaphysicas, quae sunt ab eadem maxime auulsae, 
intellectus ascendat, necesse est, ne harum claritate offundatur, prius eum assuefieri rebus minus 
abstractis, quales a Matheamaticis considerantur, ut facilius illas possit comprehendere.”   
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geography, and astrology, he cited a sainted theologian as his source.100  If the saints 

who had studied and developed theology believed that mathematics was necessary, 

who could say otherwise? Clavius remained equally vague in his arguments for the 

necessity of mathematics to philosophy and public administration, preferring to cite 

the texts of ancient philosophers, especially Plato and Aristotle, as evidence.  Public 

administration is treated the most briefly with only a reference to Plato’s Republic and 

Timaeus.101  

Clavius continued these general themes in his introduction to The Sphere, the 

final and longest section of which was devoted to the utility of astronomy.  As the 

culmination of the study of mathematics, astronomy was thus the discipline best able 

to establish mathematics’ utility. Indeed, the section was designed to leave the reader 

with the impression that there was no area of human knowledge which was not 

supported by astronomy (and thus mathematics).  It named “natural theology,” 

metaphysics, natural philosophy, medicine, and poetry as disciplines dependent upon 

astronomy.  Nautical arts, ecclesiastical computations, cosmography, and politics were 

also identified as completely dependent upon astronomy.102  For most of the 

applications of astronomy, Clavius gave only brief references to ancient authors as 

evidence.  However, relative to theology, he provided an extensive discussion and 

                                                
100 Clavius, Euclidis Elementorum, b2v. In addition to Augustine and Jerome, to whom Clavius credited 
the arguments that numerology is indispensable to the study of sacred scripture and music is necessary 
to theology, Clavius cited Basil and Gregory of Nazianzus, also known as Gregory the Theologian, to 
support the claims that astrology, geometry, geography are also indispensable to theology. 
101 Further discussion of Clavius’s thoughts on the public utility of mathematics can be found in the 
next chapter.  
102 Clavius, Sphaeram, 10-11. Clavius argued that poets need astronomy because the only excellent 
poems include reference of some kind to the motions of the stars.  Therefore, no poet who hoped to 
succeed in his endeavors could ignore astronomy.   
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cited a variety of biblical passages to support the claim that astronomy aids the study 

of the divine as a form of natural theology.103  In the first of these, the Letter to the 

Romans (1:20), Paul reminded his readers that God can be perceived and understood 

through the study of Creation.  Clavius used to remind his own readers that celestial 

bodies are the most divine parts of Creation, and therefore the best sources through 

which to attain an understanding of the invisible God.104  Psalms 8 and 19 and chapter 

13 of the Wisdom of Solomon also served as evidence for the value of astronomy in 

studying God.105  All of these verses indicated that the splendor of Creation, especially 

the heavens, could be seen as a mirror for the splendor of God the creator.  Astronomy 

thus provided a direct link between the study of the world and the study of the divine. 

These arguments in Clavius’s prefaces expressed the principle that guided the 

creation of his ideal program of study, the most rigorous of the three curricula 

discussed above:  The study of a breadth of mathematical disciplines could enable 

students to pursue whatever philosophical or theological study they chose.  To 

facilitate this goal, the curriculum covered geometry, arithmetic (both practical and 

speculative), algebra, geography, and music.  Since Clavius aimed to secure a place 

                                                
103 Ibid., 10. “Ex quo factum est, ut Astronomia, quae de praestantissimis istis corporibus disputat, a 
plerisque Theologia naturalis vocetur.”   
104 Ibid., 9.  In the New Oxford Annotated Bible (New Revised Standard Version), this verse (Romans 
1:20) is rendered as “Ever since the creation of the world, his eternal power and divine nature, invisible 
though they are, have been understood and seen through the things He has made.” 
105Ibid., 9. The passages Clavius indicated are as follows in the New Oxford Annotated Bible (New 
Revised Standard Version): Psalm 8:3-4: “When I look at your heavens, the work of your fingers, the 
moon and the stars that you have established; what are human beings that you are mindful of them, 
mortals that you care for them?” Psalm 19: “The heavens are telling the glory of god and the firmament 
proclaims his handiwork.”  Wisdom of Solomon 13 is about using nature to study God.  It tells the 
reader to know how much more beautiful God, the creator of celestial bodies, is than the bodies 
themselves.   
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for mathematics among the higher disciplines by illustrating its importance to 

theology, he focused his curriculum on astronomy.  Six of the twenty-two topics 

outlined were explicitly identified as part of astronomy, and several more, such as the 

study of sines and the study of cylindrical sections and ellipses, were necessary to the 

pursuit of that branch of mathematics.106   

However, while Clavius’s position as the mathematics professor in Rome gave 

him some influence over the Jesuit mathematics curriculum, and while his textbooks 

provided Jesuit mathematics teachers with the arguments to promote mathematics, his 

was just one voice in the debate. He could not guarantee the content of the 

mathematics curriculum or the status of his discipline in all Jesuit schools.  Even in 

Rome, Pereira challenged Clavius’s claims for the elevated status of mathematics.  

And, as Ignatius had insisted in the Constitutions, how a subject was taught was at 

least as important as what was taught.  Thus, for Clavius it was not sufficient to argue 

for the status of mathematics in the prefaces to his textbooks.  He also had to ensure 

that the structure of the schools and the actions of their teachers and administrators 

guaranteed mathematics its place among the higher disciplines.  Therefore, he 

supplemented the arguments he provided in his mathematics texts with a brief work on 

the ways in which the Society could promote mathematics in its schools.  There, 

Clavius justified a high status for mathematical sciences and offered practical 

                                                
106 Clavius, “Ordo servandus,” 110- 113.  Those six topics are the study of the sphere (using his 
commentary on Sacrobosco), the use of geometry from astronomical instruments, the structure of the 
astrolabe, horology, problems of astronomy, motion of the planets and spheres.  Algebra and conics are 
also explicitly included for their use to astronomy. 
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guidelines for ensuring that students and teachers would esteem mathematics as 

worthy of that status.107     

Clavius’s first suggestion for the promotion of mathematics was to ensure that 

the mathematics teacher be erudite and of good reputation, so that his colleagues and 

students would respect him.  He argued that only if the mathematics professor was 

held in high esteem and treated as an equal by the philosophy professors would 

students be able to see that mathematics and philosophy were equal in status and 

closely related to one another. To enable the mathematics professor to secure such 

authority, Clavius warned that he should not be given too many other duties.  He 

needed time to further his own learning.  Clavius also insisted that as a sign of respect 

from his colleagues in philosophy, the mathematics professor needed to be invited to 

solemn occasions such as the granting of degrees and disputations, and he must have a 

part in the examination of students advancing to their degrees.108   

Clavius’s second suggestion was that students needed to be made aware that 

mathematics was useful and necessary to the rest of philosophy so that they would not 

disregard their studies in the field.109  Indeed, he believed that the two disciplines were 

                                                
107 Christopher Clavius, “Modus quo disciplinae mathematicae in scholis Societatis possent promoveri 
(1582),” in ed. Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de 
Ratione Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 115-117; 
Christopher Clavius, “De re mathematica instructio (Ad annum 1593),” in ed. Ladislaus Lukacs, 
Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione Studiorum Societatis Iesu 
(Rome: Institutum Historicum Societatis Iesu, 1992), 117-118.  
108 Clavius, “Modus quo disciplinae mathematicae,” 115. “Primum, deligendus erit magister eruditione 
atque auctoritate non vulgari.  Alterutra enim si absit, discipuli, ut experientia docet, non videntur ad 
disciplinas mathematicas allici posse.  Ut autem maiorem apud discipulos auctoritatem habeat magister, 
et disciplinae ipsae mathemtaicae maiori in pretio sint, ac discipuli earum utilitatem necessitatemque 
intelligant, invitandus erit magister ad actus solemniores, quibus doctores creantur et disputationes 
publicae instituuntur.” 
109 Ibid., 116. “Secundo ergo loco, necesse est, ut discipuli intelligant, has scientias esse utiles et 
necessarias ad reliquam philosophiam recte intelligendam, et simul magno eas ornamento esse omnibus 
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so closely related that “natural philosophy is maimed without the mathematical 

disciplines,” but he feared that that reality was hidden from students because 

mathematics had historically been looked down upon and belittled by philosophers 

whose own knowledge of the subject was limited.110  As a result, he claimed that 

students suffered under the tutelage of philosophers who derided mathematics and, 

“on account of their ignorance of these [mathematical disciplines] very often 

committed many errors, and those most grave” in their work.111  To create the 

appropriate view of mathematics, Clavius suggested that students of physics 

simultaneously study mathematics and be exposed to the numerous topics covered by 

mathematicians.  Furthermore, he insisted that teachers should encourage the study of 

mathematics, in both the general course and at more advanced levels in private 

academies, because mathematics was a great ornament in the perfection of the 

students’ erudition, and because teaching mathematics as a branch of philosophy could 

prevent disgrace to the Society’s reputation should Jesuit authors err for want of 

mathematical knowledge.112  In order to cement the disciplines’ elevated status and to 

inspire students to the study of mathematics, Clavius wanted to add mathematics to the 

                                                
aliis artibus, ut perfectam eruditionem quis acquirat.  Immo vero, tantam inter se habere affinitatem 
hasce scientias et philosophiam naturalem, ut nisi se mutuo iuvent, tueri dignitatem suam nullo modo 
possint.”   
110 Ibid., 116. “Omitto philosophiam naturalem sine disciplinis mathematicis mancam esse et 
imperfectam, ut paulo infra docebimus.”   
111 Ibid., 116.  “Immo, propter earum ignorationem nonnulli philosophiae professores saepissime multos 
errores, eosque gravissimos, commiserunt, et (quod peius est) scriptis etiam mandarunt; quorum aliquos 
in medium proferre non esset difficle.”   
112 Ibid., 116.  “Pari ratione oporteret praeceptores philosophiae callere disciplinas mathematicas, saltem 
mediocriter, ne in similes scopulos magna famae, quam Societas in litteris habet, iactua et dedecore 
incurrerent.” 
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list of classes in which gifted students could give monthly presentations to all of their 

colleagues.  Naturally, the best presentations were to be publically praised.113   

Of course, even if properly motivated to the study of mathematics, Jesuit 

students would need good mathematics teachers if they were to succeed in earning the 

Society a good reputation for its members’ mathematical knowledge.  Clavius thus 

recommended that schools create private academies of ten to twelve students who had 

shown extraordinary promise in mathematics.114  Clavius himself implemented such 

an academy in Rome in 1593.  It functioned as an advanced seminar in which he was 

able to achieve his ideal for the study of mathematics, albeit only locally.  His students 

were treated to Clavius’s most extensive curriculum covering everything from 

geometry to algebra and horology.  Indeed, his advanced textbooks were likely 

designed for this academy rather than for the Jesuits’ public course of study.115   

                                                
113 Ibid., 117. “Praeterea ad haece studia maxime incitabuntur scholastici, si singulis mensibus omnes 
philosophi in unum aliquem locum convenirent, ubi unus discipulorum habeat brevem 
commendationem disciplinarum mathematiciarum … Ubi laudari possent ii, qui melius problema 
propositum solvissent, vel pauciores paralogismos, qui non raro occurrunt, commisissent in novis 
demonstrationibus inveniendis.  Ita enim fieret, ut non parum inflammarentur ad haec studia cum 
viderent sibi propositam esse hanc gloriam; et simul intelligerent eorumdem praestantiam, maioresque 
in illis hac exercitatione facerent progressus.”   
114 Ibid., 115-116.  “Ut autem Societas semper habere possit idoneos harum scientiarum professores, 
eligi deberent aliquot ad hoc munus obeudeum apti 12 idonei, qui in privata academia instituerentur in 
variis rebus mathematicis; aloquin non videtur posse fieri, ut haec studia in Societate diu permaneant, 
nedum promoveantur; vel et magnum Societati afferent ornamentum, ut frequentissime in colloquiis et 
conventibus principum virorum de illis sermo habeatur, ubi intelligunt nostros mathematicarum rerum 
non esse ignaros. 
115Ugo Baldini, “The Academy of Mathematics” in Jesuit Science and the Republic of Letters ed. 
Mordechai Feingold, (Cambridge, MA: The MIT Press, 2003), 47- 98. Baldini explains that before 
1593 the academy existed as an informal group of students who pursued mathematics in addition to 
their other responsibilities.  When it was formalized in 1593, students of the academy were exempted 
from teaching grammar during the year between the study of philosophy and theology.  The textbooks 
for the academy likely included the Algebra, the Astrolabe, and the treatises on horology.  Indeed, 
based on the prefaces of Clavius’s texts, it seems probable that only the commentaries on Euclid and 
Sacrobosco, the Epitome arithmetica and the Geometria practica were intended for the general course 
of study.  Of those, only the commentary on Euclid was ultimately required in the Ratio Studiorum. 
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The academy’s activities make it clear that Clavius’s goals for mathematics 

went beyond training future philosophers and theologians.  Clavius justified the 

academy’s creation as a means to train mathematically capable teachers who could 

staff the Jesuits’ European schools and mathematically capable missionaries who 

could succeed in building new missions without access to specialists.  Yet, the 

academy also functioned as a research group in which Clavius and his students 

pursued new developments in mathematics, including the development of new 

theorems and instruments.116  In this way, Clavius sought to demonstrate how 

mathematics could enable students to study the divine and bring honor to the Society, 

and it was through the academy that Jesuit mathematicians developed and published 

their results, including their 1611 judgment on Galileo’s telescopic observations.117 

The contemporary fame of members of the academy – including Christopher 

Grienberger and Orazio Grassi, both of whom were active participants in the Jesuits’ 

debates with Galileo, attests to Clavius’s success on the second goal.  Indeed, in the 

first years of the seventeenth century, it was nearly obligatory for mathematicians 

staying in Rome to meet with Clavius or his colleagues.  Such famous mathematicians 

as Giovanni Magini (1555-1617), Galileo, Johann Schreck (1576-1630), and Marino 

Ghetaldi (1568-1626) were among those who visited the academy.118   

                                                
116Ibid., 55-58.    
117 Ibid., 55.  Baldini notes that publishing seems to have been up to the head of the academy, not the 
individual authors.   
118 Ibid., 53-57.  On page 68 Baldini notes that in 1612, the year Clavius died, the Collegio Romano was 
“second to no other European scientific institution.”   Baldini’s classification of the academy as a 
“scientific institution” illustrates the significance of the academy as a formal group of scholars devoted 
to the pursuit of natural knowledge at the start of the Scientific Revolution. While the term is 
anachronistic, it clearly designates Clavius’s academy as recognizably similar to modern scientific 
institutions in composition (a small group of scholars) and aims (uncovering new knowledge and 
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Conclusion 

Clavius devoted most of his work to establishing his ideal mathematics 

curriculum.  It was crafted on arguments presented by mathematically inclined 

humanists, notably Regiomontanus, Francesco Barozzi, and Federico Commandino, 

for a restoration of the ancient authority of the discipline and its elevation to at least 

the status of natural philosophy within the hierarchy of disciplines.  Like these 

mathematicians, Clavius viewed mathematics as a discipline that linked the physical 

and the divine and the only way through which human reason could generate certain 

knowledge.   His curriculum reflected that view, especially in its emphasis on 

astronomy, the branch of mathematics that he believed was best able to facilitate the 

study of the divine and thus was best suited to advancing the Jesuits’ mission of 

saving souls.   

Not everyone shared such a positive view of mathematics, however.  

Aristotelian philosophers sought to defend the status of their discipline by arguing for 

mathematics’ role as nothing more than a tool.  Thus, while Clavius’s ideal and his 

curriculum aligned with arguments of sixteenth-century humanists, it was not clear 

that the Jesuit schools would embrace the mathematician’s vision in their planned 

curriculum, even on as small a scale as the Roman academy.   

                                                
training new students in their discipline and training).  However, the academy was short-lived, 
dissolving shortly after Clavius’s death.  It is not clear why exactly the academy failed to survive, but 
Baldini argues that it is possible that it was a victim of the Jesuits’ dispute with Galileo and their 
defense of a scholastic cosmology that was central to Clavius’s vision of mathematics but was 
increasingly discarded by seventeenth century mathematical scholars.   
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When Clavius was named to the chair of mathematics at the Collegio Romano 

in 1563, the process of writing the curriculum for Jesuit schools had barely begun, and 

the status of mathematics was disputed.  Ignatius’s own discussion of mathematics 

was vague on the question of the discipline’s status; he only required that what was 

taught advance the Jesuit mission of saving souls.  In the first few years of the Jesuit 

schools, Clavius’s predecessors suggested curricula that covered several branches of 

mathematics from pure geometry and arithmetic to a variety of mixed branches like 

geography, a mathematical study that could have helped bring students to the early 

Jesuit schools.  The breadth of their suggested curricula paved the way for Clavius to 

offer an extensive program of mathematical study, but he still had to contend with 

Jesuit philosophers who did not believe that such a curriculum was necessary or 

valuable to Jesuit schools. Traces of that internal debate are visible in Clavius’s 

arguments in support of mathematics in the prefaces to his textbooks, especially the 

commentaries on Euclid’s Elements and Sacrobosco’s Sphere, and in his ideal 

curriculum, both in his suggested order of topics and his suggestions for how 

mathematics should be taught.  Ultimately, as the existence of his academy of 

mathematics attests, Clavius met with enough success to teach his ideal curriculum to 

a few students from 1593 until his death in 1612, precisely the window of time in 

which Kepler and Galileo, respectively at Tübingen and Padaua, were developing their 

mathematical proposals in natural philosophy.   
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Chapter Two 
 

Christopher Clavius and the Jesuit 
Mathematics Curriculum: 
Practical Priorities 
 
 
“The mathematical disciplines should be counted as not only useful, but truly also as 
completely necessary not only to perfectly learning other arts, but, indeed, also to 
rightly instituting and managing public affairs.”1   

 Christopher Clavius, 1574 
 

 

Over the course of his teaching career as the professor of mathematics at the 

Jesuit Collegio Romano from 1563 until 1612, Christopher Clavius carried out an 

extensive pedagogical project.  In the early 1570s he published his first two textbooks, 

a commentary on the Sphere of Sacrobosco (1570) and a commentary on Euclid’s 

Elements (1574).  In 1581 he suggested three mathematics curricula of varying 

degrees of rigor.  He then went on to write textbooks to accompany most of the topics 

his curricula covered.  While Clavius emphasized the noble status that he thought 

mathematics deserved because it informed both natural philosophy and theology, his 

pedagogical work included significant segments on practical mathematics as a tool 

that princes and those close to them could use to the benefit of their people.  Because 

                                                
1 Christopher Clavius, Euclidis Elementorum Libri XV Accessit XVI de solidorum Regularium 
comparatione (Rome: Vincentium Accoltum, 1574), b2r. “Non solum utiles, verumetiam necessariae 
admodum censeri debent disciplinae Mathematicae cum ad alias artes perfecte perdiscendas, tum ad 
rem etiam publicam recte instituendam, & administrandam.” 
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his tenure in Rome covered the almost twenty-year period from 1581 to 1599 when 

the Jesuits were writing their general curriculum, the Ratio Studiorum, Clavius’s 

pedagogical work became the example of mathematics education on which the authors 

of the curriculum based their initial assessment of the role of mathematics within 

Jesuit schools. Ultimately, driven by the logistical concerns of securing the patronage 

necessary to their schools and of staffing them fully, the curriculum writers used 

Clavius’s arguments for practical mathematics to define the discipline.  When the 

1599 Ratio Studiorum was distributed to the Jesuit schools, the priests assigned to 

teach mathematics found themselves with a brief and open-ended curriculum.  For two 

months, the students would learn exclusively from Euclid’s Elements.  After that the 

instructor would “add some geography or astronomy or similar matter which the 

students enjoy hearing about.”2  As it turned out, despite Clavius’s arguments for 

mathematics’, most especially astronomy’s, noble status as a discipline that could 

inform theology, Jesuit schools outside of the Roman center were more likely to teach 

geography than astronomy and clearly favored practical branches of mathematics over 

the theoretical questions found in astronomy.3   

Clavius’s attention to the potential uses of his discipline was hardly unique.  

Evidence of a broad interest in practical mathematics during the fifteenth and sixteenth 

centuries can be found in the quantity of texts published on various applications of the 

                                                
2 Allan P. Farrell, trans.  The Jesuit Ratio Studiorum of 1599 (Washington DC: Conference of Major 
Superiors of Jesuits, 1970), 46. 
3 Antonella Romano, La Contre-Réforme Mathématique: Constitution et Diffusion d’une Culture 
Mathématique Jésuite à la Renaissance.  (Rome: École Française de Rome, 1999), 3.  Romano observes 
that the schools would teach the mathematics their patrons desired, which was often not astronomy. 
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field.  His Epitome arithmeticae practicae (1583) and Geometria practica (1604), 

promising knowledge to facilitate most mundane activities of any society, were part of 

a broad discourse that explored the practical utility of abstract mathematics.  Other 

authors in that discourse included Orontius Finé, who published his Arithmetica 

practica in 1544 and his De re et praxi geometrica in 1556, and Albert Dürer who 

wrote on the construction and measurement of various shapes.  Clavius was likely 

familiar with those works.4  English authors like Robert Recorde, who published The 

Ground of Arts (1543) on arithmetic and Pathway to Knowledge (1551) on geometry, 

and Leonard and Thomas Digges, who published A Geometrical Practise Named 

Pantometria (1571), worked in the same vein.  Even texts on pure mathematics could 

be part of the discourse on the applications of the discipline.  When Federico 

Commandino, the Urbino humanist mathematician, translated his commentary on The 

Elements into Italian, his son-in-law, Valerio Spacciuoli, added a letter of dedication 

explaining that the motivation for the translation was repeated requests from those 

who used mathematics but did not read Latin and wanted a complete and accurate 

Italian translation of The Elements for the geometry’s applicability to everyday tasks.5  

                                                
4 Clavius used Dürer’s work as a source for some of his figures in the solid geometry books of The 
Elements.  See Christopher Clavius, Euclidis Posteriores libri sex a X ad XV. Accessit XVI de solidorum 
regularium comparatione (Rome: Vicentium Accoltum, 1574), 209v – 219v.   In his preface to his 
Geometria practica, Clavius named Orontius Finé as one of the many learned men who had written on 
mathematics.  Christopher Clavius, Geometria practica (Rome: Aloisyius Zannettus, 1604), 1.  
“Quamobrem & multos, & eruditos viros habuit, qui partes illius omnes accurata, & diligenti scriptione 
persecuti sunt: Inter quos, ut Leonardus Pisanus, Frater Lucas Pacciolus, Nicolaus Tartalea, Orontius, 
Cardanus, aliique praecipuas obtinuerunt.” 
5 Valerio Spacciuoli, “All’Illusstrissimo et eccelentissimo Signore Il Sig. Francesco Maria II. Feltrio 
della Rouuere Duca VI. d’Urbino,” in Federico Commandino, De gli Elementi d’Euclide (Urbino: 
Domenico Frisolino, 1575). “Ma, perche tal lingua non è intesa da tutti quelli, che si servono delle 
mathematiche; essendo venuto all'orecchie del Commandino, che l'Italia desiderava (poiche ha quasi nel 
suo idioma libri di tutte le scienze) godere ancora le fatiche fatte da lui intorno a questo libro, non 
contentandosi affatto di quelle, c'ha fin hora hauute.” 
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When the first English edition of The Elements was published in 1570, its translator, 

Sir Henry Billingsley, made clear in his letter to the reader that his purpose was to 

enable non-Latinate artisans to study mathematics as a means to develop “inventions 

of straunge and wonderfull thinges.”6 There were also numerous texts that built on a 

tradition of technical writing that had begun in the fifteenth century and focused on 

specific branches of mathematics and their potential, often military, applications.7  

Among such texts, are the Venetian Niccolo Tartaglia’s La Nova Scientia (1537), a 

treatise on the use of mathematics in artillery, and the Spanish Martin Cortes de 

Albacar’s Arte de Navegar (1551), a practical guide to using mathematics for 

navigation.8    

However, among Latinate authors, the mundane applications of mathematics 

were often frowned upon for their attachment to profit.  Indeed, Commandino 

included a lament in his preface to his commentary on Euclid’s Elements, that his 

contemporaries’ focus on material profits required him to list practical uses of 

mathematics to convince readers to study Euclid, even though he believed the nobility 

of the discipline should be sufficient motivation.9  Despite Spacciuoli’s insistence that 

                                                
6 Henry Billingsley, The Elements of Geometrie of the most auncient Philospher Euclide of Megara, 
(London: John Daye, 1570), ij.   
7 Pamela O. Long, Openness, Secrecy, Authorship: Technical Arts and the Culture of Knowledge from 
Antiquity to the Rennaisance (Baltimore: The Johns Hopkins University Press, 2001), 102-103.  Long 
argues that the increase in technical texts in the fifteenth and sixteenth centuries was tied to a political 
culture in which legitimacy was intertwined with constructive arts, creating a demand for technical 
treatises on painting, sculpture, architecture, fortifications, artillery etc.  One such author was Leon 
Battista Alberti (1404-1472).  Among her earliest examples, Long names the physicians Conrad Kyser 
(1366-1405) and Giovanni Fontana (1395-1455), both of whom wrote texts on the instruments of 
warfare.   
8 Cortes’s work was translated into English by Richard Eden in 1561.   
9 Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus Chriegher German, 1572), 
*4v. “Sed quoniam plerique his praesertim temporibus sola utilitate ad optimarum artium studia 
excitantur, liberalseque, colunt disciplinas, videamus obsecro, an mathematicae nullius sint commodi ad 
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the translation was for those who wished to apply mathematics to mundane tasks, that 

disparaging comment remained intact in the Italian translation.  One of Commandino’s 

students, Guidobaldo del Monte (1545-1607), took a different approach to distancing 

himself from profit-seekers.  When  his 1577 treatise on machines, Mechanicorum 

liber, was translated into Italian under the supervision of the Venetian military 

engineer Count Giulio Savorgnano, who hoped that it could be put to use in military 

applications, del Monte requested that his name be left out of the project.10  Clavius 

was not immune to such concerns, but, as I will show in this chapter, instead of 

distancing himself from the applications of mathematics, he designed his arguments 

for practical mathematics to show that the discipline belonged in the hands of princes 

and those close to them. 

In this chapter I will examine the place of practical mathematics in Clavius’s 

work to show that his vision of practical mathematics as a tool for princes and those 

close to them guided the authors of the Jesuit curriculum in their considerations of the 

place of mathematics in the Order’s schools.  I will begin by studying how Clavius 

included practical mathematics in his own curricular project as it is represented by his 

corpus of textbooks and their prefaces.  I will then contrast the vision of the utility of 

mathematics Clavius presented in the prefatory material to his commentary on 

                                                
iuuandos humanae vitae usus, uti caeca quorundam turpissimi lucri cupiditas falsa iam praedicatione 
divulgavit, ita ut qui hanc amplectuntur facultatem ab imperitis, vel a io studio occupatis hominibus 
palam derideantur, tamquam in re inutili, atque uana oleum, & operem perdant.  Agamus igitur pingui, 
quod aiunt, Minerva, quando nobis negocium est cum iis, qui sola quaestus ratione persuaderi possunt, 
& inuramus hanc notam ingenuae, ac nobili disciplinae, ut lucrum & divitias pollicendo huiusmodi 
hominum sibi studia, & gratiam comparet.”   
10 M. Henninger-Voss, “Working Machines and Noble Mechanics: Guidobaldo del Monte and the 
Translation of Knowledge,” Isis, 91 No. 2 (June 2000), 233-259.  Del Monte was content to allow his 
work to be translated as long as he was not seen to be a part of the process.  
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Euclid’s Elements with that presented by Billingsley and his collaborator John Dee in 

their respective letter to the reader and preface to the English commentary on the same 

text.  In this discussion it becomes clear that, unlike his English contemporaries, 

Clavius did not see mathematics as a tool for craftsmen but instead, in keeping with 

the Jesuits’ desire to become educators of the elite, treated it as a tool for princes.  

Finally, I will trace the development of the mathematics portion of the Ratio 

Studiorum from the first draft of 1586 to the final draft of 1599 to show how Clavius’s 

vision of practical mathematics guided the authors of the curriculum and defined the 

place of mathematics in the Ratio Studiorum. 

 

Practical Mathematics in Clavius’s Curriculum 

For Clavius there were three reasons to study mathematics: nobility, utility, 

and pleasure.  While the last of these reasons was a matter of personal taste and 

unlikely to be convincing to students who did not wish to study mathematics in the 

first place, the other two reasons could be used to justify the study of the discipline to 

even the most reluctant of students.  As discussed in the previous chapter, the 

arguments for the nobility of mathematics were part of an extensive sixteenth-century 

debate over the status of mathematics based on the certainty of the discipline and its 

ability to contribute to philosophy and inform theology.  Turning to more mundane 

concerns, Clavius’s arguments for the utility of mathematics centered on illustrating 

that the subject was essential to the welfare of any society and, consequently, was 

essential to those in leadership positions, an argument that appealed to the Jesuits 
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planning the curriculum who were searching for ways to best enable the Jesuit schools 

to train good Catholic rulers for European societies.11    

The simplest argument for the utility of mathematics to society was just a list 

of the practical applications of the discipline. Thus, Clavius’s suggested curricula 

(written in 1581), in which he included an extensive collection of practical topics, and 

the practical subjects covered by his textbooks, are the first testament to the value he 

placed on the applications of his discipline.12  Even in the least rigorous of the three 

curricula he suggested, Clavius required practical arithmetic, ecclesiastical 

computation, horology, perspective, geography, the astrolabe, and the measurement of 

plane and solid figures.  In the more rigorous programs of study, he added gnomonics 

(the study of sundials) and mechanics.  To ensure that students had the means to 

develop their mathematical skills, he planned to write a textbook on each of these 

topics.  Although Clavius did not succeed in this ambitious goal, the textbooks he did 

write presented the foundation for a course of study in a variety of branches of 

practical mathematics and a well-developed program in the use of astronomy for 

calendrical calculations, Clavius’s own primary activity outside of teaching.  In order 

of publication, the textbooks are Gnomonices (1581), Epitome arithmeticae practicae 

(1583), Fabrica et usus instrumenti horologiorum (1586), Astrolabium (1593), 

Horologiorum nova descriptio (1599), the Compendium brevissimum describendorum 

horologiorum horizontalium ac declinatium (1603), and the Geometria practica 

                                                
11 See chapter 1 for a discussion of the goals of the Jesuit schools. 
12 For a more in depth discussion of Clavius’s three curricula, see chapter 1.  
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(1604).13  The emphasis on the uses of astronomy for timekeeping, a product of 

Clavius’s own efforts to fill the Church’s longstanding need for a more accurate 

calendar, foregrounded the calendrical component of ecclesiastical computation and, 

thus, made mathematics a tool to be used by theologians (including the pope) for the 

benefit of all Christendom.   

However, while the prefaces to all of the practical texts could have been used 

to justify the study of mathematics based on its utility, Clavius only took advantage of 

that opportunity in the prefaces to the two practical textbooks removed from the 

specialized study of astronomy, the Epitome arithmeticae practicae and the Geometria 

practica.  He seems to have thought that while the benefits of astronomy (especially in 

preparing an accurate calendar) may have applied to everyone, only a specialist, who 

did not need further justification to study mathematics, would have had the ability to 

make and understand the measurements of celestial bodies.14  Indeed, in the prefaces 

                                                
13 Christopher Clavius, Geometria practica, 1-2. Since Clavius thought that he could not create a single 
textbook that perfectly united the many works in the field of practical geometry, he focused on the 
measurement of lines, surfaces, and solids as the foundation for all applications of the discipline in his 
Geometria practica.  This approach is clearly meant to be compared to that of Ioannes Antonio Magino, 
who Clavius claimed was the greatest mathematician to contribute to the field even though “he only 
taught the measuring out of lines.” (pp. 1-2)  “Primas tamen adiudicarim Io. Antonio Magino praestanti 
Mathematico; qui tametsi tantum linearum dimensiones docuit, ea tamen copia, doctriana, 
perspicacitate cuncta tradidit, ut locum non modo iis, qui ante scripserunt, sed spem posteris aequalis 
gloriae, ne dum maioris, ademisse videatur.”  
14 Clavius never used a term like “specialist.”  Even when he described other mathematical scholars he 
usually used a phrase like “eruditos viros,” or “learned men.”  (See the above note.)  This choice 
emphasizes that Clavius saw mathematics as part of a complete education.  He did use the word 
“Mathematicus” to describe Johannes Sacrobosco in the preface to his 1570 commentary on the English 
scholar’s text.  However, that was preceded by the moniker “Philosophus,” suggesting that mathematics 
was an addition to the general study of philosophy, or a specialization therein.  (Christopher Clavius, In 
Sphaeram Ioannis de Sacro Bosco Commentarius (Rome: Victorium Helianum, 1570), 2.  “Ideo 
Ioannes de Sacrobosco natione Anglus egregius sua tempestate Philosophus, ac Mathematicius, qui 
floruit circa annum Domini 1232.”)   Thus, the modern term “specialist” seems to fit Clavius’s views 
because an educated scholar able to read his texts could aspire to both of the two descriptions Clavius 
gave to Sacrobosco – philosopher and mathematician – such that the latter moniker expressed an 
extension of the former in a particular field of study. 
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to the texts on the applications of astronomy, he simply gave the necessary 

mathematical background for the topic at hand and brief outlines of the sections in the 

book.  In contrast, the mundane uses of mathematics found in the Epitome 

arithmeticae practicae and the Geometria practica, such as accounting and measuring 

distances, would have been employable by students who did not specialize in 

mathematical study, let alone in astronomy.15  Thus, those texts needed to be 

accessible to all students, including those inclined to ask the perennial question of 

“when will I need this?”  Indeed, in his preface to the Epitome arithmeticae practicae, 

Clavius expressed his hope that the text would be read by all Jesuit students.  He 

claimed that important men requested that his book be communicated not only with 

those who eagerly sought it out but also with those who attended Jesuit schools, 

because it was such a useful text.16  Because Clavius did justify the study of practical 

mathematics in his Epitome arithmeticae practicae and Geometria practica, those two 

texts seem to have been intended for most, if not all, Jesuit students.  Thus, a brief 

analysis of their prefaces will serve to illustrate Clavius’s outlook on the importance of 

the practical branches of mathematics. 

                                                
15 Paul Klein, who lived a little over a century after Clavius, comes to mind.  He was the Jesuit who 
drew the first map of the Palau islands, now known as the Carolines.  For a discussion of that map, see 
Ulrike Strasser, “Die Kartierung der Palaosinslen: Geographisce Imagnination und Wissenstransfer 
zwischen europäischen Jesuiten unt mikronesischen Insulanern um 1700,” Geschichte un Gesellschaft, 
36, 2010, pp. 197-230. 
16 Clavius, Epitome arithmeticae practicae (Rome: Dominici Basae, 1583), 4. “Is libellus cum 
imprudenti mihi excidisset, & in manus hominum venisset, summis precibus contenderunt a me viri 
graves, ut cum plurimis communicarem quod fore dicerent, ut is utilissimus accideret cum caeteris 
studiosis, tum vero iis, qui nostras scholas frequentant: quorum utilitati nolle consultum, non esse eius, 
qui se suaque omnia Dei gloriae, omniumque commodis consecrasset.” Clavius did not name a specific 
patron.  In fact, the Epitome arithmeticae practicae lacks a dedication letter entirely.   
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In the first sentence of his preface to the Epitome arithmeticae practicae, 

Clavius expressed the value of practical arithmetic as the glue that holds society 

together.  He claimed that “without arithmetic, at least as I think, no science, as Plato 

does say, nor society of man can exist.”17  He then began a discussion of the social 

utility of arithmetic, pointing out the obvious need for arithmetic in accounting for any 

type of business.  If the reader should have stubbornly persisted in saying that business 

could be done without arithmetic, Clavius reminded him that “it is equally shameful 

and destructive to defraud and be defrauded” in the course of business transactions.  

Thus, even an honest businessman who had not learned arithmetic, as a likely victim 

of fraud, was a social liability, while his knowledgeable counterpart could strengthen 

society by using the tools arithmetic provided to run his business optimally.18  It was 

not just business that benefitted from arithmetic.  According to Clavius, other, 

unnamed, disciplines may have been less obviously dependent on the field but 

nonetheless would collapse if arithmetic were doubted because small errors in 

accounting could have devastating effects on any assumed results.  Even the 

“astrologer and geometer” needed numbers to have their theorems gain acceptance by 

the common man.19  Clavius went so far as to argue that practical arithmetic separated 

                                                
17 Ibid., 3. “Sed etiam, quod sine Arithmetica, ut ego quidem existimo, nulla Scientia, ut Plato audit 
dicere, neque ipsa hominum societatis posit consistere.” 
18 Ibid., 3. “Plurima enim in mutuis commerciis, conventisque, quibus fere haec hominum coniunctio 
continetur, tempora incidunt, ut rationes accepti, … quibus in rebus circumvenire, & circumveniri, 
aeque turpe, & perniciosum est.” 
19 Ibid., 3. Clavius did not specify what those other fields were, but he did note that even geometry and 
astronomy could not explain everything because only arithmetic could supply one with a complete 
understanding of numbers, without which, according to Clavius, sound judgment in many areas was not 
possible.  “Iam vero caeterae disciplinae sic Arithmetica nituntur, ut haec non videatur concidere posse, 
quin illae casu eodem labefactatae corruant.  Neque enim aut Astrologus, aut Geometra theoremata in 
vulgus probabit sua, ut non solum veritatem, sed etiam voluptatem habeant cum utilitate coniunctam, 
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civilized men from barbarians.  Paraphrasing Plato, he claimed that “those who 

remove arithmetic from their way of life, to such an extent remove good sense and all 

of civilization from the world,” not least because business would become corrupt 

without arithmetic.20   

 While Clavius emphasized the value of arithmetic to business, he offered a 

broad spectrum of uses for practical geometry, claiming that it was necessary to 

almost every activity of a society.  However, unlike his argument for the necessity of 

arithmetic, Clavius’s arguments for the value of geometry avoided sweeping claims 

about the social role of the discipline.  Instead, Clavius sought only to show that the 

study of practical geometry was superior to the training without the abstract 

foundation of geometry craftsmen received in various tasks.  And the tasks to which 

geometry could be applied were myriad.  Indeed, Clavius promised that the certain 

methods he laid out for the measurement of distances, heights, and depths would be 

useful to “the foundation of buildings, cultivation of fields, treatment of arms, 

observation of the stars, and other arts.”21  However, instead of whetting his readers’ 

appetites with detailed explanations of the uses of practical geometry, Clavius allowed 

the breadth of his list to speak for itself, keeping his focus on the way in which 

geometry improved on the knowledge of craftsmen.  According to Clavius, the 

                                                
qui universam numerorum naturam animo penitus comprehensam non habuerit: quod si tantillum in 
rationibus putandis lapsus fuerit, iam caeterarum rerum ingentem ruinam videas.”   
20 Ibid., 3. “Sed tamen vere dixit Plato, prudentiam, atque adeo humanitatem omnem e mundo eos 
tollere, qui Arithmeticam e vita tollant.” 
21 Clavius, Geometria Practica., 1. “Etenim dum certa ratio traditur, qua_ camporum longitudines, 
altitudines monitum, vallium depressiones, locorum omnium inaequalitates inter se & interulla 
deprehendere metiendo debeamus: cuilibet liquet, ut arbitror, quantum commodi, utilitatisque 
substructioni aedificiorum, culti agrorum, armorum tractationi, contemplationi siderum, aliisque artibus, 
& disciplinis ex horum cognitione manare possit.” 

107



 

 

superiority he sought came from the certainty of geometry, which allowed that “any 

profit out of mathematics may be able to be secured to the conveniences of human life 

not by empty showing off but so that it is certain as the subject itself.”22  Unlike a 

craftsman’s show of his skill through the production of some desired object, the 

geometer’s methods could be easily reproduced by any student of mathematics when 

the need for a similar project arose.  However, lest his reader come to the conclusion 

that practical geometry was just a tool for craftsmen, Clavius argued that while 

craftsmen used mathematics, it was learned mathematicians, employed by kings and 

princes, who explained how the discipline could be used in “exact and careful writing” 

that made the discipline of practical geometry more than showing off a trade.23  Those 

authors showed that the world could be understood geometrically, and, in theory, they 

could perfect any of the tasks done by craftsmen based on the rules of their discipline. 

Since building, agriculture, astrology, and warfare all involved the use of practical 

geometry, Clavius implicitly argued that knowledge of the discipline was essential to 

anyone who wished to govern, as each of those fields concerned the running of a 

sixteenth-century polity. 

 While the practical studies of the various branches of mixed mathematics were 

obvious sources for arguments for the utility of mathematics, even less mundane 

                                                
22 Ibid., 1. “...in hoc quicquid est laboris veniebam alacer, ut qui fructus e Mathematicis percipi possint 
ad humanae vitae commoda, non inani venditatione, sed re ipsa constaret.”   
23 Ibid., 1. “Haec enim una Mathematicarum rerum scientiae pars, sicut ab artificibus ob sui 
necessitatem auide semper est arrepta: ita ob insignes utilitates, quas in re tota militari suppeditat, in 
maximorum Principum, Regumque aulis omni tempestate versata est.  Quamobrem & multos, & 
eruditos viros habuit, qui partes illius omnes accurata, & diligenti scriptione persecuti sunt.”  Clavius 
lists Leonardo of Pisa, Fr. Luca Paccioli, Niccolo Tartaglia, Orontius Fine, and Girolamo Cardano.   
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branches of mathematics could be deemed useful.  Indeed, in his commentaries on 

Sacrobosco’s Sphere and Euclid’s Elements, Clavius included arguments for the utility 

of all domains of mathematics, especially to the educated elite who might serve as 

advisers to princes (including Jesuits). For astronomy, which Clavius took to be the 

highest branch of mathematics, the applications he listed focused on the relationship 

between the study of the heavens and other areas of scholarship, rather than naming 

specific tasks to which astronomy could be applied.  While, he began with theology, 

metaphysics, and natural philosophy, he also included the practical studies of medicine 

(for which he cited Galen’s use of astrology (primarily lunar cycles) in timing the 

administration of remedies), ecclesiastical computations (for which he supplied the 

annual calendrical calculations for feast days, especially Easter, as evidence), nautical 

arts (for which he insisted that the dependence on astronomy was self-evident), and 

poetry (for which he noted that the beauty of the heavens and the perfection of 

celestial motion provided excellent subject matter).  However, the majority of his 

discussion of the utility of astronomy drew the discipline outside the academy and 

focused on public affairs, or as he put it, “the administration of the public affairs, as in 

agriculture, warfare, and other such fields.”24  For these topics Clavius relied on 

historical anecdotes to give evidence for the value of mathematics.  The heroes of 

these stories were rarely mathematicians, but instead were famed leaders, such as 

Sulpitus, Pericles, Dionysus the Areopagite, Hadrian, and Julius Caesar, whose uses of 

                                                
24 Christopher Clavius, Sphaeram, 11. “Omitto, quod haec scientia summe est necessaria ad reipub. 
administrationem, ut ad agriculturam, ad bella gerenda, & alia huiusmodi.” While these sciences were 
omitted from his original list of uses of mathematics, his discussion of them covers the final three pages 
of his preface.  
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mathematics were alleged to have saved their civilizations, their armies, themselves, 

or even their souls.25  He even included more recent narratives, such as that of an 

unnamed Spanish duke who saved his troops from starvation by timing his demand 

that the native Jamaicans provide him with supplies to coincide with a lunar eclipse.26  

Likewise, in his commentary on The Elements, Clavius also introduced his 

arguments for mathematics’ utility by establishing its relationship to other areas of 

study, including theology and philosophy.27  However, when he shifted from 

mathematics in general to the introduction of geometry, and specifically Euclid’s 

geometry, he focused his discussion on the discipline’s foundational role for various 

branches of mixed mathematics.  He opened this portion of his discussion with an 

analogy between Euclid’s Elements and the alphabet.  Just as the first step to learning 

how to read is learning the alphabet, if one is to learn mathematics, one must start with 

The Elements, which he called an “abundant fountain” from which myriad uses flow.28  

Those uses included measuring any desired dimension of fields, mountains, or islands 

(i.e. geography), making instruments for the observation of the stars and measuring 

                                                
25 Ibid., 12-14. Clavius gave the stories in varying degrees of completeness.  In several cases, he simply 
alluded to anecdotes with claims that these famous leaders acknowledged the necessity of astronomy to 
their polities.   
26 Ibid., 12. According to the narrative, the duke promised to bring destruction to the natives if they did 
not bring the Spaniards supplies.  They treated the lunar eclipse as representative of the duke’s power 
and an omen of the promised destruction.  Frightened by such a sign, they immediately welcomed the 
Spaniards and gave them all the supplies they needed. 
27 For more on these arguments, see chapter 1.  
28 Christopher Clavius, Euclidis Elementorum, b4v. “Quamobrem sicut is, qui legere vult, elementa 
literarum discit prius, & illis assidue repetitis utitur in vocibus omnibus exprimendis, sic qui alias 
disciplinas Mathematicas desiderat sibi reddere familiares, elementa haec Geometrica plene ac perfecte 
calleat prius, necesse est.  Ex his etenim elementis, veluti fonte uberrimo omnis latitudinum, 
longitundinum, altitudinum, profunditatum, omnis agrorum, montium, insularum dimensio, atque 
divisio; omnis in caelo per instrumentae syderum observatio, omnis horologiorum sciotericorum 
composito, omnis machinarum vis, & ponderum ratio, omnis apparentiarum variarum, qualis cernitur in 
speculis, in picturis, in aquis, & in aere varie illumnato, diversitas manat.” 
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celestial bodies and their motions (i.e. astronomy), measuring the passage of time (i.e. 

horology), and building machines of any kind (i.e. mechanics).  As he emphasized in 

the Geometria practica, Clavius argued here that geometry was useful to kings and 

princes, not just to craftsmen.  Once again, he turned to history, offering Archimedes 

as an exemplar of a mathematician whose skills made him uniquely valuable to his 

king, as proof of the discipline’s necessity to political leaders.  According to the 

legends cited by Clavius, because of his geometrical skill the Syracusan 

mathematician had been indispensable in small matters - devising a means to measure 

the amount of gold in the king’s crown - and much larger matters - single-handedly 

holding a Roman invasion at bay with his machines.29   Indeed, esteemed by all (even 

the Romans) for his knowledge of mathematics, Archimedes was the ideal practical 

mathematician for Jesuit students to emulate, and Clavius’s curriculum, with its wealth 

of practical topics was designed to make such an emulation possible. 

 

Approaches to Practical Mathematics: Clavius’s Elements vs. the Billingsley-Dee 

Edition 

Clavius’s presentation of Archimedes as an ideal model emphasized the value 

of mathematics, including its practical branches, to the uppermost echelons of society.  

However, in the sixteenth century, the value of a rigorous mathematics education for 

artisans was also widely discussed.  In fact, although craftsmen could learn their trades 

on the job without mathematical literacy, mathematics was increasingly called upon to 

                                                
29 Ibid., b5r. 
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inform arts as disparate as architecture and gunnery.  Vernacular treatises on 

mathematics, such as Niccolo Tartaglia’s 1537 La nova scientia on gunnery, sought to 

place mathematics in the hands of the craftsmen who could apply it.  Furthermore, as 

Deborah Harkness has shown, at least in London, sixteenth-century mathematical 

educators worked to convince the merchant and artisan class that an understanding of 

the fundamental theories of geometry and arithmetic could provide valuable problem-

solving skills necessary for innovation.30  Perhaps the most famous example of an 

attempt to provide non-Latinate craftsmen with a mathematical education is the first 

English translation of Euclid’s Elements published in 1570 by Henry Billingsley, an 

English haberdasher, with a preface by John Dee, the famed philosopher and 

mathematician of the Tudor court.  While it is tempting to see Clavius’s inclusion of 

practical mathematics in his curriculum as part of a project to mathematize crafts, a 

comparison of Billingsley’s and Dee’s presentations of the utility of mathematics in 

the prefatory material to their edition of Euclid to Clavius’s illustrates that there were 

two distinct approaches to the value of practical mathematics: one aimed to improve 

the mathematical literacy among craftsmen in hopes of future innovations that would 

improve the commonwealth, and the other sought to bring mathematics into courts as 

a tool for various facets of public administration. 

The Billingsley-Dee edition of The Elements opened with a letter from 

Billingsley to his readers, in which he, the translator of the Greek text, promised that 

                                                
30 Deborah Harkness, The Jewel House: Elizabethan London and the Scientific Revolution (New Haven: 
Yale University Press, 2007). 116-118. Harkness also notes that the arguments made in London for the 
utility of mathematics were part of a pattern of similar arguments across Europe.  As evidence, she cites 
a number of technical authors from the continent, including Niccolo Tartaglia and Petrus Ramus. 
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the study of mathematics, beginning with Euclid, would benefit the commonwealth of 

England as well as “beautifie the mind” of its students.31  And while the ability of 

mathematics to improve the mind and soul of man was Billingsley’s opening gambit, 

the emphasis of his brief letter was on the utility of mathematics, through which he 

hoped to convince artisans to read his and other mathematical texts.  Billingsley 

claimed that he had seen “many good wittes both of gentlemen and of others of all 

degrees” attempting to study the mathematical arts and failing in their endeavors 

because there was no English version of The Elements with which to begin their study.  

He feared that without such men being able to study mathematics, the English were 

failing to keep up with their continental counterparts amongst whom “flourishe[d] so 

many cunning and skilfull men, in the inventions of straunge and wonderfull 

thinges.”32  But he hoped that his translation of The Elements would spur the English 

into a deeper study of mathematics by providing a starting point for all English 

mathematics students and by encouraging other authors to translate Latin and Greek 

mathematical texts from the Continent.33  He would consider his “paines and travaile” 

worthwhile if mathematics became a widely used tool to advance the ingenuity of 

                                                
31 Billingsley, The Elements of Geometrie, iir. 
32 Ibid., iir. 
33 Ibid., iir. Billingsley’s translation of The Elements from continental sources does seem to have served 
as an example of a method of bringing Greek and Latin works from the Continent into the hands of 
English readers.  In his Copernican Question, Robert Westman notes that in the late sixteenth century 
English textbooks were often cobbled together from continental sources.  He gives Thomas Blundville’s 
1594 Exercises and 1602 Theoriques of the Seven Planets as examples of such “collected” works.  
Robert Westman, The Copernican Question: Prognostication, Skepticism, and the Celestial Order 
(Berkeley: University of California Press, 2011), 434. 
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English “men of all degrees,” just as he claimed it had done for continental 

Europeans.34   

Billingsley’s letter served as a brief plea to potential readers, but it was far too 

short to offer fully developed arguments for the value of mathematics to a non-

Latinate audience.  He abdicated the task of developing such arguments to a well-

known mathematician, John Dee, whom he (or the printer, John Daye) requested write 

the preface to lend credibility to a mathematical text produced by a merchant.35   Dee, 

eager to justify the study of mathematics at least in part to combat his reputation as a 

“Caller and Coniurer of wicked and damned Spirites,” accepted the request and wrote 

the Mathematicall Preface, in which he attempted to make his discipline as intriguing 

as possible to a broad audience.36  Indeed, he opened his preface by raising the very 

question that men who had learned their trades on the job were most likely to ask 

about mathematics: how can one use geometry?  Instead of asking and answering that 

                                                
34 Billingsley, The Elements of Geometrie, ii. 
35 During his lifetime, Dee was well-known by mathematicians in England and on the Continent.  He 
had studied at Cambridge in the 1540s.  In the 1550s and 1560s he made several trips to the Continent, 
including a visit to Urbino in 1563 when he met with Federico Commandino, whose own commentary 
on The Elements was briefly discussed in chapter 1.  While in Paris, Dee was touted as the only 
Englishman who knew something of mathematics.  Allen G. Debus, John Dee: The Mathematicall 
Preface to the Element of Geometrie of Euclid of Megara (1570), (New York: Science History 
Publications, 1975), 2-4; John Heilbron, “Introductory Essay” in John Dee on Astronomy: 
Propaedeumata Aphorisitica (1558 & 1568) ed. Wayne Shumaker (Berkeley: University of California 
Press, 1978), 1-49.    Regarding Dee’s role in the translation of Euclid, it should be noted that Dee 
assisted with the commentary by offering his own additions to and comments on the ancient text.  These 
additions were most frequent in the later books on solid geometry.  For the ambiguity regarding who 
asked Dee to write the preface, see Nicholas Clulee, John Dee’s Natural Philosophy: Between Science 
and Religion.  (London: Routledge, 1988), 146. 
36 John Dee, “Mathematicall Preface” in Henry Billingsley, The Elements of Geometrie of the most 
auncient Philospher Euclide of Megara, (London: John Daye, 1570), Aij.  Harkness notes that Dee 
wanted to make mathematics “alluring,” which likely did not help him fight his reputation as a conjurer, 
even though he hoped to show that, as Harkness put it, “Mathematics could also help to explain 
phenomena that might otherwise be dismissed as strange and outside the natural order.” (Harkness, The 
Jewel House, 112).   
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question directly, Dee brought it up through a discussion of the differences between 

Plato’s and Aristotle’s approaches to teaching mathematics.  Plato, while “divine” and 

a “great Master,” drove students away by never expressing the purpose of his 

teaching.37  In contrast, Aristotle advised his readers of the topic and the purpose of 

each of his lessons before he began, something Dee believed was necessary to his own 

task of “bringyng into common handling, the Artes Mathematicall.”38  Thus, in order 

to satisfy the desires of Billingsley’s intended merchant readers, Dee set out to follow 

the example of Aristotle to the best of his ability by explaining the uses of 

mathematics.39 To accomplish this goal, he devoted his preface to presenting his 

“mighty, most pleasunt, and frutefull Mathematicall Tree” in both its “chief armes 

                                                
37 Dee, “Mathematicall Preface,” first page. Dee was heavily influenced by Neoplatonism, especially 
the idea that nature was wholly defined by numerical harmonies and was thus written in mathematics.  
(See Heilbron, “Introductory Essay” 4-5 and also I.R.F Calder, “John Dee Studied as an English 
Neoplatonist” (PhD diss., London University 1952), 7-14).  He was not being facetious in his 
praise of Plato as “divine” and a “great Master.”  However, he recognized the utilitarian interests of his 
audience.  He feared that they would be likely to follow Plato’s disappointed listeners to more 
productive tasks if he did not first convince them of a worthwhile end to the study of mathematics.  
Dee’s rather comical discussion of Plato’s failure to entice Athenians to the study of mathematics 
allowed him to appeal to the intended audience of Billingsley’s text, even as he justified the use of 
Platonic arguments for the status of mathematics in the preface to a text intended to make mathematics 
accessible to those who could best take advantage of its practical implications.   
38 Dee, “Mathematicall Preface,” first page. 
39 Ibid., first and second pages. Dee also used his preface to attempt to attract his own audience of 
university-educated readers.  His discussion of his intended readers is as follows.  “Nor (Imitatyng 
Aristotle) well can I hope, that accordyng to the amplenes and dignitie of the State Mathematicall, I am 
able, either playnly to prescribe the materiall boundes: or precisely to express the chief purposes, and 
most wonderfull applications therof.  And though I am sure, that such as did shrinke from Plato and his 
schole, after they had perceived his finall conclusion would in these thinges have ben his most diligente 
hearers (so infinitely mought their desires, in fine and at length, by our Artes Mathematicall be 
satisfied) yet, by this my Praeface & forewarnyng, Aswell all such, may (to their great behofe) the 
soner, hither be allured: as also the Pythagoricall, and Platonicall perfect scholer, and the constant 
profound Philosopher, with more ease and spede, may (like the Bee,) gather hereby, both wax and 
hony.”   
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[geometry and arithmetic] and second (grifted) branches [various branches of mixed 

mathematics which had applications to the physical world].”40   

Dee’s “Mathematicall Tree” directly illustrated the uses of mathematics and its 

potential value to craftsmen, but he still felt the need to justify explicitly the 

publication of an English version of Euclid’s Elements.   He took on that task at the 

conclusion of his preface where he presented a clear and concise argument for the 

utility of mathematics to craftsmen and the Commonwealth. Despite protesting that it 

was unnecessary to explain “why, in our vulgare Speche, this part of the Principall 

Science of Geometrie, called Euclides Geometricall Elementes, is published, to your 

handlyng: being unlatined people, and not Universitie Scholers,” Dee scolded any 

university-trained scholars who would deny the English-reading merchants and 

artisans access to mathematical knowledge.  He said that such a man was without 

“charitie toward his brother” and “care and zeal for the bettering of the Common state 

of this Realme.”41 He argued that “common artificers” already used mathematics in 

their work and that such men “with their owne Skill and experience, already had, will 

be hable (by these good helpes and informations) to finde out, and devise, new 

workes, straunge Engines, and Instrumentes: for sundry purposes in the Common 

                                                
40 Ibid., second page.  
41 Ibid., Aiiiir-v. Debus, John Dee, 12.  As Debus helpfully notes, Dee’s presumed university-based 
adversaries feared a loss of status if universities were no longer the source of all theoretical knowledge.  
Harkness adds to that the argument that some university-trained scholars believed that mathematics was 
the language of God and was not suited to the untrained intellects of craftsmen, who would be too easily 
enticed by the presumed ability of mathematics to access dark magic.  She offers Francis Bacon as an 
example of a scholar who warned against too much study of mathematics.  (Harkness, Jewel House, 
100). 
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Wealth[.] Or for private pleasure[.] And for the better maintaining of their own 

estate[.]”42   

 Like Billingsley and Dee, Clavius opened his text with a justification of the 

study of mathematics in general.  But, unlike Billingsley’s plea for an expanded 

English study of mathematics and Dee’s appeal to non-Latinate readers, Clavius’s 

arguments for the study of mathematics focused on making mathematics attractive to 

the nobility, in-keeping with the Jesuits’ general desire to gain influence with ruling 

classes wherever they went.  His arguments appeared in his dedication letter addressed 

to Emmanuel Philiberto, Duke of Savoy, a supporter of the mathematical arts.43  As 

one would expect in a letter addressed to a nobleman, the justification offered for the 

study of mathematics was designed to show mathematics to be worthy of a man of that 

status, rather than showing it to be a tool.  Indeed, Clavius made typical appeals to the 

value of mathematics based on its antiquity and its certainty, arguing, as discussed in 

                                                
42 Dee, Mathematicall Preface, A.iiiir. 
43 In many ways, Clavius’s dedication letter appears to be a pro forma appeal to a potential patron.  In it 
he thanks the Duke for his support on behalf of himself and the Society of Jesus, which suggests that he 
was seeking to secure the existing patronage relationship between the Duke and the Jesuits. (For a brief 
description of that relationship see Paul F. Grendler, Schooling in Renaissance Italy: Literacy and 
Learning 1300-1600, (Baltimore: The Johns Hopkins University Press, 1989), 368.)  For more on the 
culture of patronage and the role of dedication letters see Robert Westman, “Proof, Poetics, and 
Patronage: Copernicus’s preface to De revolutionibus” in Reappraisals of the Scientific Revolution ed. 
David C. Lindberg and Robert S. Westman, 167-206; and Mario Biagioli, Galileo, Courtier: The 
Practice of Science in the Culture of Absolutism, (Chicago: The University of Chicago Press, 1993). It 
does not appear that Clavius himself had any kind of sustained relationship with the dukes of Savoy.  
The dedication letters to the 1574 and 1589 editions of his commentary on Euclid’s Elements are the 
only letters to the royal family at Savoy.  (In 1589 the duke and addressee of the letter was Charles 
Emmanuel, the son of Emmanual Philiberto).  Evidence for Emmanuel Philiberto’s support for 
mathematicians can be found in Giovanni Benedetti’s dedication letter to his 1585 Diversarum 
Speculationum Mathematicarum & Physicarum in which the author, writing to Charles Emmanuel, 
recalled the late Emmanuel Philiberto’s patronage of his mathematical work, including bringing him to 
Savoy from Parma to act as a court mathematician.  (Giovanni Bendetti, Diversarum Speculationum 
Mathematicarum & Physicarum (Turin: Nicolai Bevilaquae, 1585), A2).  
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the previous chapter, that the excellence of mathematics was not to be lightly 

dismissed as it enabled one to understand the natural world by providing a means to 

create certain knowledge about worldly phenomena.44  The Elements, as the 

foundation of all of mathematics, was valuable for providing entry into such a noble 

discipline. However, while the nobility of mathematics may have justified the study of 

the subject, it was not the reason Clavius published his commentary on Euclid.  In this 

letter, Clavius claimed that he was driven to publish to allow the commentary that he 

had developed in his years of teaching “to emerge into the light and the hands of men” 

for “the public utility of these studies.”45  While he never specified what the public 

utility of mathematical studies was, by naming it as his reason for publishing, 

especially since he did so in a letter addressed to a prince, he created a promise that 

mathematics could somehow be used by the prince to improve public welfare in his 

domain.46 

                                                
44 It should be noted that Dee, who could be grouped with the mathematical humanists discussed in the 
previous chapter, did not ignore these arguments.  Before establishing his “Mathemticall Tree” he 
included a discussion of the nature of mathematics in which he argued that mathematics was 
intermediate between the supernatural and the natural giving it a “meruaylous newtralitie” and a 
“straunge participation betwene thinges supernaturall, imortall, intellectual, simple and indivisible: and 
thynges naturall, mortall, sensible, compounded and divisible,” giving mathematics the ability to 
explain phenomena that appeared to be magical.  While these arguments reflect Dee’s own position as a 
university-educated mathematical humanist, they are not the means through which the Mathematicall 
Preface establishes arguments for the utility of mathematics and will not be discussed further in this 
chapter.   
45 Clavius, Euclidis Elementorum, a3v. “Quae cum ego multo annos partim publice docendo, partim 
privatim commentando, & cum alliis viris doctis communicando diligentius pertractassem, 
collegissemque (ut fere fit) in meum privatum usum nonnulla, quae ad eorum cognitionem facere 
viderentur; faciendum mihi necessario existimavi, praesertim auditorium, amicorumque meorum 
precibus fatigatus, praeterea Laurentii Castellani ciuis Romani liberalitate invitatus, qui omnes ad id 
necessarios sumpt benigne admodum suppeditavit, ad publicam studiosorum utilitatem, in lucem 
manusque hominum exire permitterem.” 
46 Of course public welfare in the sixteenth century was not the same as public welfare in the twenty-
first century.  The public utility intended by Clavius could be described as applications of mathematics 
that could inspire pride in one’s patria.  These could include public works in architecture and art, 
improvements to agriculture through irrigation projects and even more accurate land surveys, and 
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  Despite differing on whether mathematics could improve public welfare 

through the ingenuity of craftsmen or the knowledge of a prince, Billingsley, Dee, and 

Clavius all promised that mathematics could be used to improve the commonwealth 

but remained vague on the specifics of how that promise could be fulfilled.  Those 

specifics emerge in Dee’s and Clavius’s discussions of the divisions of mathematics.  

As each author described the various branches he identified as mathematical arts, he 

necessarily explained how mathematics could be applied.  Indeed, as mentioned 

above, in the Mathematicall Preface, Dee explicitly set out to create an outline of the 

discipline of mathematics that could explain its utility.  While his arguments in his 

justification for the translation of Euclid’s Elements into English had focused 

primarily on the potential mechanical applications of mathematics (“straunge 

Engines”), the “Mathematicall Tree” he established in his preface, for which he 

included a graphic representation (Figure 1), is a detailed description of thirty-four 

branches of mathematics and their myriad potential uses. Of the thirty-four branches 

described, Dee identified only two, namely, geometry, the study of the properties of 

magnitudes, and arithmetic, the study of the properties of numbers, as the “principall” 

branches of mathematics in which mathematical entities were studied independently of 

the physical world.  However, even these branches, could be focused on the study of 

                                                
improvements to military efforts, both in defensive fortifications and offensive war engines. Patria is 
perhaps best defined as “homeland.”  Its literal translation is “fatherland.”  In early modern Italy, patria 
usually indicated the locality, perhaps a city or a duchy, to which someone had sentimental connections 
and a sense of fealty.  For a discussion of the connection between mathematics and patria in the 
sixteenth and seventeenth centuries see Alexander Marr, Between Raphael and Galileo: Mutio Oddi 
and the Mathematical Culture of Late Renaissance Italy (Chicgao: University of Chicago Press, 2011 ), 
29-40. 

119



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: John Dee’s Groundplat of the Mathematical Tree  

Source Huntington Library. 
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natural entities, in which case they were counted among the remaining thirty-two 

branches, which Dee called “derivative” because they were developed from one or 

both of the principal branches.47 

The thirty-two derivative branches of mathematics were broken into two 

groups, “vulgar” geometry and arithmetic, and those branches of mathematics that 

have their own names.  As the descriptor “vulgar” suggests, the first two derivative 

branches Dee described, vulgar arithmetic and vulgar geometry, are the mundane and 

common applications of the principal branches of mathematics, including computation 

with various kinds of numbers and the measurements of objects of one, two, or three 

dimensions.  Vulgar arithmetic has five branches, one for each of five kinds of 

numbers.48  According to Dee, these can be applied to business, mixing substances 

such as metals, establishing the organization of troops for military engagements, and 

determining and enforcing just laws.49  The eight branches of vulgar geometry cover 

the measurement of objects, either close at hand (three branches) or at a distance (five 

branches).  The three branches applied to measuring objects close at hand – 

“mecometrie” (the measurement of lines), “embadometrie” (the measurement of 

planes) and “stereometrie” (the measurement of solids) could all be used for gauging 

                                                
47 Dee, Mathematicall Preface, Groundplat. Dee divided both arithmetic and geometry into “simple” 
and “mixt.”  Simple arithmetic and geometry are the studies of pure number and pure magnitude, 
respectively.  Mixed arithmetic is the demonstration of principles about number with the aid of 
magnitudes.  Mixed geometry is the opposite.  Dee classified Euclid’s Elements as mixed geometry 
because it demonstrates geometrical principles with the occasional aid of arithmetical principles.  
According to Dee, all four of these branches could be used to study supernatural, mathematical, and 
natural things.  However, when applied to natural things, Dee felt that they were more properly 
considered derived branches than principal. 
48 Ibid., Groundplat. The five kinds of numbers are whole numbers, proportions, circular numbers, 
radical numbers, and cossic numbers (i.e. the study of algebra). 
49 Ibid., iiir-a.ir. 
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the size of objects, whether the perimeter, area, or volume of any figure, a skill used 

often by merchants.50  The five branches dedicated to the study of objects at a distance 

– called by Dee “geodesie,” “geographie,” “chorographie,” “hydrographie,” and 

“stratarithme” – all played a role in mapping terrain and determining to what use an 

area of land could be put. Geodesy was the surveying of land.  Its use of geometrical 

principles allowed its students to measure land at a distance by using geometrical 

figures to approximate the size of geographical features.  Geography allowed the 

positions of various features, natural or manmade, to be determined relative to one 

another and in absolute terms on the globe.  Chorography was the detailed mapping of 

small areas, such as cities, without regard to their global surroundings.  Hydrography 

was the study of water features.  It included mapping bodies of water, measuring tides, 

measuring the variation of a compass, and other tasks that could aid navigation.  

Finally, stratarithmetry is the study of how many men can be placed into any plane 

figure, a skill that could aid the tactician in determining how many men a military 

company could use in any given place and could aid in estimating the size of 

advancing enemy armies.51 

While Dee’s list of applications for vulgar arithmetic and geometry is 

extensive, the truly wide reach of mathematical utility did not emerge from Dee’s 

discussion until he reached the nineteen branches of derivative mathematics with their 

own names.  These branches are, using Dee’s Elizabethan spellings, perspective, 

                                                
50 Ibid., aiiiv. For the importance of gauging see Michael Baxandall, Painting and Experience in 
Fifteenth-Century Italy, Second Edition, (Oxford: Oxford University Press, 1988), 86-93. 
51 Ibid., a.iiiv – b.ir.  
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astronomie, musike, cosmographie, astrologie, statike, anthropographie, trochilike, 

helicosophie, pneumatithmie, menadrie, hypogeiodie, hydragogie, horometrie, 

zographie, architecture, navigation, thaumaturgicke, and archemastrie.52  In his 

descriptions of each branch, Dee named various practical tasks to which the branches 

could be applied, allowing the list of the derivative branches to serve as a catalog of 

practical mathematical topics, some of which would have been of interest to 

philosophers who sought to use mathematics to make sense of the physical world, and 

some of which would have been of interest to craftsmen.53  In the first category, Dee 

described perspective, or the study of radiations, including those that were refracted or 

reflected, as the study that allowed one to make sense of whatever was seen.  It was 

necessary to any study of astronomy or astrology and to the practical art of catoptrics, 

the making of mirrors and lenses.  Dee defined astronomy as the study of the motions 

of heavenly bodies.  It could be classified as a practical art because it allowed the 

measurement of time in various forms (seasons, lunar cycles, days, years, zodiacal 

cycles, etc.).  Astrology was the study of the influence of heavenly bodies on the 

terrestrial world.  It could be applied to meteorology and the prognostication of natural 

events. It was essential to natural philosophy and the primary path through which man 

                                                
52 Ibid., Groundplat. I have left Dee’s spellings intact because some of his names are no longer in use, 
and it seemed odd to modernize some but not all when they were listed together.  For the ease of my 
reader, as I treat each one individually, I modernize the spellings for all those that are readily 
recognized.   
53 For several of the branches Dee also included discussions, sometimes quite lengthy, of the utility of 
mathematics to further study, not just practical tasks.  Dee’s own interest in such intellectual utility is 
most evident in the first five branches he named, each of which he claimed was necessary to the study 
of other branches of mathematics and he argued allowed mathematics to study the supernatural as well 
as the natural.  After the fifth discipline (statics) was discussed, Dee claimed that pressure from the 
printer forced him to keep the remainder of his explanations brief.  Several of the remaining discussions 
simply name uses of the disciplines and give example of ancient practitioners.   
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could study the supernatural.  Music was used to train the mind to judge sounds “by 

sense and reason” so that the “minde may be preferred, before the eare.”  Dee claimed 

that it could be applied to “marvailous” effect in curing both mental and physical 

disease.  Cosmography, the description of the structure of the universe, included the 

study of the positions of heavenly bodies and could be applied to navigation, medicine 

and timekeeping.   

Most of Dee’s remaining branches may have been more appealing to artisans 

and craftsmen.  Dee suggested that through “experimentes of the balance,” statics, the 

study of weights and the motions that could be produced using weights, could yield 

profits arts like gunnery and shipbuilding.54  Miners, architects (should they need to 

design secret passages), and surveyors attempting to determine to whom underground 

minerals belonged could use “hypogeiodie” was the study of mapping and tunneling 

underground.  Anthropographie is the use of number to study man, which could be 

applied to art and sculpture, architecture, and anatomy.  “Trochilike” was the study of 

circular motions.  It was essential to the building of mills or any other type of wheel 

work, which Dee claimed was present in various ways in mining.  “Helicosophie” 

taught how to produce and understand spiral lines on various surfaces, which was 

essential to the development of any machine that used a screw.  Pneumatics studied 

the relationships of the four elements in hollow geometrical spaces.  It was essential to 

the development of pumps and bellows and other hydraulic inventions.  Dee did not 

                                                
54 Ibid. b.iiiir – c.iiir. Statics was a topic that held much intellectual appeal.  Here, Dee showed how 
mathematical objects could be studied independently of physical uses, by offering mechanical solutions 
(based on statics) to the classical unsolvable problem of doubling the cube.   
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name Ctesibus and Hero of Alexandria here, but it seems he was thinking of their 

inventions, including hydraulic organs – which he did name. “Menadrie” was the 

study of the multiplication of forces through levers and cranes.  It was essential to any 

machine based on a lever and was seen as especially useful to war machines because it 

was through the use of such machines that Archimedes supposedly held the Roman 

siege of Syracuse at bay.  “Hydragogie” was the study of the motion of water.  It was 

intended to allow the routing of water to any desired point through the use of pipes or 

other means of redirecting the natural flow of a spring or river.  “Horometrie” was the 

measurement of time.  Dee claimed that it allowed the precise measurement of time 

from any location, which Dee asserted was essential to “Man’s affaires.” “Zographie” 

was the study of drawing and painting, specifically the study of how to create 

illustrations that looked realistic.   

The last four branches, architecture, navigation, “thaumaturgike,” and 

“archemastrie,” drew heavily on the previously named branches of mathematics as 

they made physical the theories described by those branches.  Architecture, the study 

of buildings, was essential to creating public and private living spaces, fortifications, 

and shipbuilding.  Navigation allowed the piloting of a ship from one point to another.  

“Thaumaturgike” was the use of mathematics to create mechanical wonders, including 

objects that could imitate the motions of living things.55  The last branch named, 

                                                
55 Deborah Harkness claims that Dee’s reputation as a conjurer began with the construction of a 
mechanical beetle during his years at Cambridge. (See Harkness, Jewel House, 103).  Thaumaturgike 
was thus a means for Dee to argue that even things that appeared to be magical were simply 
constructions of mathematics that could be fully understood through reason.  Indeed, Dee did devote 
part of his argument to precisely the point that such constructions were signs of ingenuity, not dark 
magic. 
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“archemastrie” was Dee’s “Experimentall Science” through which the conclusions of 

all other mathematical arts were shown to be true in experience.  It served as the link 

between mathematical theory and practice.56  On the simplest level, archemastrie 

required that the feats claimed to be possible in other branches of mathematics, such as 

the ability of a machine to mimic lifelike motion (thaumaturgike) or a river to be 

rerouted (hydragogie), be accomplished, not just illustrated in theory.  Thus, at the end 

of his preface, Dee placed mathematics firmly in the hands of craftsmen who could 

use the various branches outlined to achieve the experiential goal of archemastrie. It 

must be noted that Dee was not advocating experience as a direct precursor to modern 

experiment.  While the experiential component of archemastrie could involve 

experience of the applications of mathematics, Dee’s understanding seems to be in line 

with Peter Dear’s notion of early modern experience as a general sense of how nature 

works, not a particular sense of how something happened in a specific time and place.  

Thus, rerouting a river could be experienced through the consideration of water 

flowing around boulder or through a pipe, but the archemaster would not need to 

design an experiment that controlled for variables to make general claims about fluid 

dynamics.57  However, the field was not just the physical rendering of mathematical 

theory; Dee also believed that further knowledge could be gained through 

                                                
56 Ibid., A.iiiv. Dee references Nicholas Cusanus and Roger Bacon in this section.  His experimental 
science should be understood as more aligned with their desires to observe phenomena than with a 
modern version of controlled experiments.   
57 See Peter Dear, Discipline and Experience: The Mathematical Way in the Scientific Revolution, 
(Chicago: The University of Chicago Press, 1995), 4. 	
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archemastrie’s experiential method, meaning craftsmen could produce new knowledge 

as they produced new inventions.58 

Clavius’s outline of the disciplines of mathematics was far shorter than Dee’s, 

and his list of uses was much less dizzying.  In order to focus the utility of 

mathematics on the potential interests of a prince, Clavius selected categories of 

potential applications such as art and warfare, rather than specific feats of engineering 

that would interest craftsmen, such as the construction of a mill or a ship. In his 

preface, Clavius included a section entitled “Divisions of the Mathematical 

Disciplines” in which he described two possible outlines of mathematics.59  The first, 

which he ascribed to the Pythagoreans, was the traditional division of mathematics 

into the quadrivium: geometry, arithmetic, astronomy and music.  These branches of 

mathematics were the ones Clavius used when he discussed the nobility of the 

discipline that made it worthy of the time of a prince because they establish 

mathematics as the study of abstract quantity, which Clavius used later in his preface 

to argue that mathematics could bridge physics and metaphysics.  However, Clavius 

noted that these four branches of mathematics were not the whole discipline.  They 

                                                
58 For a thorough discussion of Dee’s archemastrie see Nicholas H. Clulee, John Dee’s Natural 
Philosophy: Between Science and Religion (London: Routledge Library Editions, 1988), 170-176.  
Clulee notes that archemastrie did include occult and magical elements.  However, he also notes (p. 
175) that the artisans for whom the Mathematicall Preface was intended would have been unlikely to 
see such elements.     
59 Clavius, Euclidis Elementorum, a7v-a8v.  The section title is “Disciplinarum Mathematicarum 
divisio.” Clavius’s source for the divisions of mathematics was Barozzi’s translation of Proclus’s 
commentary on the first book of Euclid’s Elements. While he only noted that source when he 
introduced the second division of mathematics, the entire content of his section, including the 
descriptions of the named branches of mathematics and the ancient sources to whom the two divisions 
are attributed, appears in Proclus’s text. See Proclus, A Commentary on the First Book of Euclid’s 
Elements. trans. Glenn R. Morrow.  (Princeton: Princeton University Press, 1970), 29-35. 
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were instead the foundation for “all other mathematical sciences that treat quantity in 

any way whatsoever such as perspective, geography, and the like, [which] can be 

easily reduced to these four mathematical sciences.”60   

It was the second division of mathematics that Clavius claimed “elegantly and 

fully” showed the extent of the mathematical disciplines, including the suggestion of 

applications to public welfare.61  In this division, which Clavius attributed to Geminus 

of Rhodes, mathematics was split into intelligible and sensible branches.  The 

intelligible branches, arithmetic and geometry, treated topics devoid of materiality. 

The six branches of sensible mathematics - astrology, perspective, geodesy, canonics 

or music, calculation, and mechanics - were those which studied topics based in 

physical materiality.62  For each of the intelligible branches of mathematics, Clavius 

offered a brief description which served to illustrate the potential uses of mathematics 

to a polity.  Astrology was used to measure the motions of and distances between stars 

and planets.  It also made possible the measurement of hours, and, as Clavius claimed 

Hippocrates taught, was essential to good medical practice.63  Perspective was used to 

                                                
60 Clavius, Euclidis Elementorum., a7v. “Ad has autem quatuor scientas Mathematicas, quarum 
Arithmetica, & Geometria purae, Musica vero, & Astronomia mixtae dicunt, omnes aliae quovis modo 
de quantitate agentes, qualis est perspectiva, Geographia, et cetera huiusmodi, vel facile, ut a capita, a 
quibus dependent, reduci possunt.” 
61 Ibid., a7v. “Quam quidem divisionem quoniam eleganter, copiesque docet, ad quenam sese extendant 
Mathematicae disciplinae...”  
62 Ibid., a7v-a8r. “Prioris generis statuunt duas longe primas, praecipuasque; scientias, Arithmeticam & 
Geometriam: In posteriori vero genere consituunt sex, Astrologiam, Perspectivam, Geodaesiam, 
Canonicam, sive Musicam, Supputatricem, atque Mechanicam.”   
63 In his 1570 preface to his commentary on Sacrobosco’s Sphere, Clavius noted that he used the terms 
“astronomia” and “astrologia” interchangeably (Clavius, Sphaeram, 6).  In practice, he seems to have 
used astronomy to denote what he had described in his Sphere as theoretical astronomy dealing with the 
motions of the spheres to make claims about the nature of the universe, or as he put it the “universam 
mundi machinam.”  Astrology then denoted “practical astronomy” which was the application of 
astronomy to human life through its ability to measure time and through prognostication.  However, 
sixteen years before the condemnation of astrological predictions in a 1586 papal bull, he explicitly 
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understand vision through the use of geometry.  It included explanations for 

differences between appearances and reality and enabled its students to create optical 

illusions, including those necessary to sixteenth-century paintings.  Clavius 

emphasized the practical nature of this branch of mathematics by choosing to use the 

word “perspectiva” instead of “optica.”  While either word seems to have been 

acceptable, “optica,” which fully conveys the use of mathematics to study vision, lacks 

the practical connotations that “perspectiva” gains from its use in art.64  Geodesy 

applied the principles of geometry to physical objects, often approximating 

geographical or manmade features with geometrical shapes, such as cones and 

cylinders, to measure objects found in the world, such as mountains and wells.  It was 

essential to military undertakings, for which knowledge of the terrain was necessary.  

Likewise, Clavius argued that history was not possible without geodesy because it 

required knowledge of historical geography.  Canonics, or music, studied audible 

harmonies, connecting the auditory senses with an intellectual understanding of 

relationships between notes.  Such knowledge could be applied to the pursuit of 

musical arts. Calculation was another term for practical arithmetic, and it taught 

                                                
noted that prognostication had been taken too far and entered the realm of superstition.  Therefore, it 
was (in his view, rightly) condemned by the Church.  Instead prognostication was intended for 
meteorological and medical applications. See Clavius, Sphaeram, 7.  For a discussion of Clavius’s 
views on astrology see Robert Westman, The Copernican Question, 207-208. 
64 Clavius followed his source Barozzi in the use of the word “perspectiva” when naming and 
describing this branch of mathematics.  However, he was also familiar with Federico Commandino’s 
commentary on The Elements, and the Urbino mathematician used the word “optica” in a similar 
passage in his preface (Commandino, Euclidis Elementorum, *4r).  It is possible, in fact probable, that 
Commandino also based his discussion of the branches of mathematics on Proclus, but he could well 
have translated the names of the disciplines directly from the Greek.  Thus, it seems that in sixteenth-
century Latin usage “perspectiva” and “optica” were somewhat synonymous.  Since Clavius had read 
both Barozzi’s and Commandino’s work, he certainly was aware of the choice between the two terms.   
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students how to use number in connection to concrete objects.  Clavius noted that it 

was useful in military affairs by making it possible to optimally distribute limited 

human resources.  Finally, mechanics, the study of machines, could be used to build a 

wide variety of instruments for an equally wide variety of purposes.  As examples of 

the fruits of mechanical study, Clavius offered Archimedes’ war machines, which 

protected Syracuse from the Romans for a time, his armillary sphere, and the varied 

machines attributed to Hero and Ctesibius of Alexandria, including clocks and 

theatrical machines that could imitate motion of living creatures.65  Where the 

quadrivium allowed Clavius to argue for the nobility of mathematics, this division of 

mathematical disciplines allowed Clavius to show that his field had a role in nearly 

every facet of a city’s life, including various forms of art, timekeeping, mapping, 

medicine, and warfare.  Truly, a discipline with such public applications was worthy 

of the study of princes. 

 

The Utility of Mathematics in the Ratio Studiorum 

 Clavius’s vision of the utility of mathematics as a tool for rulers to use in 

public projects was part and parcel with the Jesuits’ belief that their schools were a 

                                                
65 Clavius, Euclidis Elementorum, a8v. Hero of Alexandria and Ctesibius are both known for their 
inventions.  Ctesibius is remembered as the “father of pneumatics” for his work developing pumps.  He 
also developed a water clock which remained the most accurate clock until the seventeenth century.  
Hero developed a stand-alone fountain, a holy water “vending machine,” and an engine that used falling 
weights to open doors, among other things.  As Clavius noted, his work was largely based on 
equilibrium.  “Quaedam mirabilium prorsus rerum effectirx … quippe quae aliae quidem spiritibus 
maximo cum artificio construit, quemadmodum etiam Ctesibius, atque Heron operantur; alia autem 
ponderibus, quorum motus quidem inaequilbrium, status vero aequilibirum esse causam censendum est, 
ut Timaeus etiam determinavit; alia vero nervis, spartisque animatas convolutiones, ac motus 
imitantiubs.”   
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missionary activity.  On missions outside of Europe mathematics could help the 

Jesuits secure their position and even convert non-Christians.  The Jesuits’ early 

missionary to China, Matteo Ricci, credited his ability to gain favor among the upper 

classes of the Chinese to his mathematics education under Clavius.  He believed that 

the Chinese granted the Jesuits entry to their empire because they were impressed by 

the gifts of mathematical objects, such as prisms, and clocks, that Ricci and his 

predecessors presented to local leaders and even to the emperor.  At one point when 

the Jesuits were at risk of being expelled from China or, worse, killed, Ricci believed 

that the respect he gained for a world map he had drawn in 1584 allowed them to stay. 

Furthermore, due to his talent for mathematics, especially astronomy, Ricci attracted 

the attention of wealthy Chinese families who requested that he teach that subject to 

their sons as they prepared for the civil service exam.  Once he had the boys’ attention, 

he could use his lessons as an opportunity to have spiritual conversations.  If a student 

converted, the Jesuits were then free to teach him theology in a more rigorous 

manner.66   

Even in Europe, the argument that mathematics was a discipline worthy of 

princes provided Jesuits a means to gain or retain favor with noble patrons, allowing 

them to establish the schools through which they intended to save souls.  Antonella 

Romano has shown that, as part of an agreement that allowed the Jesuits to operate 

schools in France, seventeenth-century French Jesuits devoted their mathematical 

                                                
66 Peter Engelfriet, Euclid in China: The Genesis of the First Chinese Translation of Euclid's Elements, 
Books I-VI (Jihe Yuanben, Beijing, 1607) and Its Reception Up to 1723 (Leiden: Brill Academic 
Publisher, 1998), 58-68. 
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work and teaching to technical projects in practical mathematics topics in response to 

the needs of the French monarchy.67  In fact, even though the mathematics curriculum 

in the final draft of the Ratio Studiorum was limited in scope, it left open the 

opportunity for Jesuit schools to teach any branch of practical mathematics desired by 

their local patrons.  After teaching the first six books of Euclid’s Elements, the teacher 

was instructed to “add some geography or astronomy or similar matter which the 

students enjoy hearing about.”68   

The final version of the mathematics curriculum is evidence that it was 

Clavius’s presentation of the utility of mathematics in his suggested curricula and 

textbooks that ultimately convinced the Jesuits to include mathematics as a higher 

discipline in their curriculum.  In this section, I will trace the development of the 

mathematics portion of the Ratio Studiorum from the first draft of 1586 to the final 

draft of 1599, to explain how that came about even though, as discussed in the 

previous chapter, much of Clavius’s pedagogical project was devoted to establishing 

the place of mathematics within the hierarchy of disciplines for the discipline’s 

nobility.  Even when Clavius did discuss the utility of mathematics, he always first 

mentioned its utility to the study of philosophy and theology as a study of an 

immaterial and perfect subject matter and its certain method of producing results.  

Thus, it is clear that he saw the arguments for utility as secondary to those for nobility.  

Yet, it was the former that prevailed with the authors of the Ratio Studiorum.   

                                                
67 Romano, La Contre-Réforme Mathématique, 3. 
68 Farrell, The Jesuit Ratio Studiorum, 46.  Of course, patrons may well have dictated what it was that 
students would enjoy.  That seems to have been the case in France.  
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Clavius’s efforts to secure a place for mathematics started as soon as the Jesuit 

Order began to formalize its curriculum.  In 1581, Claude Aquaviva, the newly elected 

General of the Order, faced with both a growing demand for colleges and tremendous 

success in several existing colleges, appointed a committee to draft a general 

curriculum for all Jesuit colleges.  In that same year Clavius wrote three possible 

mathematics curricula.  Only one year later, he wrote a brief statement on the 

promotion of mathematics in Jesuit schools.69  In so doing, he ensured that his voice 

would be heard by the first curricular committee, whose twelve priests spent three 

years, codifying curricular material from the preceding thirty-five years of Jesuit 

teaching experience and pedagogical philosophy, including Clavius’s recent work on 

mathematics education.70  In those documents, Clavius clearly promoted the value of 

mathematics for its nobility.  His course of study treated astronomy as the goal of all 

mathematical study because of its proximity to the divine.  His suggestions for the 

promotion of mathematics centered on the treatment of the mathematics professor as 

an equal of the philosophy professor and the embarrassment that would be brought 

upon Jesuit schools if they did not include a rigorous mathematics curriculum.71 

                                                
69 Christopher Clavius, “Ordo servandus in addiscendis disciplinis mathematicis (1581),” in ed. 
Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione 
Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 110-115; Christopher 
Clavius, “Modus quo disciplinae mathematicae in scholis Societatis possent promoveri (1582),” in ed. 
Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione 
Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 115-117; Christopher 
Clavius, “De re mathematica instructio (Ad annum 1593),” in ed. Ladislaus Lukacs, Monumenta 
Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione Studiorum Societatis Iesu (Rome: 
Institutum Historicum Societatis Iesu, 1992), 117-118.  The last document dates in the period of 
revision between the second (1591) draft of the Ratio and the final (1599) draft. 
70 Farrell, The Jesuit Code of Liberal Education: Development and Scope of the Ratio Studiorum¸ 
(Milwaukee: The Bruce Publishing Company, 1938), 219-223.  
71 Clavius, “Ordo servandus” 111-115; “Modus quo disciplinae mathematicae” 115-117.  Clavius did 
not specify who exactly would cause the Jesuits to be embarrassed if they were ignorant of 
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As it turned out, Clavius’s arguments for the nobility of mathematics were 

well-suited to the early efforts of curriculum writing.  In 1584, the original committee 

was replaced by a new committee of six members who were chosen for their doctrinal 

expertise in theology and philosophy.72  That committee was charged with the task of 

creating a curriculum that would lead to the salvation of souls through proper doctrine. 

Practical concerns were secondary to the value of the curriculum for theological 

studies.  Relying on the previous committee’s collected documents, the six theologians 

began to write the Ratio Studiorum, producing the first printed draft in 1586.  Their 

emphasis on the salvatory quality of content is clear from the structure of the 

document.  After a brief introduction explaining that the Ratio Studiorum was to fulfill 

St. Ignatius’s demand for a curriculum to be used in all Jesuit colleges, the 1586 draft 

offers sections on each discipline.  The sections are discursive and provide guidelines 

on what was to be taught and, to a lesser extent, the method to be used.  Each section 

offered a brief explanation of the discipline and, in some cases, included an apology 

for the subject at hand.   

                                                
mathematics, but it is likely that he was thinking of Protestant scholars like Michael Maestlin and his 
students.  However, he also could have been thinking of non-Jesuit Catholic mathematicians like Petrus 
Ramus.  After all, if the Jesuits were to succeed in their efforts to become educators to Catholic elites, 
they would have been competing with other Catholic scholars for such influence. 
72 Farrell, The Jesuit Code, 223-227, Farrell indicates that there is no documentary explanation for 
changing the committees.  It is possible that members of the original committee received other 
assignments, and the committee was gradually eroded until there was need for a new committee.  Or, as 
Farrell suggests, the number of committee members (twelve) proved unmanageable, and a new smaller 
committee was seen as necessary. 
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The section on mathematics is profoundly apologetic and spends a great deal 

of time justifying the study and status of mathematical disciplines.73  Clavius’s 

influence on this apology is immediately obvious.  Many of the arguments offered by 

the authors of the Ratio Studiorum are nearly identical to those put forward by 

Clavius.  After a reference to the Constitutions and Ignatius’s inclusion therein of a 

provision to teach mathematics as part of the philosophy curriculum, the authors, as 

Clavius had done in 1582, insisted that without mathematics the Society’s schools 

would be lacking their “great ornament.”74  Throughout the first third of the section on 

mathematics, they continued with a defense of the discipline based on its value to 

Jesuit academies.  As Clavius had argued in his defense of mathematics, the authors of 

the Ratio Studiorum claimed that mathematics was the greatest ornament to the 

academies because all celebrated academies taught the discipline.75  Furthermore, as 

                                                
73 It was not just mathematics that received an apology. Farrell argues that the 1586 Ratio Studiorum 
also vindicates the humanities professors, defending their status in relationship to the teachers of the 
higher faculties, Ibid., 228. 
74 Ratio Atque Institutio Studiourm,1586 in ed. Ladislaus Lukacs, Monumenta Pedaegogica Societatis 
Iesu Vol. V: Ratio Atque Institutio Studiorum Societatis Iesu, (Rome: Institutum Historicum Societatis 
Iesu, 1986), 109. “Constitutiones (4 Pr. Cap. 12 C) ‘Tractabitur, inquiunt, logica, physica, metaphysica, 
moralis scientia et etiam mathematicae, quatenus tamen ad finem nobis propositum conveniunt.’  
Convenire autem videntur non parum, non solum quia sine mathematicis academiae nostrae magno 
carerent ornamento, quin et mutilate forent, cum nulla sit fere paulo celebrior academia, in qua suus non 
sit, et quidem non ultimus locus mathematicis disciplinis; sed multo etiam magis, quia illarum praesidio 
caeterae quoque scientiae indigent admodum.”  (“The Constitutions (Part 4, chapter 12) say, ‘Logic, 
physics, metaphysics, and moral sciences should be treated, and also mathematics to the extent that it is 
appropriate to our ends.  Moreover, what is appropriate is not small, not only because without 
mathematics our academies would be lacking the greatest ornament, and without it they would be 
maimed…”).  In 1582 in his brief on promoting mathematics, Clavius had claimed that mathematics 
was a great ornament to students’ erudition and that natural philosophy was maimed without 
mathematics.  He had also expressed concern that without mathematics, Jesuits would lose the esteem 
of other scholars.  See Chapter 1 for a discussion of Clavius’s arguments in this brief.  Christopher 
Clavius, “Modus quo disciplinae mathematicae,” 115-117.   
75 Ibid., 109. See quotation in the previous note.  Since the Ratio does not explicitly name any 
institutions that taught mathematics, it is not clear which specific academies, if any they had in mind.  It 
is possible they were thinking of the University of Paris where the program of study followed by the 
founding Jesuits had included mathematics. 
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Clavius had done in the prefaces to his commentaries on Sacrobosco and Euclid, the 

Ratio Studiorum lauded mathematics as useful to all other disciplines, which should be 

understood as philosophy and theology, and claimed its study would produce men 

who were better able to serve the Church in a variety of ways.  And while their 

emphasis, like Clavius’s, was on the benefits of mathematics to the study of theology, 

the authors of the first Ratio did note the practical values for the discipline.  They 

commended it for its applicability to diverse public matters, and gave the usual 

examples of navigation, agriculture, and the treating of disease.76   

The remaining two paragraphs of the section on mathematics detail what 

branches of mathematics were to be taught and to whom.  In these two paragraphs, 

Clavius’s influence remained apparent, even though the value of practical mathematics 

became more evident.  While Clavius’s curricula were not explicitly named, the 

division into three levels was maintained.  However, the lowest level of mathematics 

covered much less material than Clavius had suggested in any of his curricula.  This 

class, required for all students, was restricted to three daily lectures for a year and a 

half.  The authors suggested that two months be spent on the first few books of Euclid, 

while making clear the relationships between geometry and other fields, especially 

geography and the sphere.  The remainder of the course should be divided between 

Euclid, the use of the quadrant, and the sphere or some other branch of mixed 

                                                
76 Ibid., 109. “Ut praetereantur interea, quae ex mathematicorum labore redundant in rempublicam 
utilitates in morborum curationibus, in navigationibus, in agricolarum studio.  Conandum igitur est, ut 
sicut facultates caeterae, ita et mathematicae in nostris gymnasiis floreant, ut hinc etiam nostri fiant 
magis idonei ad variis Ecclesiae commodis inserviendum; cum praesertim non parum indecore 
careamus professoribus, qui rerum mathematicarum lectionem tam multis, tam praeclaris urbibus 
exoptatam habere possint.”   
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mathematics more welcome to the students.  Thus, while geometry (Euclid) and 

astronomy (the sphere) remained the primary focus, practical mathematics, in the form 

of geography and the open-ended suggestion for an appealing branch of mathematics, 

gained a foothold in the minimum required curriculum.   

For more advanced students, more time spent on mathematics meant that more 

of Clavius’s curriculum was covered, allowing the authors to incorporate both noble 

and practical mathematics into the first version of the curriculum.  The second level of 

mathematics education in the 1586 Ratio was provided to physics students who were 

to continue their study of mathematics the following year with an hour lecture each 

morning covering the remaining branches of mathematics, as defined by Clavius.  It is 

unclear how many subjects were considered branches of mathematics by the authors, 

but it seems likely that Clavius’s shortest was the intended source.77  Finally, the 1586 

Ratio Studiorum provided for the private academy Clavius had suggested in 1582.  It 

stated, “One professor, who now could be Father Clavius, can be established to bring 

together the full doctrine of mathematical matters, and to explain them in private to 

eight to ten of our men who are of at least average talent, not strangers to mathematics, 

                                                
77 Ibid., 110, “Altero postmodum anno iisdem auditoriubs, qui physici tunc erunt, prima hora scholarum 
a prandio reliqua pars compendii mathematici, a P Clavio conficiendi, explicabitur.”  The editor of the 
Ratio Studiorum draft, Ladislaus Lukacs, indicates that the authors are referring to Clavius’s Epitome 
arithmetica practicae.  I think this is too narrow of an interpretation of “reliqua pars compendii 
mathematici, a P. Clavio conficiendi.”  Certainly, practical arithmetic would have been part of the 
remaining parts of mathematics, but Clavius’s curricula indicated much more. Since those curricula 
would have been available to the authors of the Ratio Studiorum, I see no reason to assume that they 
would intend the “remaining branches” to refer to a specific text on a single subject named in Clavius’s 
curriculum rather than the entire curriculum.  And, since Clavius’ shortest curriculum was designed to 
cover two years, it could well be the intended curriculum for the physics students extending their 
studies beyond the original year and a half.   
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and have studied philosophy.”78  The Ratio left the curriculum of the academy up to 

Clavius, allowing him to teach his most rigorous curriculum.  Since his students were 

supposed to go on to teach mathematics in other Jesuit schools, the academy, as 

Clavius had envisioned it, served as the primary means through which mathematics 

could be promoted in the Jesuit system by providing many Jesuit schools with highly 

qualified mathematics teachers.   

Immediately after printing, the 1586 Ratio Studiorum was distributed to the 

various Provinces for review, and the process of revision got underway in Rome.  This 

draft was not intended to be used in the colleges but was a step in the process towards 

a useable curriculum.79  In fact, before 1586 came to a close and long before all of the 

responses to the curriculum were received, a revised version was produced.  The 

apology for mathematics remained intact, but the mathematics course was edited.80  

Through the elimination of the provision for physics students to continue a more 

rigorous curriculum than the general student body, the three strands of mathematics 

study were reduced to two, and Clavius’s academy was halved in size.  The 

mathematics professor was combined with the physics professor, and mathematics was 

only taught for one year.  In a single daily forty-five minute class the professor was to 

                                                
78 Ibid.,110. “Professor, alter, qui modo P. Clavius esse posset, constituatur, rerum mathematicarum 
pleniorem doctrinam conferat in triennium, explicetque privatim nostris octo circiter aut decem, qui 
mediocri saltem sint ingenio, nec a mathematicis alieno, et philosophiam audierint.” 
79 Farrell, The Jesuit Code, 230. 
80 Ratio Studiourm S.I. Anni 1586 - Retractata in ed. Ladislaus Lukacs, Monumenta Pedaegogica 
Societatis Iesu Vol. V: Ratio Atque Institutio Studiorum Societatis Iesu, (Rome: Institutum Historicum 
Societatis Iesu, 1986), 177.		These edits were not minor changes, but seem to have stemmed from 
philosophical disagreements on the curriculum.  Notably, the section on natural philosophy was left 
unchanged and the mathematics section was greatly diminished, suggesting that the committee was not 
persuaded by Clavius’s arguments that mathematics possessed a nobility comparable to that of natural 
philosophy.  	
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follow the curriculum that had previously been outlined for all students.81  The 

reduction in the mathematics curriculum indicates a compromise with those 

philosophers who did not believe that mathematics was a viable path to salvation and, 

therefore, did not think it essential to the study of natural philosophy or theology, but 

it does not suggest that mathematics was substantially reduced in its status relative to 

philosophy.  A small academy for advanced mathematics students was still promised, 

and the utility of mathematics was still praised.82  Furthermore, mathematics was able 

to maintain its claim to nobility through new provisions.  Notably, the revised 

curriculum adopted Clavius’s suggestion that mathematics students should be more 

involved in the philosophy curriculum by requiring that every month a mathematics 

student should demonstrate some mathematical problem for the philosophy and 

theology students.83  In addition, while the second tier of the curriculum had been 

officially eliminated, students who were absolved from the six-month period of 

                                                
81	Ibid., 177. “Professor itaque mathematicae physicis omnibus explicet in schola a prandio tribus 
circiter horae quadrantibus Euclidis elementa; in quibus, postquam per duos menses aliquantisper 
versati fuerint, ita dividat praelectionis tempus, ut aliquid Euclidi, aliquid vero geographiae vel 
sphaerae, aliisve, quae libenter audiri solent, tribuatur.” 	
82 Ibid., 177. “Praeter hanc privatam academiam P. Clavius operam suam libenter collocaret in privatam 
item aliam academiam ex quattuor aut quinque de nostris, quibus, si ii philosophi iam sint, et medicori 
saltem ingenio, nec a mathematicis alieno, et ab aliis studiis biennio tantum vacarent, explicaret ille 
primarias mathematicae facultatis partes cum spe eximii fructus.”   
83 Ibid., 177. “Semel aut iterum in mense auditorium aliquis in magno philosophorum theologorumque 
conventu illustre aliquod problema mathematicum enarret, prius a magistro, sicut oportet, edoctus.  In 
cuiusque etiam mensis sabbato uno, praelectionis loco, praecipua, quae per eum mensem explicata 
fuerint, publice repetantur, non perpetua oratione, sed se mutuo percunctantibus auditoribus hoc fere 
modo: Repete illam propositionem.  Quomodo demonstratur? Potestne aliter demonstrari?  Quem usum 
habet in artibus et in reliqa vitae communis praxi?  Nam et haec quoque indicanda essent a magistro 
inter praelegendum, quo magis auditores alliciat.”;  Clavius, “Modo que…,” 117.  “Praeterea, ad haec 
studia maxime incitabuntur scholastici, si singulis mensibus omnes philosophi in unum aliquem locum 
convenirent, ubi unus discipulorum habeat brevem commendationem diciplinarum mathematicarum; 
deinde cum uno aut altero explicet problema aliquod geometricum vel astronomicum, quod et 
iucundum esset auditoribus, et utile rebus humanis; qualia problemata plurima repiriri poterunt; vel 
declaret locum aliquem mathematicum ex Aristotele vel Platone, qualia loca apud ipsos non pauca sunt; 
vel etiam afferat novas demonstrationes quarumdam propositionem Euclidis a se excogitatas.” 
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repetitions in philosophy were permitted to use that time to study mathematics 

privately.84  Both of these provisions suggest that the authors of the curriculum 

believed mathematics could be beneficial, even if it was not essential, to the study of 

theology.  

Over the course of the last few years of the 1580s, each Province sent its 

comments on the first 1586 draft back to Rome.  The comments on the section of 

mathematics were short, often only a few sentences and varied widely in their 

sentiments on the mathematics curriculum.  While some comments were positive, the 

critiques of mathematics reflected both philosophical concerns, arguing that 

mathematics did not possess the ability to inform the study of theology, and practical 

concerns, worrying about the logistics of teaching mathematics.  The response from 

the Collegio Romano was generally positive but argued for more time for the 

mathematics curriculum and, whenever possible, two mathematics teachers, although 

the author recognized that the shortage of teachers meant such a set-up could not 

always be possible.85 The Portuguese Province suggested lengthening the mathematics 

curriculum to three years, which is unsurprising given that Coimbra was a center of 

                                                
84 Ibid., 177. “Ex iis philosophis, qui philosophiae repetitionem per sex menses absolverint, altero 
eiudem anni semestri spatio domi fiat per eundem sive per alterum professorem academia rerum 
mathematicarum, quas in hunc usum P. Clavius in compendium quoddam redegerit.” 
85	“Iudicia patrum, in provinciis deputatorum, ad examinandum Rationis studiorum (1586) tractatum, 
qui inscribitur ‘De mathematicis disciplinis,’” in ed. Ladislaus Lukacs, Monumenta Pedaegogica 
Societatis Iesu, Vol. VI: Collectanea de Ratione Studiorum Societatis Iesu, (Rome: Institutum 
Historicum Societatis Iesu, 1992), 293.  “Satis videtur annus unus ut nunc fit Romae.  Nam onerare 
ingenia logicorum, tempore praesertim aestivo, quo levantur alii ipsis vero est diligentius incumbendum 
in logicam, est res valde gravis et molesta, atque perniciosa.  Deinde, sive praeceptor unus sit, qui 
ambas praelegant lectiones, sive duo, utrumque maxima habet incommoda.  Circa 3.m – De altero 
professore mathematicae etc.  Optandum esset vel maxime, tam pro mathematicis, quam pro linguis, 
quod patres praescribunt; sed quoniam multis iisque gravissimis premimur difficultatibus, quae 
consderanti facile occurrent, nulla ratione in praesens videtur id posse fieri.” 	
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mathematical study in the sixteenth century. In fact, their response was largely a 

description of their existing mathematics program.86  The Province of Lyon echoed a 

letter written by Orotinus Finè regarding the mathematics program in Paris that said 

that all teachers of the arts curriculum had to be familiar with the first six books of 

Euclid and further suggested that all students be required to study practical arithmetic 

and Sacroboso’s Sphere.87 The Sicilian Province accepted everything with a brief 

“Nothing is repugnant to the fathers.”88  Other provinces were mildly critical of the 

proposed curriculum.  The Milanese approved of Clavius’s academy but believed that 

for the general mathematics curriculum, a single year of instruction was sufficient.89  

The Aragonese were concerned that some students were simply not capable of 

studying mathematics, and cautioned that the rector should be lenient where 

mathematics requirements were concerned.90  The Venetian and Upper German 

Province expressed profound indifference towards Clavius’s academy since they 

                                                
86 Ibid., p. 294. “Mathematicarum lectio in hac provincia sic videtur distribuenda: Habebitur imprimis 
pomeridiano tempore per unam horam, quae prima erit a communi ingressu in gymnasia.  Singuilis 
annis post Pascaha priori horae dimidio tradentur principia mathematicae, quibus primi cursus auditores 
interesse cogentur. ...Ita tamen, ut nullum triennium praeteretur sine Sphaerae praelectione, cui, exceptis 
dialecticae tyronibus, intersint quicunque eam e philosophorum schola nondum audierint.” 
87 Ibid., p. 296. “Expediret saltem servare quod Orontius in quadam epistola scribit, fuisse decretum in 
academia parisiensi, ut scilicet nemo crearetur magister atrium, quin audivisset sex Prima Elementa 
Euclidis.  Lovanii certe coguntur philosophi omnes audire arithmeticam practicam et Sphaeram Ioannes 
de Sacro Bosco.”   
88Ibid., 294. “Nihil patres repugnarunt.”  
89 Ibid, p. 293. “Videtur nobis sufficere secundus annus philosophiae ad ea audienda de mathamticis et 
tradenda, quae necessaria sunt, ut sunt tres libri priores Elementorum Euclidis, Sphera, Astrolabium, 
aritmetica.” 
90 Ibid., p. 294. “Aliqui de logicorum numero interdum reperiuntur prorsus inepti studio 
mathematicorum.  Alii item sustinere non poterunt onus trium lectionum.  Ideo consonum esset, 
rectorem, audito praefecto ac professore logicae, nominare, quos expediat mathematicis indulgere; 
praeter quos nec cogatur quispiam, nec excludatur.”  
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believed that a good mathematics professor in any province should suffice.91  Still 

others offered sharper critiques. The Rhenish Province praised the place of 

mathematics but shortened the curriculum to one year and, like the Venetian and 

Upper German Provinces, questioned the need for Clavius’s academy.92  The Toledan 

Province denied the need for two mathematics teachers, deemed the academy 

unnecessary, and expressed concern that requiring even a single mathematics teacher 

who did not also teach philosophy would remove an able priest from a more necessary 

teaching position.93  The French Province questioned the need for mathematics at all 

in more than a few great schools, removing the need for a mathematics teacher in most 

schools.94   Only the dissenting opinion from the Collegio Romano, ascribed by the 

author of the response to two philosophy professors, Benedict Pereira and Pedro de 

Parra, questioned the utility of mathematical study altogether.  Pereira, as we saw in 

                                                
91 The Venetians pointed out that if a talented mathematics student could be identified, they would wish 
to benefit from his presence.  Ibid., p. 294, “Cogendi non videntur provinciae, ut tertio quoque anno 
unum, qui mathmaticis disciplinis det operam, Romam mittant.  Iniuria enim fieret.  Eae enim, quae iam 
habent, qui profiteri possint, quorsum cogentur?  Quae non habent, cum primum unum vel alterum 
habuerint, qui mathematicas disciplinas profiteri possint, neque compelli debent.”; The Upper German 
Province said that a provision for a mathematics teacher at every school should be sufficient. Ibid., 295. 
“Non esset astringenda provincia, ut tertio quoque anno aliquem ad mathematicum studium Romam 
mitteret, si iam ei esset de mathematicis professore satis provisum.”    
92	Ibid., 295. The Rhenish Province pointed out that Clavius himself was German, and if another such 
professor could be in their province, a special academy in Rome would not be necessary.  “Quod ad 
eum attient, qui ut mathesin perdisceret, in eaque ad provinciae totius utilitatem excelleret, Romam 
mittendus esset, gratiae quidem merito, tanto pro studio et opportunitate a provinciis omnibus habendae 
et agendae sunt.  Ea tamen partum sentntia est, si quis in Germania nostra Clavius, excellens, inquam, 
mathematicus existeret, et earum atrium cupidis triennio vel anno saltem integro, aliarum occupationum 
vacatio esse posset, Romam quenque, hoc nomine, mettere, necesse nihil foret.”	
93 Ibid., 294.  “Quod de duobus magistris mathematicarum dicitur, cum in nobilissimis unversitatibus 
unus tantum sit earum atrium magister, et nobis unus sufficere videtur; praesertim, cum multa sint alia 
magis necessaria, et quorum maior est usus, quae in Societate desiderantur.”   
94 Ibid., 295-296. “Visum est omnibus, in magnis duntaxat collegiis oportere esse professorem 
mathematicae extraordinarium, qui biennio absolvat cursum mathematicae… In parvis autem collegiis 
professorem ordinarium cursus philosophici mathematicas disciplinas breviter perstringere debere, ut 
hactenus in Gallia factum est, et satis bene succedit.”   

143



 

 

the previous chapter, did not believe mathematics could be more than a pedagogical 

tool, and in his response to the 1586 mathematics curriculum he expressed his belief 

that it was impracticable and unlikely to produce the claimed results.95   However, 

Pereira’s focus was on the study of philosophy and theology, and even he did not 

dispute the potential practical applications of mathematics. Thus, in most responses, 

mathematics was not seen as a fruitless study, but it was also not as valuable to 

theology as was natural philosophy, meaning that it was the first to suffer cutbacks due 

to teacher shortages, which was a commonly expressed concern.   

After collecting all of the critiques from the Provinces, the committee and the 

professors at the Collegio Romano began the process of creating a new Ratio 

Studiorum.  This time, the goal was to create a document that could be used on the 

ground as a practical guide to running a Jesuit college.96  As such, the structure of the 

1591 Ratio Studiorum is drastically different from that of the 1586 draft.  In keeping 

with the changed role of the 1591 draft of the Ratio Studiorum, the apologies for 

disciplines are gone.97  In fact, this new draft contains no discursive essay on each of 

                                                
95 Ibid., 293.  “P. Parra et P. Pererius longe aliter sentient.  Censent enim, ne illud quidem experiendum 
esse, etiamsi ad praxim reduce posset.”   
96	Ratio Atque Institutio Studiorum 1591, in ed. Ladislaus Lukacs,  Monumenta Pedaegogica Societatis 
Iesu Vol. V: Ratio Atque Institutio Studiorum Societatis Iesu, (Rome: Institum Historicum Societatis 
Iesu, 1986), 230.  “Verum quoniam ea pars, quae opinionum delectum censuramque continent, nunc edi 
mittique non potuit (mittenda tamen propediem speratur), idcirco data opera est, ut altera saltem pars, 
quae studiorum ordinem ac praxim instituit, mitteretur in mores inducenda per omnem Societatem.” 	
97 Some have interpreted the lack of apology for mathematics as a significant reduction in the status of 
mathematics and the influence of Clavius on the Ratio Studiorum.  This fails to take into account the 
general structural changes of the Ratio Studiorum between 1586 and 1591.  See Jesus Luis Paradinas 
Fuentes, "Las Matematics en La Ratio Studiorum de los Jesuitas: Una Nueva Interpretacion,” 
Fundacion Orotava de Historia de la Ciencia,” LLULL: Revista de la Sociedad Española de Historia de 
las Ciencias y de las Técnicas 35, no. 75, (2012): 146,	
https://dialnet.unirioja.es/servlet/articulo?codigo=3943923. 
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the subjects to be taught in Jesuit schools, but instead lists rules for each of the actors 

in a Jesuit school, from provincials and rectors, to prefects, professors and students.  

The rules for the provincial are divided into each subject taught in the schools, and are 

sometimes repeated later in the sections for the professors of each subject.  This 

structure suggests that, unlike the 1586 document, which was to be read in its entirety 

by the reviewers, the 1591 document was instead a manual from which each actor was 

expected to read and obey the parts relevant to his role.   

Mathematics had a small place in the 1591 Ratio Studiorum, in which practical 

mathematics became more prevalent than abstract studies for theological purposes.  

The discipline was covered in five rules for the mathematics professor and four rules 

for the provincial.  Since three of those rules are listed in both sections, the discipline 

had a total of only six rules.  Clavius’s influence on the curriculum remained apparent, 

especially in the three rules that insisted on the nobility of mathematics.  The first of 

those rules, the last shared rule, established that two public lectures, which were 

explicitly to follow Clavius’ curriculum, should be given daily, one for physics 

students and one for metaphysics students.  If possible, they should be given by 

separate professors.  However, for the second lecture it is stated that metaphysics 

students were neither required nor permitted to attend without permission from their 

superiors.98  Even so, these daily lectures allowed Clavius’s curriculum to continue to 

                                                
98Ibid., 236 and 285. This is rule 4 for the mathematics professor and rule 43 for the provincial.  “Ubi 
commode fieri poterit, vel diversis horis professor idem, vel eadem hora professores duo binas quotidie 
lectiones publicas habeant, quibus mathematicum quoddam curriculum a Patre Clavio scribendum 
explicent duobus annis; priori quidem physicis, posteriori autem metaphysicis, tametsi ad hunc 
potsteriorem nostri nec compellendi, nec admittendi sint, nisi quibus id postulantibus superiors 
concesserint.” 
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be taught in Jesuit schools and provided interested students with a way to supplement 

the required one year curriculum.99  Second, the final rule belonging to the provincial, 

closely mimicked a concern Clavius had expressed in his 1582 note on promoting 

mathematics.  It required that “those who are in charge take the strictest precautions 

that philosophers do not make light of the dignity of mathematics or refute the 

teachings of mathematics, as with regard to epicycles, in their teaching or elsewhere.  

For this often happens, so that he who knows less greatly detracts from these 

sciences.”100  Through this rule, even though mathematics did not have as strong a 

foothold in the 1591 curriculum as it had in 1586, the status of mathematics remained 

equal to philosophy.  And finally, the first rule unique to the professor of mathematics 

(rule 2) provided for monthly demonstrations of mathematical problems to philosophy 

and theology students.101  Thus, it granted the mathematicians an intellectual status 

comparable to that of the natural philosophers who were the audience for the 

presenting students. The presentations themselves served as the mathematicians’ 

equivalent of the disputations that philosophy and theology students were required to 

give.102   

 However, the other three rules made it clear that the criticisms of the 1586 

draft were taken into consideration, as the place for mathematics was drastically 

                                                
99 It remains to be uncovered what exactly was taught in all of these lectures between 1591 and 1599.  It 
was during that time, in 1593, that Clavius’s academy was formally implemented in Rome, thereby 
giving his curriculum a strong foothold at the Jesuits’ primary institution.   
100 Ibid., 236. “Severissime caveant, qui praesunt, ne philosophi professores inter docendum aut alibi 
mathematicorum dignitatem elevent, neve eorum refellant sententias, ut de epicyclis; fit enim saepe, ut 
qui minus ista novit, his magis detrahat.” 
101 Ibid., 285. 
102 Ibid., 282. The philosophy disputations were weekly, leaving mathematics lagging a little bit. 
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reduced and its utility was emphasized.  The first of these rules reduced mathematics 

to a one year course, taught in the second year of the philosophy curriculum.  In that 

year, a daily forty-five-minute lesson was devoted to Euclid (exclusively for two 

months) and another branch of mathematics, chosen according the students’ desires. 

As had the 1586 draft, this draft of the curriculum suggested geography or the sphere 

for the second branch.103 The second rule limiting mathematics reduced Clavius’s 

academy to an optional six-month course for interested philosophy students who had 

been absolved from the half-year of repetitions in philosophy.104  Thus, this draft made 

it possible for astronomy to be entirely replaced by another branch of mixed 

mathematics with practical applications to daily life and severely limited Clavius’s 

ability to train specialists in the pursuit of mathematics for its nobility.  Finally, the 

second rule unique to the mathematics professor required monthly reviews of 

mathematics material that were explicitly to be conducted in a way that emphasized 

the utility of mathematics to attract students.  Even if the review covered abstract 

geometry, teachers were to ask how it could be applied.105  Thus, it seems that by 

                                                
103 Ibid., 236, 284.  This is rule 1 for the mathematics professor and rule 42 for the provincial. “Audiant 
et secundo philosophiae anno philosophi omnes in schola tribus circiter horae quadrantibus a prandio 
mathematicam praelectionem ex elementis Euclidis; in quibus postquam per duos menses aliquantisper 
versati fuerint, ita dividatur praelectionis tempus, ut aliquid Euclidi, aliquid vero Geographiae vel 
Sphaeae alissve, quae libenter audiri solent, tribuatur.”   
104 Ibid., 236, 286.  This is rule 5 for the mathematics professor and rule 41 for the provincial.  “Altero 
eiusdem anni semestri spatio ex iisdem phiosophis domi fiat academia rerum mathematicarum, quas 
navus aliquis ac bene peritus professor bis quotidie explicabit nostris; quibus severe interdicendum, ne 
caeteris ullis tunc studiis implicentur, sed mathematicis audiendis, repetendis, disputandis se totots 
tradant.  Fiat in his quanto amplior fieri potest progressus iuxta P. Clavii compendium; et qui 
magnopere profecerint, nec ab ea re alieno sint animo, dicentur huic studio tam privatis academiis 
frequenter amplificando, quam publice, quando opus fuerit, profitendo.” 
105 Ibid., 285. This was rule 3 for the mathematics professor.  “3. In cuiusque etiam mensis sabbato uno, 
praelectionis loco praecipua, quae per eum mensem explicata fuerint, publice repetantur, non perpetua 
oratione, sed se mutuo percunctantibus auditoribus; hoc fere modo: Repete illam propositionem.  – 
Quomodo demonstrator?  Potestne aliter demonstrari? – Quem usum habet in artibus et in reliqua vitae 
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1591, while mathematics had retained its status among the higher disciplines, it was 

for its practical utility, not its sublime nature, that the Jesuits deemed it worthy of 

study. 

Jesuit schools taught under the Ratio Studiorum of 1591 for three years.  Then, 

from 1594 until 1598 the Provinces sent critiques of the new draft back to Rome.  

Alan Farrell cites two categories of critiques: first, general critiques that the 1591 

Ratio Studiorum was too detailed and repetitive and, second, critiques of particular 

rules, especially when they seemed to conflict with local customs.106  In the case of 

mathematics teaching, there were still practical concerns with finding capable 

mathematics teachers who were not elsewhere more urgently needed.107  As in 1586, 

the editors of the Ratio Studiorum took the criticisms to heart.  The general structure 

of the final draft of the Ratio Studiorum in 1599 remained very close to that of the 

1591 draft.  It is again a series of rules working down the hierarchy from the 

provincial to the rules for students.  However, the rules are greatly abbreviated and 

repetitions almost entirely eliminated.  Each role received a relatively small number of 

rules.  Even the provincial only had forty rules, compared to ninety-six rules in 1591. 

After almost twenty years of research, writing, critiquing, and refining, the definitive 

Ratio Studiorum published in 1599 was a concise but detailed curriculum outlining 

exactly how Jesuit colleges were to be run and how classes were to be taught.   In this 

version, the provincial, the rector, and prefect of studies were all given administrative 

                                                
communis praxi? – Nam et haec quoque indicanda sunt a magistro inter praeelegendum, quo magis 
auditore alliciat.”  (Emphasis mine.)   
106 Farrell, The Jesuit Code, p. 303. 
107 Fuentes, Las Matematics en La Ratio Studiorum,” 141. 
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rules discussing the timeline of the curriculum, the number of classes to be taught, 

mentoring of new teachers, observing professors, and examining textbooks.  In rules 

common to all teachers of the higher faculties, humility in presenting debatable topics 

was advised, and teachers were cautioned against dictations.  For the lower faculties, 

the Ratio Studiorum reminded teachers that they were examples of the religious life 

for their students.  Rules for the individual professors provided explanation of content 

to be taught and public exercises to be assigned to the students.108 

 The position of mathematics in the definitive Ratio Studiorum was 

substantially reduced from its place in the drafts of 1586 and 1591.  The mathematics 

professor received only three rules, and mathematics was not even mentioned in the 

rules for the provincial.109   The rules for the mathematics professor lay out the 

curriculum to be taught and the public exercises to be held for mathematics students.  

They were not substantially changed between 1591 and 1599, though they were 

somewhat abbreviated.  Mathematics was to be taught in the philosophy curriculum in 

conjunction with physics, which was to be drawn from Aristotle’s work.110  In the 

same year students studied physics, they would also study mathematics for three-

quarters of an hour each day.  This maintained Clavius’s suggestion of closely linking 

physics and mathematics in order to demonstrate the utility of the latter to the former.  

The first two months were to be devoted to Euclid’s Elements.  After that, time was 

divided between Euclid and another branch of mathematics.  As in 1586 and 1591, 

                                                
108 Farrell, The Jesuit Ratio Studiorum of 1599, xi. 
109 Ibid., 46. 
110 Ibid., 40. 
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geography or astronomy was suggested as the other branch, but it was left open to 

anything the students would enjoy.  The next rule specified that once a month a 

mathematics student must solve some celebrated mathematics problem in the presence 

of philosophy and theology students.  Finally, the last rule mandated a monthly review 

of material being taught.  Unlike in 1591, this rule did not specify that the utility of 

mathematics be emphasized.  However, that does not indicate a shift in the Jesuits’ 

attitude towards a universal acceptance of the sublime nature of mathematics.  Indeed, 

the only dignity clearly granted to mathematics was that it was classified with the 

higher faculties.  The rules providing for lectures following Clavius’s curriculum and 

Clavius’s academy were gone.  Furthermore, there was no rule reminding the 

philosophy professors of the importance of mathematics.111  Since the curriculum 

itself only required Euclid and some branch of mixed mathematics, which did not have 

to be astronomy, the end goal of the Jesuit mathematics curriculum appears to have 

been the teaching of practical branches of the discipline. 

 Of course, it must be recognized that because the Ratio Studiorum was 

intended for all Jesuit schools, it is a representation of the minimum mathematics 

curriculum.  Indeed, while mathematics was no longer explicitly protected in the rules 

of the provincial, there was no indication that mathematics should be subordinated to 

philosophy.  Furthermore, the chronic difficulty in finding mathematics teachers, as 

evidenced by complaints from the provinces, suggests that much of the retreat from 

                                                
111 Ibid., 46. Three academies are mentioned at the end of the document, the academy of theologians 
and philosophers, the academy of students of rhetoric and humanities, and the academy of students of 
the grammar classes, but these are student run study groups to review and discuss material as well as 
practice disputations.  These were not opportunities for private instruction.  Ibid., 105-111. 

150



 

 

the position of mathematics in the revised 1586 curriculum could have been driven by 

logistical concerns.112  The continually growing school system (almost one hundred 

schools had been created during the twenty years of the drafting of the Ratio 

Studiorum) required an ever-increasing number of teachers for all subjects, especially 

grammar and rhetoric.113 The academy, as Clavius envisioned it, would have required 

that some young Jesuits be exempted from requirements to teach the lower disciplines 

at the end of their philosophy studies in order to pursue mathematics.114  The Society 

could ill afford those exemptions, especially since the academy could not have kept up 

with the demand for new mathematics teachers in the growing school system anyway.   

These practical concerns did not prevent schools that did have capable 

mathematics teachers from teaching rigorous curricula.  As discussed in the previous 

chapter, Clavius ran an academy for talented students in the philosophy curriculum 

until 1610, only two years before his death.  And, when he published his Opera 

Mathematica, he acknowledged the excellent mathematics teaching done at the Jesuit 

University of Mainz.115   Still, the mathematics programs in Rome and Mainz were 

exceptions.  Faced with the logistical impossibility of training enough teachers for all 

                                                
112 As discussed above, many of the responses to the 1586 Ratio Studiorum expressed some concerns 
about a lack of qualified mathematics teachers.  The response from the Collegio Romano requested that 
there be two mathematics teachers at each school but acknowledged that such a request might not be 
feasible.  The Venetian Province expressed concerns about sending their talented mathematicians to 
Rome since that would deprive them of the benefit of having such a scholar.  The Toledan Province’s 
response explicitly stated that requiring a mathematics professor at every college would deprive the 
schools of staff for more essential positions.  See “Iudicia patrum, in provinciis deputatorum, ad 
examinandum Rationis studiorum (1586)”, 293-296. 
113	Farrell, The Jesuit Ratio Studiorum of 1599, iii.	
114 Clavius, “De re mathematica…”, 117. 
115 Christopher Clavius, Opera Mathematica V tomis distributa ab auctore denuo correcta, et plurimis 
locis aucta (Mainz: Antonius Hierat and Reinhardus Eltz, 1612), )(3v. 
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of their colleges to pursue both the noble and practical branches of the study, the 

Jesuits had to choose between the two.  And, by 1599, the Jesuit mathematics 

curriculum had been reduced from Clavius’s heady study of perfect forms and 

celestial bodies to a study of Euclid and whatever practical branch was best suited to 

students in any given school.  Ricci’s use of mathematics to secure patronage in China 

and French Jesuits’ pursuit of projects required by the French kings suggest that 

Clavius’s arguments for the value of mathematics to the upper echelons of society 

paved the way for that choice. 

   

Conclusion 

 As the professor of mathematics at the Collegio Romano when the Ratio 

Studiorum was being drafted, Clavius had a unique opportunity to influence the 

direction of the mathematics curriculum.  He seized that chance by presenting his 

suggestions for a rigorous program of study in which practical mathematics was one 

component.  However, while the sixteenth century was a time in which practical 

mathematics was recognized and developed for its potential applications to a variety 

of crafts, Clavius never intended his development of the discipline as a tool for 

craftsmen.  Instead, he argued that through its applications to timekeeping, art, 

architecture, business, geography, and warfare, practical mathematics was at the heart 

of every social endeavor.  It was a tool that could be used by princes to improve their 

domains.   
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Ultimately, it was Clavius’s arguments for the practical uses of mathematics to 

the upper echelons of society, i.e. those in the courts, that allowed his discipline to 

retain its place in the Jesuits’ curriculum.  While the first draft of the Ratio Studiorum 

embraced Clavius’s vision of mathematics as a noble study necessary to the 

advancement of theology, each successive revision reduced the role of the discipline.  

During the revision process, some critiques stemmed from the view that mathematics 

was not necessary to the study of theology, but many more expressed the belief that it 

was not logistically possible for Jesuit colleges to supply enough teachers for a 

universally rigorous mathematics curriculum.  However, the practical value of 

mathematics was not called into question.  Indeed, in their negotiations with patrons 

(at least in China and France), the Jesuits were able to employ practical mathematics 

as a means to gain favor.  And so, by 1599, only Euclid’s Elements and a practical 

branch of each school’s choice were to be taught.  Forced by teacher shortages to 

choose between Clavius’s noble mathematics and Clavius’s practical mathematics, the 

Jesuits chose the latter.  Nevertheless, through their practical concerns, Clavius gained 

a foothold for his pedagogical project, creating the opportunity for some schools to 

teach from his textbooks in which he presented his vision of mathematics as the bridge 

between the mundane and the divine, both useful and noble.    
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Chapter Three 
	

Not All Euclids Were Created Equal 
	

“Now almost two thousand years have passed since Euclid was counted among the 
living.  He has had many adversaries, who, out of the vice of jealousy more than love 
of truth, have tried with all zeal to undermine his work.  Yet, up to this point, the stern 
investigators have been able to reveal no false writing in that work, not any error nor 
any paralogism.”1 
 

Federico Commandino (1572) 

 

According to Proclus, when Ptolemy I asked Euclid for a way shorter than The 

Elements to learn mathematics, the geometer told the king that there was no royal road 

to geometry.2  While that conversation is most likely apocryphal, the idea that The 

Elements was a necessary foundation to the study of geometry persisted long past 

Proclus’s time.  By the time Christopher Clavius published the first edition of his 

commentary on The Elements in 1574, dozens of versions of the text had been 

produced by mathematicians whose efforts to elevate their discipline often included 

providing their own commentaries on the foundational text.  Because The Elements 

was an introductory text, it provided its commentators with the opportunity to define 

																																																													
1 Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus Chriegher German, 1572), 
*5v. “Iam duo fere annorum millia abierunt, ex quo Euclides inter vivos conumeratus est.  multos habuit 
adversarios, qui invidiae potius morbo, quam veritatis amore illius scripta omni studio labefactare sunt 
conati; nullam tamen adhuc in illis φευδογραφίαν, nullum errorem, nullum paralogismum severi 
inquisitores deprehendere potuerunt.” 
2 Proclus: A Commentary on the First book of Euclid’s Elements, trans. Glen Morrow (Princeton: 
Princeton University Press, 1970), 57. 
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their discipline and the value of its study, and differing visions of mathematics led to 

divergent versions of the book.   

Although The Elements, which dates to the fourth century BCE, had been 

taught in medieval universities, the text received new life at the hands of sixteenth-

century commentators who relied on both the thirteenth-century commentary by 

Campanus of Novara, the most common source of commentaries on The Elements 

from the thirteenth century until the sixteenth century, and recently rediscovered 

Greek versions of the text, namely the fourth-century CE commentary of Theon of 

Alexandria and the fifth-century CE commentary on the first book by Proclus. 3  

Bartolomeo Zamberti published the first Latin translation of a Greek version of the 

text in 1505, sparking a debate over the relative merits of the Greek and medieval 

texts.  In 1516 the Parisian printer Henrici Stephani placed that debate in the hands of 

individual readers by publishing an edition of The Elements that included Campanus’s 

and Zamberti’s versions of each proof side-by-side.4  After that many authors based 

their commentaries on a combination of Theon’s and Campanus’s editions, especially 

after 1533 when Theon’s edition was printed in Greek by the Basel-based printer 

Simon Gyraneaus.  Some mathematicians even included their own demonstrations for 

the Euclidean propositions.  For example, in his 1557 commentary on the first six 

																																																													
3 Prior to the sixteenth century, Western universities had been using Euclid as the source for geometry 
education, but their copies were based on Campanus of Novara’s thirteenth-century translation from 
Arabic versions.  See H.L.L. Busard, Campanus of Novara and Euclid’s Elements. (Germany: Franz 
Steiner Verlag, 2005), 32.  See the introduction for a brief discussion of the transmission of Euclid.  
4 Thomas Heath, The Thirteen Books of Euclid’s Elements, Introduction and Books 1 and 2.  (London: 
Cambridge University Press, 1908), 98-99.  The 1516 edition containing Zamberti’s text is Bartolomeo 
Zamberti, Euclidis Geometricorum elementorum libri XV (Paris: Henrici Stephani, 1516). 
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books, Jacques Peletier added “here and there new demonstrations to Euclid.”5  In 

1566 Francois Flussas Candalla added an entire sixteenth book to the Euclidean 

corpus.6  Not all mathematicians felt that such changes to The Elements were positive.  

As part of his efforts to restore ancient mathematical knowledge Federico 

Commandino, a significant figure in Paul Rose’s arguments for the existence of 

mathematical humanism, based his 1572 commentary on the 1533 edition of Theon’s 

text, eschewing medieval and contemporary additions to the text.  Others, including 

Clavius, presented elements of the ancient, medieval, and contemporary versions of 

the text.  In this, his work was similar to some vernacular versions of the text 

including Henry Billingsley’s 1570 English commentary.   

For Christopher Clavius, The Elements was the first mathematics textbook in 

the curriculum he sought to establish within the Jesuit schools.  It was the foundation 

for all future mathematical study.  Thus, his commentary on The Elements was an 

essential part of his efforts to secure the place of mathematics within the Jesuit 

curriculum.  In it, he attempted to balance two visions of mathematics – one that 

placed mathematics between natural philosophy and theology within the hierarchy of 

disciplines for its ability to uncover certain, universal truths and one that saw 

mathematics as the key to solving practical and mundane problems.  The first of these 

visions, as discussed in Chapter 1, claimed for mathematics a place among the higher 

																																																													
5 Jacques Peletier, In Euclidis Elementa Geometrica Demonstrationum Libri sex (Lyon: Ioan. 
Tornaesium et Gul. Gazium, 1557), A2r. “Novas Demonstrationes passim ad Euclidem adiecimus.”   
6	Francois Flussas Candalla, Euclidis Megarensis Mathematici Clarissimi Elementa Geometria, Libris 
XV (Paris: Iannem Royerius, 1566).  	
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disciplines.  The second, as discussed in Chapter 2, appealed to Jesuit missionaries and 

their patrons. 

The dual nature of Clavius’s goals for mathematics can clearly be seen in a 

comparison of his commentary on The Elements to two closely contemporary 

versions, Sir Henry Federico Commandino’s Latin commentary (1572) and 

Billingsley’s English commentary (1570).  Both Commandino and Billingsley wrote 

their commentaries with clearly defined goals and audiences in mind, and each 

emphasized one of the visions of mathematics combined in Clavius’s text.  As a tutor 

to nobles in Urbino, Commandino likely intended his commentary on The Elements to 

be used by his students as he trained them to uncover universal truths through 

mathematical study.  As a result, his text emphasized the abstract nature of 

mathematics, and his interest in The Elements appears to be based on his admiration 

for what he took to be a complete and coherent system of knowledge.  Indeed, in his 

prolegomenon Commandino claimed that nothing needed to be added to or removed 

from Euclid’s text for the reader to understand each proposition.7  For Billingsley, a 

London merchant, mathematics was an aid to practical innovation, and he intended his 

commentary to be read by enterprising English craftsmen for their own potential 

profit.8  As a result, his commentary accentuated the concrete physicality of 

																																																													
7 Commandino, Euclidis Elementorum, **v. “Postremo admirabilem omnium dispositionem 
antecedentique, et consequentium ordinem, ac cohaerentiam, ut nihil prorsus addi, aut detrahi posse 
videatur.”   
8 Henry Billingsley, The Elements of Geometrie of the most auncient Philospher Euclide of Megara 
(London: John Daye, 1570), iiv – ijr.			
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mathematical concepts, and he treated the geometrical knowledge found in The 

Elements as a toolbox for English readers pursuing knowledge for concrete benefits.   

By comparing Clavius’s commentaries to those of Commandino and 

Billingsley, whose projects each focused on one aspect of mathematics, I hope to show 

how Clavius created a pedagogical text that treated mathematics as a versatile 

discipline.  I will begin by examining differences among the authors through the 

structures of the texts, both on the large scale of what they chose to include and 

exclude and on the smaller scale of reading aids each author included.   In these 

comparisons, Clavius’s pedagogical goals become evident, as his text was clearly 

designed for use by novice students.  Then I will compare the presentations of the 

foundational material in the first book, including definitions, axioms, postulates, and 

the authors’ explanations of propositions to reveal how each author envisioned 

mathematics.  In these sections, Clavius’s combination of philosophical and physical 

components of mathematics becomes clear.  Finally, to illustrate how each author’s 

views were carried throughout their presentations of mathematical content, I will 

compare how they treated the Pythagorean Theorem, the most iconic proposition from 

The Elements.  

 

The Big Picture: What Counts as Euclid? 

Despite mathematicians’ assertions that the content of Euclid’s Elements had 

not changed in the two millennia since it had been written, by the sixteenth century, 
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there were myriad versions of the text, and the content was anything but standardized.9  

In fact, Billingsley, Commandino, and Clavius all included numerous additions to the 

Greek text.  Some addenda were simple concepts that could be demonstrated in a 

sentence or two.  For example, in their commentaries on the definition of a circle’s 

diameter, all three authors inserted the claim that a circle is bisected by a diameter. At 

other points the commentators included alternative proofs for the Euclidean 

propositions and complicated extensions of Euclid’s work that are classified as 

lemmas or corollaries and receive their own lengthy proofs.  All three authors credited 

many of their additions to ancient mathematicians, including Apollonius, Archimedes, 

and Thales, as well as to later scholars, such as Proclus and Pappus.  (Clavius credited 

the demonstration for the above-named addition to both Thales and Proclus.10)  In 

Billingsley’s and Clavius’s texts, there are frequently additions credited to Campanus 

of Novara, whose translation was the source for most versions of The Elements 

between the thirteenth and sixteenth centuries, when many changes were made 

because most copies of the text contained incomplete proofs.11  Billingsley and 

Clavius also both frequently cited modern authors.  Clavius used a wider breadth of 

																																																													
9 For a discussion of such assertions, see chapter 1.  The epigraph to this chapter is a standard example 
of such a claim.  
10 The definition of a diameter (Book I, definition 17) is a straight line that goes through the center of a 
circle and connects two points on the circle’s circumference, so it is an additional claim to say that a 
diameter bisects a circle.   See Christopher Clavius, Euclidis Elementorum Libri XV Accessit XVI de 
solidorum Regularium comparatione (Rome: Vincentium Accoltum, 1574), 8v. The same 
demonstration can be found in Commandino’s commentary on page 3v and in Billingsley’s on page 3v. 
11 John E. Murdoch, “The evidence of marginalia in the medieval Euclides latinus” Revue d’histoire des 
sciences, Vol. 56, No.2 (Juilliet-Decembre 2003), 369-382.  Murdoch’s analysis of the marginalia 
shows that readers would fill in the proofs with comments or even add alternate proofs from other 
sources.   
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modern sources than Billingsley, and, moreover, he often included his own additions 

and made changes to the Euclidean text itself.   

While the practice of adding to and changing Euclid’s work was not 

uncommon at any point in the text’s history, these three commentators’ decisions on 

what emendations to include reflect the variety of early modern projects for 

mathematics.  Commandino’s additions, which were strictly drawn from ancient 

sources, demonstrate his goal to restore ancient mathematical knowledge.  

Billingsley’s breadth of sources suggests that he sought to provide readers with the 

contemporary extent of mathematical knowledge and familiarity with current 

scholarship, illustrating his efforts to make mathematics a tool for innovation to 

improve the future of his countrymen.  Indeed, Billingsley noted in his letter to the 

reader that he had added numerous scholia and lemmas from other scholars, ancient 

and modern, immediately before expressing his hope that his text would inspire the 

English to a further study of mathematics. 12  Clavius’s extensive naming of other 

sources, combined with his own changes to the Euclidean text, allowed him to position 

his own work as a pedagogical text designed to make mathematics – both ancient and 

modern – accessible and to show his discipline to be an evolving study to which his 

																																																													
12 Billingsley, Elements of Geometrie, iiv-ijr. “In which booke also ye shall in due place finde 
manifolde additions, Scholies, Annotations, and Inventions: which I have gathered out of many of the 
most famous & chiefe Mathematiciens; both of old time, and in our age: as by diligent reading it in 
course ye shall well perceave.  The fruite and gain which I require for these my paines and travaile, 
shall be nothing els, but onely that thou, gentle reader, will gratefully accept the same: and that thou 
mayest thereby receave some profite: and moreover to excite and stirre up others learned, to do the 
like.” 
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readers could contribute, continuing the centuries-long project of building on ancient 

knowledge. 

Clavius’s pedagogical purpose sometimes might appear pedantic, especially in 

some of his additional demonstrations that could only have been intended for 

uninterested students.  For example, in Book I, Clavius demonstrated that all right 

angles are equal to one another after the definition for a right angle.  The same claim 

appears later as an axiom, so its inclusion with the definition could seem redundant.13  

Axioms, however, are supposed to be self-evident. And, while the claim that all right 

angles are equal follows quickly from the definition of a right angle, it is not 

immediately evident.  The definition states, “When a straight line standing on another 

straight line makes the angles that are on either side equal to each other, either angle is 

right: And the straight line which stands is said to be perpendicular to the line upon 

which it stands.”14 The reader must realize that there is only one way in which to stand 

one line on another with equal angles on either side.  Therefore, in this case, while the 

addition is pedantic in that it asserts a claim that appears later on in Euclid’s text, it 

also served to prepare the reader for the axiom by making explicit the claim that all 

right angles are equal immediately following the definition based on which it becomes 

clear.   

																																																													
13 The claim that all right angles are equal to one another appears in the tenth axiom of Clavius’s 
version of Book I.  Clavius, Euclidis Elementorum, 17.  In Commandino’s and Billingsley’s texts, it is 
the fourth postulate. (Commandino, Euclidis Elementorum, 6r; Billingsley, Elements of Geometrie, 6r.)  
The reason for the difference in classification will be discussed later in this chapter.	
14 Clavius, Euclidis Elementorum, 5v. “Cum vero recta linea super rectam consistens lineam eos, qui 
sunt deinceps, angulos aequales inter se fecerit, rectus est uterque aequalium angulorum: Et quae insistit 
recta linea, perpendicularis vocatur eius, cui insistit.”  
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Not all of Clavius’s additions were in the commentary, and those he included 

as Euclidean enunciations were usually intended to fulfill his pedagogical imperative 

of ensuring that no demonstration introduced an unproven claim or undefined terms, a 

convention of which he reminded his reader at the start of the fifth book.15  Already in 

the first book, Clavius added two definitions in order to fulfill that purpose.16  Those 

definitions were for terms used towards the end of the first book – “parallelogram” 

(def. 35) and “complement” and “residual” (both included in def. 36) in 

parallelograms cut around the diagonal. 17  (See Figure 2).  In Billingsley’s and 

Commandino’s works a parallelogram is described, but not defined, in proposition 34.  

Complements are introduced in proposition 43.18  Neither author provided the 

definitions, and the reader came to understand the relevant terms only by working 

																																																													
15 A Euclidean enunciation is the statement of a definition, postulate, axiom or proposition without 
further commentary or demonstration.  For example, the enunciation of the definition of a right angle is 
given above in note 13. Clavius, Euclidis Elementorum, 144r. “Ut igitur institutum suum servet, definit 
prius vocabula, quae ad demonstrationes proportionum adhibentur.” 
16 In the first book, Clavius also left out one definition: that for a portion of a circle which corresponds 
to definition 19 in Commandino’s (p. 3v) and Billingsley’s (p. 3v) texts.  He moved that definition to 
the third book, which is the first book in which it is necessary.  He may have done so in order to avoid 
overwhelming beginning students with information that they would not need until later. 
17 Clavius, Euclidis Elementorum, 13v-14r.  In Latin the terms are “paralellogramum,” “complementa,” 
and “reliqua.”			
18 Both Commandino and Billingsley use the word “supplement” instead. (Commandino 25r; 
Billingsley, 53r).  Clavius’s use of complement instead of supplement and residual for the other parts of 
the parallelogram may have helped make his text more readable, but may not have helped the reader 
peruse other mathematician’s texts.  Barrozzi also uses the word “complement.”  (Francisco Barozzi, 
Procli Diadochi Lycii Philosophi Platonici ac Mathematici Probatissimi in Primum Euclidis 
Elementorum librum Commentariorum (Padua: Gratiosus Perchacinus, 1560), 262.) Billingsley notes 
that Peletier used both “supplement” and “complement,” but describes their use such that “supplement” 
applies to Clavius’s “complement,” and “complement” applies to Clavius’s “residual.” (Billingsley, 
Elements of Geometrie, 53v; Jacques Peletier, In Euclidis Elementa Geometrica, 41.) It seems that there 
was no agreement on the terminology. Heath’s early twentieth century translation describes the relevant 
parallelogram, but does not name it.  A twenty-first century edition of Euclid based on Heath’s 
translation uses the word “complement.”  (Ed. Dana Densmore, Euclid’s Elements all thirteen books 
complete in one volume: The Thomas L. Heath Translation, Green Lion Press: Santa Fe, NM, 2002.)   It 
seems that at least in English, Clavius’s chosen terminology prevailed, so perhaps it was the more 
common of the two.   
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Figure 2: Clavius’s Diagram for Book One, Definition 36 

This diagram shows the residuals and complements of parallelogram ABCD 
cut around the diagonal AC.  The residuals are AEGH and GICF.  The 
complements are DHGF and GEBI. 
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through the proofs.  The extra definitions in Clavius’s text thus served to avoid the last 

minute introduction of new terms and the worse offense of propositions requiring the 

inference of an unstated definition. 

Each author’s project becomes even more apparent in his treatment of the 

additional books appended to The Elements. The first two books to be added to 

Euclid’s original work, the fourteenth and fifteenth books in The Elements, were 

written by Hypsicles of Alexandria in the second century BCE, when Euclid’s text 

was less than two hundred years old.  These books extended the discussion of the 

Platonic solids that Euclid had begun in his last three books.19  All three commentators 

considered here accepted Hypsicles’ ancient additions as part of the Euclidean corpus.  

However, their varying treatments of a third supplemental book along with further 

additions to the fourteenth and fifteenth books and a treatise on non-Platonic solids, all 

written by François Flussas Candalla for his 1566 version, provide insight into each of 

their projects. 20  Commandino, whose text was based on the 1533 printed edition of 

Theon of Alexandria’s fourth-century version of Euclid, simply ignored his French 

contemporary’s work.  This treatment is not surprising if we understand the 

																																																													
19 The Platonic solids are the five solid figures that can be composed from equal, regular polygons.  
They are a tetrahedron, a cube, an octahedron, a dodecahedron, and an icosahedron.  
20 By his 1578 edition, Candalla had changed the treatise into two additional books written in the 
Euclidean style.  Candalla’s sixteenth book is the best known of these additions.  (François Flussas 
Candalla, Euclidis Megarensis mathematic clarissimi Elementa, libri XV (Paris: Jacob du Puys, 1578), 
frontispiece.) Later authors, including Billingsley and Clavius, often included the sixteenth book which 
is often described as a direct continuation of the fourteenth and fifteenth books since all three treat the 
relationships of Platonic solids to one another.  Billingsley also included the 1566 treatise as part of the 
sixteenth book. As far as I know, no one else included these texts as books within the Euclidean corpus.  
Since none of the original thirteen books treat non-Platonic solids, these books lack the topical 
continuity that the fourteenth through sixteenth books had with Euclid’s work, which ends with the 
construction of the Platonic solids.    
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humanist’s goal as a restorative project intended to revive, not build on, ancient 

mathematics.   

In contrast, Billingsley’s hope that craftsmen could derive profit from 

mathematics led him to include all of Candalla’s additions.  Because Billingsley could 

not predict precisely which piece of information would lead to profit, his own project 

was to supply his reader with as much material as possible, regardless of its temporal 

provenance.  Indeed, when he introduced his translation of the Frenchman’s version of 

the fourteenth book, Billingsley said that he chose to include it because it “containeth 

in it more Propositions than are found in Hypsicles, & also some of those propositions 

which Hypsicles hath, are by him somewhat otherwise demonstrated.”21  Since 

Candalla’s additions more than doubled the number of propositions in both the 

fourteenth and the fifteenth books, by including them, Billingsley greatly expanded his 

readers’ understanding of the relationships between the Platonic solids.22  However, 

for the fourteenth book, Billingsley placed his translation of Candalla’s version after 

his translation of Hypsicles’s version as a second fourteenth book.  By providing two 

distinct versions of the fourteenth book, Billingsley allowed Candalla’s work to appear 

to be nothing more than a useful addition to the ancient text.  However, when he 

moved on to the fifteenth book, he only included Candalla’s version.  A possible 

explanation for this arrangement is that he believed that the comparison between the 

																																																													
21 Billingsley, Elements of Geometrie, 421v. 	
22 Candalla has nineteen propositions in the fourteenth book and twenty-one in the fifteenth. (François 
Flussas Candalla, Euclidis Megarensis mathematici clarissimi Elementa, libri XV (Paris: Ioannes 
Royerius, 1566), 176r – 191v).  As it was presented in Commmandino’s translation, the Greek text, 
includes seven propositions in the fourteenth book and five in the fifteenth, far fewer than half of the 
number found in Candalla’s text (Commandino, Euclidis Elementorum, 243v – 255v).   
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ancient and modern texts made possible by the doubled fourteenth book showed the 

modern version to be a more complete study of Platonic solids and absolved him from 

the need to supply the ancient version of the fifteenth book.   

Billingsley’s desire to present a comprehensive study of Platonic solids is even 

more pronounced in his defense for adding Candalla’s sixteenth book to his own 

commentary.  There he argued that “the sixteenth book [would] leave the reader 

wanting nothing conducing to the perfection of Euclides Elements.”23  In Billingsley’s 

view, Candalla had completed what Euclid and Hypsicles had begun, thereby giving 

the reader a complete examination of Platonic solids.  It is not clear if Billingsley’s 

argument for the “perfection of Euclides Elements” included Candalla’s treatise on 

non-Platonic solids, which he placed at the end of the sixteenth book without any 

further comment.  It seems that he simply offered it to his readers because Candalla 

had included it in his own version and Billingsley was striving for completeness.  

Eager to provide his reader as many avenues to pursue the study of mathematics as 

possible, he had no reason to leave out any relevant and potentially useful study.  

Furthermore, since most solids encountered in the physical world are non-Platonic, a 

treatise that begins a study of such solids could aid those seeking practical applications 

of mathematics, and Billingsley might have felt it was a necessary component to the 

study of solid geometry begun by Euclid. 

Clavius makes an interesting contrast.  While he included many of Candalla’s 

additions in his own work, he did not incorporate them into the text as fully as had 

																																																													
23 Billingsley, Elements of Geometrie, 445v. 
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Billingsley.  Instead, he left clear distinctions between the ancient work and the 

modern additions allowing him to show mathematics to be an evolving discipline with 

ancient roots that, if restored, provided the potential for continued progress at the 

hands of new mathematicians.24  Even the title of his second volume, Euclidis 

posteriores libri sex X. ad XV. Accessit XVI de solidorum regularum comparatione, 

specifically denotes the sixteenth book as an appendix to the Euclidean corpus rather 

than treating it as part of the main text.  Furthermore, Clavius did not add any of his 

own commentary to the new book, indicating that, while he regarded it as a valuable 

extension of the Euclidean text, it was non-essential to a study of The Elements.  The 

restorative component of Clavius’s goal is even more pronounced in his exclusion of 

the treatise on the non-Platonic solids, which are not discussed in the ancient fifteen 

books.  Even though he was willing to include the sixteenth book as a relevant 

supplement, he was not willing to extend his commentary beyond the scope of the 

ancient text with a discussion of non-Platonic solids, a subject that could be taught at 

another point of his curriculum, possibly the unit he included on the measurement of 

solid bodies.25   

However, in his treatment of Candalla’s additions to the fourteenth and 

fifteenth books, which he regarded as part of the Euclidean corpus, Clavius made the 

potential for forward progress of mathematics clear.  In these books, he included 

																																																													
24 See Chapter 1 for a discussion of Clavius’s vision of the history of mathematics as a continual 
evolution. 
25 Christopher Clavius, “Ordo servandus in addiscendis disciplinis mathematicis,” in Ladislaus Lukacs 
(ed), Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione Studiorum Societatis 
Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 112. 
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Candalla’s supplemental propositions as part of his own project to complete the 

comparisons between Platonic solids begun by Hypsicles.  While Billingsley had 

simply translated Candalla’s books, Clavius wrote his own versions in which he 

included the French mathematician’s work and added numerous corollaries, lemmas, 

scholia, and even new propositions of his own.  However, expanding the fourteenth 

and fifteenth books was not simply a means to provide his students with more 

information than the ancient texts contained; it was an opportunity to demonstrate how 

contemporary mathematicians could build on ancient knowledge.  At the start of the 

fourteenth book, Clavius explained that Hypsicles only examined icosahedrons and 

dodecahedrons, but that he, like Campanus and Candalla before him, believed that a 

study comparing all of the regular solids to one another was necessary to complete the 

extension of Euclid’s work that Hypsicles had begun. 26   

Clavius’s presentation of the propositions in these books also draws the 

reader’s attention to the temporal evolution of the Euclidean corpus and the 

cumulative nature of mathematical knowledge that he had established in his 

prolegomenon where he said that mathematics proceeded “little by little from 

imperfect to more perfect.”27  Within the fourteenth and fifteenth books, Clavius 

indicated the presence and order of each proposition in the Greek text and Campanus’s 

																																																													
26 Clavius, Euclidis Posteriores libri sex a X ad XV. Accessit XVI de solidorum regularium 
comparatione (Rome: Vicentium Accoltum, 1574), 225r. “Qua in re maximo nobis adiumento fuisse 
Campanum & Franciscum Flussatem Candallam, qui diligentem operam, & sedulam in hoc negotio 
collocavit, non negamus.” 
27	Clavius, Euclidis Elementorum, br.  “Immo vero singulas nequaquam summam adeptas esse 
perfeectionem statim ab initio, sed paulatim eas ab imperfectis ad perfectiora processisse, memoriae 
quoque proditum est.”	
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text in the margin.28  Thus, the reader could reconstruct Hypsicles’ ancient text and 

Campanus’s medieval text from subsets of Clavius’s work.  Candalla’s text received 

no such recognition even though Clavius had acknowledged that the additions made 

by both Campanus and Candalla were tremendously useful in his own efforts in this 

project.29 While these notations served the practical purpose of enabling readers to 

identify the same propositions in other versions of Euclid’s Elements, whether they 

were based on Greek or medieval sources,  the marginal indications of Greek and 

medieval works clearly illustrate that the project begun by ancient scholars, had been 

built upon by medieval scholars, and was now completed by Clavius.   

 

Aids for the Reader: Presenting Additions to The Elements 

Although only readers’ comments could show how successful authors were in 

conveying their visions of mathematics, the presentation of the Euclidean content and 

additions to the ancient text is at least as revealing of authors’ goals as is the content 

itself.  One particularly interesting method of presentation is the index of additions 

that both Commandino and Clavius employ before the first book.30  These indices 

were lists of demonstrations that the commentators had added to Euclid’s text.  By 

noting what material was added to the text by later mathematicians, they enabled the 

																																																													
28 In the fourteenth book, Billingsley also uses marginal notations to indicate the place of propositions 
in Campanus’s book.  He does not continue this practice in the fifteenth book. 
29 See note 26.	
30 Clavius titles his “Index problematum ac theorematum, quae praeter ea, quae continentur in Euclidis 
propositionibus, in his elementorum libris demonstrantur.” (Clavius, Euclidis Elementorum, cr.) 
Commandino conveys the same message with the shorter “Index eorum, quae in his libris 
demonstrantur praeter ea, quae Euclidis sunt.”  (Commandino, Euclidis Elementorum, **2v.) It should 
be noted that many of the additions in both texts were attributed to ancient mathematicians.  Lemmas 
and corollaries were listed in both indices.	
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humanist authors to preserve the authenticity of the original work: everything that was 

not named in the index.  In fact, precisely because the indices left out the original 

Euclidean enunciations (i.e. the statements of the definitions, postulates, axioms, and 

propositions), the original text is shown to be more valuable than the later additions.  

Euclid’s enunciations were so important that they were to be learned in full, whereas 

the indexed additions could be studied “in parts” as the reader deemed them useful, 

which Ann Blair has argued was a common use for indices in the early modern 

period.31  Billingsley, who was more interested in the future profit that could be 

derived from The Elements than in the ancient provenance of the text, did not include 

an index, leaving his reader without recourse to easily study the later additions more 

selectively than the original text. 

However, even though both Commandino and Clavius sought to preserve the 

ancient work through providing indices of additions, a brief examination of the content 

of their indices illuminates the differences between their goals.  From their 

presentation of the additions, it becomes clear that Clavius gave more value to the 

additions made to the original text than Commandino did.  While Clavius always 

provided the full enunciation of an addition, Commandino frequently shortened his 

index entries by merely describing the new concept’s relationship to an existing 

proposition.  For example, both authors included the converse the proposition which 

states that the square drawn on the side of a triangle that subtends an acute angle is 

																																																													
31 Ann Blair, “Reading Strategies for Coping with Information Overload, ca. 1550-1700,” Journal of the 
History of Ideas 64 (2003): 11-28.  
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less than the sum of the squares on the other two sides.32  Commandino’s index entry 

say, “The converse of proposition XIII.”33  Clavius’s says, “If a square, which is 

described on one side of a triangle, is less than the [sum of the] squares that are 

described on the remaining sides of the triangles, then the angle comprehended 

between the two remaining sides of the triangles is acute.”34  By replacing the content 

of later additions with the relationship between the addition and the ancient text, 

Commandino emphasized the completeness of Euclid’s original work.  In contrast, 

Clavius, by presenting each addition as its own claim, showed the ancient text to be 

foundational to independent claims demonstrated by later mathematicians. 

Of course, unless the reader was eager to flip back and forth from the body of 

the text to the index, the presence of an index at the beginning of a text would not be 

much use to a student needing to identify the shifts from translation to commentary as 

he worked through any given proposition.  Commentators often relied on a variety of 

methods, including marginal notations, in-text citations, and changes in typeface, to 

indicate those shifts.  In these notations, the commentators’ various goals become 

clear.  Billingsley’s efforts to provide his reader with as much material relevant to the 

study of The Elements as he could are evident through his use of notes to indicate a 

breadth of sources from all time periods.  His readers were the beneficiaries of his 

efforts to anthologize additions to Euclid’s text.  In contrast, Commandino’s marginal 

																																																													
32 This proposition is Book II, proposition 13. 
33 Commandino, Euclidis Elementorum, **2v. “Propositionis XIII conversa.”   
34 Clavius, Euclidis Elementorum, c4r. “Si quadratum, quod ab uno laterum trianguli describitur, minus 
sit eis, quae a reliquis trianguli lateribus describuntur quadratis: Angulus comprehensus sub reliquis 
duobus trianguli lateribus, acutus est.”	
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notations indicate that, with few exceptions, the addenda he included were attributed 

to ancient mathematicians, suggesting that his goal was the humanist one of restoring 

ancient knowledge. Clavius’s notes were designed to illustrate the continual evolution 

of mathematics from ancient to modern times.  His in-text citations reveal that most of 

the entries in his index, which lists more than double the addenda found in 

Commandino’s, were attributed to medieval or modern authors, including himself.35  

Furthermore, he included marginal notes indicating Campanus’s ordering of the 

propositions.  On one level, these notes were clearly a pedagogical tool.  Because there 

were versions of The Elements based on both Greek and Arabic sources available in 

the sixteenth century, references to Euclidean propositions in more advanced 

mathematical texts could be based on either Theon’s or Campanus’s ordering.  Thus, 

because, as he expressed in his letter to the reader, he hoped his book would serve as a 

handbook for future study, Clavius provided the alternative numbering as a means to 

give his students the ability to recognize propositions cited from any source.36  

However, they also served to validate the medieval text as a source for sixteenth-

century mathematicians.  While Clavius himself had based his order of the 

propositions on Greek sources to create a more accurate representation of Euclid’s 

work, including Campanus’s numbering suggested that the medieval version had value 

																																																													
35 Commandino’s index lists 200 additional demonstrations.  Clavius includes 585.  The sources of the 
additions are not noted in the indices, but are clear within the texts. 
36	Clavius, Euclidis Elementorum,a5v. “Nam cum Euclides, propter singularem utilitatem, instar 
enchiridii, manibus semper debeat circumgestari, neque unquam deponi ab his, qui fructum aliquem 
serium ex hoc suavi Matheseos studio capere volunt, in eoque progredi; id vero in hunc diem 
exemplaribus omnibus maiore forma impressis, necdum factum videamus; hoc nostra editio certe, si 
nhil aliud, attulerit commodi, atque emolumenti.”   
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as a resource for contemporary mathematicians, and made it possible for his readers to 

search for Campanus’s changes and additions to various Euclidean propositions.  

Thus, Clavius’s commentary was not just a translation of ancient mathematics, it was 

also an extension of medieval versions of The Elements.  

Besides their role in identifying additions and changes made to the ancient text, 

marginal notes helped to clarify the Euclidean proofs.  In Commandino’s text such 

notations were designed to minimize the need he had to change or elaborate on the 

ancient demonstrations by flagging difficult passages for further commentary.  The 

marginal notations are themselves just symbols, asterisks or letters that appear next to 

particularly difficult passages of Euclid’s demonstrations.  In his commentary 

following the demonstration, Commandino provided an explanation of each flagged 

passage with the same symbols reappearing in the margins alongside the relevant 

section of commentary.  See Figure 3 for an example.  Much like footnotes, these 

marginal notations allowed the reader to jump between the demonstration and the 

commentary in order to make the proof easier to understand.  Commandino was thus 

able to improve the clarity of ancient demonstrations without damaging the integrity 

of the Greek text either by changing the ancient proof, as Clavius did, or by rewriting 

it completely in his commentary, as Billingsley did. 

Where Commandino’s notes furthered his restorative project by serving to 

preserve the ancient text, Billingsley’s notes, in keeping with his desire to provide a 

text to the non-Latin reading merchants and craftsmen of England, served to 
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Figure 3: Commandino’s “Footnotes” 

This is Commandino’s ninth proposition in Book One.  The capital letters “A” and “B” 
appear in the margin next to the demonstration for the proposition.  These function as 
footnotes.  The same letters reappear in the margins near the commentary, marking the 
beginning of a section.  Each section begins with a line of text repeated from the 
demonstration.  Commandino’s commentary serves to clarify or expand on that line. 
The commentary continues on the next page for item “B.” 
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emphasize the physical nature of pure geometry.37  In the English text, marginal 

notations were used to identify the two distinct parts of a Euclidean proof: the 

construction, which builds whatever diagram is necessary for the proof, and the 

demonstration, which shows that the required claim is indeed true.  Billingsley labeled 

the starts of both parts of Euclidean proofs for every proposition.  In so doing, he drew 

the reader’s attention to the constructions and the resulting diagrams as independent 

from the logic-based demonstration.  Thus, the diagrams serve as the concrete objects 

of the demonstrations.  

Clavius’s annotations indicated the past propositions on which various 

statements within a proof depended.  By calling attention to the cumulative and self-

contained nature of Euclid’s Elements, these clarifying notes served to show how 

mathematics was developed step-by-step from first principles to advanced theorems, 

which was precisely the certain method of mathematics that Clavius argued earned the 

discipline a status comparable to other philosophical studies. 38  For example, if part of 

a demonstration relied on the Pythagorean Theorem, Clavius included a note next to 

																																																													
37 For a discussion of Billingsley’s intended audience, see chapter 2.  In his letter to the reader he 
claimed to have translated The Elements for “good wittes” and men “of all degrees” who wanted to 
pursue the mathematical arts, as well as his hope that English readers would have the same access to 
ancient texts that enabled “the inventions of straunge and wonderfull thinges” already taking place on 
the Continent.  Billingsley, The Elements of Geometrie, iiv – ijr.  
38 See chapter 1 for a discussion of Clavius’s arguments about the certainty of mathematics.  Clavius 
claimed that the certainty of mathematics arose from its method: never accepting something as true 
unless it could be proven from previously demonstrated claims.  Clavius, Euclidis Elementorum, b2r, 
“Quod quam longe a Mathematicis demonstrationibus absit, neminem latere existimo.  Theoremata 
enim Euclidis, caeterorumque Mathematicorum, eandem hodie, quam ante tot annos, in scholis retinent 
veritatis, puritatem, rerum certitudinem, demonstrationum robur, ac firmitatem.  … Cum igitur 
disciplinae Mathematicae veritatem adeo expetant, adamant, excolantque, ut non solum nihil, quod sit 
falsum, verum etiam nihil, quod tantum probabile existat, nihil denique admittant, quod certissimis 
demonstrationibus non confirment, corroborentque, dubium esse non potest quin eis primus locus inter 
alias scientia omnes sit concedendus.” 
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the claim that read “47.primi” to indicate the forty-seventh proposition in the first 

book, which is the Pythagorean Theorem.  The reader then knew that the claim was 

valid, even if it was not obviously true, because it followed from the noted 

proposition. Should he have had any questions, he could have gone back and reviewed 

that proposition to make sense of the challenging claim.  Thus, Clavius showed that 

Euclidean geometry was cumulative – the propositions only depended on prior 

enunciations – and that the study was self-contained.  These were the only notes 

Clavius included in the margins of the proofs.39 While the practice of referencing 

previous demonstrations from Euclid’s text was de rigueur among commentators on 

The Elements, unlike other commentators, Clavius consistently placed these references 

in the margins, which created a visual emphasis on the certain method of geometry.40  

A reader could quickly glance through the margins and see how the proofs build on 

themselves as the number and variety of references increases as the text progresses.   

 

Aids to the Reader: Understanding the Structure of The Elements 

Each commentator studied here provided some sort of guideline to the 

structure of the Euclidean text.  Like their guides to the additions, these guidelines, 

																																																													
39 Clavius was able to avoid using other clarifying notes on the demonstrations because he rewrote the 
parts of the proof that he found to be unclear.  The notes indicating Campanus’s ordering of 
propositions accompanied the enunciations, not the proofs, and, as mentioned above, his citations to 
various sources for his additions were made in the text itself. 
40	Clavius explained that he placed the notes in the margin for the practical reason of avoiding 
interrupting the proof, which makes the visualization of the self-contained nature of The Elements a 
happy side-effect.  Future research into readers of The Elements is needed to understand how readers 
reacted to having all of the citations in the margin or within the text, which is where Commandino and 
Billingsley often placed theirs.  (Clavius, Euclidis Elementorum, 21r.) “Deinde ne cursus 
demonstrationum interrumperetur, citavimus principia, & propostiones Euclidis in margine quae 
quidem citationes intelligendae sunt modo infrascripto.”  	
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found in the authors’ descriptions of the Euclidean books, offer insight into how each 

commentator perceived and wished to present the text.  Both Clavius and 

Commandino supplied general outlines of The Elements in their prolegomenons. 

Clavius’s outline clearly illustrates his pedagogical purpose.  He did not treat each 

book individually and, instead, presented a four-part division of the text in connection 

with a similar division of the study of geometry.  His division classifies the first six 

books as the study of plane geometry.  (This division is further split into the study of 

individual planar figures and equality between them in the first four books, the study 

of proportions between magnitudes in the fifth book, and proportion between planar 

figures in the sixth book.)  The next three books comprise the Euclidean examination 

of number theory, and the tenth book is its own unit on commensurability.  The 

remaining five books are the study of solid geometry.41  For pedagogical purposes, a 

clear explanation of the groupings of books was likely more useful than descriptions 

of individual books because it provided teachers with a way to divide The Elements in 

their curricula based on what kind of mathematics was going to be taught next.  

Indeed, in his own 1581 curricula, Clavius split up the units on Euclid along the lines 

of the division outlined in his prolegomenon, and each section preceded a branch of 

mathematics that could use that piece of Euclidean geometry.  For example, the first 

four books preceded the study of Sacrobosco’s Sphere, whose discussion of stellar 

positions requires plane geometry.  Likewise, the study of number theory preceded the 

																																																													
41 Clavius, Euclidis Elementorum, b5v – b6r.   
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study of algebra, in which cossic numbers served as placeholders for unknown 

quantities in numerical relationships.42 

In contrast, Commandino’s outline allowed the ancient text to speak for itself, 

emphasizing the inherent value of restoring ancient knowledge.  In his prolegomenon, 

he simply described the structure of the work by listing the topics each of the fifteen 

books would cover.43   For example, in his longest description he says:  

In the first book, one may clearly see that it treats rectilinear figures, 
triangles and parallelograms.  And first it treats the creation and 
properties of triangles, then comparing them to each other by angles and 
then by sides.  Next by introducing the properties of parallel lines, it 
goes to parallelograms, and declares their creation and demonstrates 
traits which are in them.  Afterwards, it shows the fellowship of triangles 
and parallelograms, & by what means a parallelogram can be made 
equal to a triangle.  Then the same is done for those squares which are 
described on the sides of right triangles, which study considers the 
proportion between that square described on the side that subtends the 
right angle and those which are described on the sides that comprehend 
the right angle.44   

 
His matter-of-fact approach allowed the reader to know what to expect in each of 

Euclid’s books, but, unlike Clavius, he gave little indication of how best the topics fit 

together or how to approach the study.   

In addition to his prolegomenon’s description of the books of The Elements, 

Commandino included scholia of one to two pages in length before the fifth, tenth and 

																																																													
42 Clavius, “Ordo servandus,” 110-111.	
43 Commandino, Euclidis Elementorum, **v - **2r.  	
44 Ibid., **v. “In primo igitur libro tractat de rectilineis figuris, videlicet de triangulis, ac 
parallelogrammis.  Et primum triangulorum ortus, proprietatesque tradit, tum iuxta angulos, tum iuxta 
latera; ipsa inter se se comparans.  Deinde parallelarum proprietates interiiciens ad parallelogramma 
transit, eorumque, ortum declarat, & symptomata, quae in ipsis sunt, demonstrat.  Postea triangulorum, 
parallelogrammorumque, communicationem ostendit, & quo nam pacto parallelogrammum fiat aequale 
triangulo.  Denique de iis, quae in triangulis rectangulis a lateribus describuntur, quadratis quam habeat 
proportionem quod a subtendente rectum angulum describitur ad ea, quae comprehendetiubs ipsum 
fiunt.”  
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eleventh books to establish the central position of Euclid’s work within the ancient 

study of mathematics.  In these passages, he cited Eudoxus, Apollonius, and 

Pythagoras as the original authors of many of the Euclidean theorems, and he offered 

explanations of relevant mathematical ideas those mathematicians developed from 

their theorems.  For example, in his scholion preceding the tenth book, the study of 

commensurable quantities, he outlined Apollonius’s division of numbers into thirteen 

kinds and discussed the Pythagorean approach to commensurability.   

The placement of the scholia is significant to such an image of Euclid’s text 

because each of the three books following a scholion begins a new topic within 

geometry which suggested links between geometry and another mathematical topic.  

The fifth book treats proportionality, or the relationship between two quantities.  As 

Commandino told his reader, proportionality is “common to geometry, arithmetic, 

music, and all simply mathematical disciplines.”45  The tenth book treats 

commensurability, which ties magnitude to number, i.e. tying geometry to arithmetic.  

The eleventh book begins the study of solid geometry, which Commandino notes was 

considered its own branch of study, called stereometry, by Plato.46  However, it must 

be noted that these scholia were not intended to introduce new topics within The 

Elements, but instead to position geometry within mathematics. If the scholia had 

simply been meant to introduce new topics, Commandino surely would have included 

one before the seventh book, the first book on number theory.  Instead, he included 

																																																													
45 Ibid., 56v. “In quinto libro propositum est de analogiis tractare; hic enim liber communis est 
geometriae, arithmeticae, musicae, & omni simpliciter mathematicae disciplinae.” 
46 Ibid., 188v.  “Antiqui planorum cognitionem a scientia solidorum distinxerunt.  Etenim illam 
geometriam appellarunt, ut etiam Plato ostendit in politicis; hanc autem stereometriam.”   
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one for the tenth book, which studies commensurability in which magnitude and 

number are combined, allowing him to discuss the connection between geometry and 

number and to position The Elements as an ancient foundation to a complete 

understanding of number.  

 While Billingsley did not provide an outline of the entire text, at the start of 

each book he introduced the topic of study in a brief paragraph before the Euclidean 

text began.  In these paragraphs, he repeatedly reminded his readers of the utility of 

the abstract concepts and demonstrations contained in The Elements to the 

mathematical arts.  For example, the first book on the “grounds of Geometry” has the 

distinction of being the most general and necessary to all future study.  In the second 

book on rectilinear figures, Billingsley was a little more specific about potential 

applications.  He claimed that this could be used by the arithmetician to “gather many 

compendious rules of reckoning.”47  The description of the second book also promises 

two specific propositions, “one of an obtuse angled triangle, and the other of an acute: 

which with the ayde of the 47 proposition of the first book of Euclide, which is of a 

rectangle triangle, of how great force and profite they are in matters of astronomy, 

they knowe which have travayled in that arte.”48  These descriptions, although they 

lacked specific examples, gestured at Euclid’s Elements as foundational to various 

branches of mixed mathematics and, thus, depicted the work as the key to developing 

concrete applications of mathematics. 

																																																													
47 Billingsley, Elements of Geometrie, 1. 
48 Ibid., 60. 
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Like Billingsley, Clavius included introductory remarks to most of the 

Euclidean books.  However, while Commandino’s scholia focused on the value of The 

Elements as the foundation of ancient mathematical study and Billingsley’s opening 

paragraphs emphasized the role of The Elements in creating future profit, Clavius’s 

introductory remarks were focused on orienting the reader by alerting him to the 

beginning of a new topic of study.  In the nine books (Books 1-5, 7, 10, 11, and 14) for 

which Clavius included brief remarks within the commentary on his first definition, he 

devoted only a sentence or two to naming and defining the topic of study about to be 

begun.  Each of the books that has no such description is easily seen as a continuation 

of the previous book.49  However, Clavius still offered some comments to encourage 

the reader to continue his study through promising the utility of geometry to further 

study.  For example, in the description of the tenth book Clavius asserted that 

commensurability and incommensurability were necessary to an understanding of 

arithmetic and to algebra, particularly in the calculation of roots.50  However, he 

neither tied further mathematical study to the ancient development of mathematics nor 

promised future profit through practical application of mathematics to contemporary 

																																																													
49 The sixth book treats proportions of geometric figures, continuing the fifth book’s more general study 
of proportion.  The eighth and ninth books continue the seventh book’s discussion of number theory.  
The twelfth and thirteenth books continue the study of solids introduced in the eleventh book, and the 
fifteenth book is the second addition of Hypsicles and continues to study the relationships of Platonic 
solids to one another.  I have not included the sixteenth book in this discussion because Clavius treated 
it as an addition to rather than an integral part of Euclid.  It did receive an introductory paragraph, but 
that section primarily serves to justify the inclusion of the modern text. 
50 Clavius, Euclidis Posteriores, 2r-v. “Neque in eorum possum sententiam ire, qui putant ad eius 
intelligentiam esse necessariam eam partem Arithmetices, quae de radicibus numerorum, tam 
rationalibus quam irrationalibus, ut vocant sermonem instituit:  Immo contra persuasum mihi prorsus 
habeo, cognitionem perfectam illius partis Arithmetices pendere ex hoc 10 librum tantum abest, ut 
existemem, tractationem illa radicum requiri, ut facilius hic liber intelligatur.”   
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mathematical arts.  Instead, he simply allowed The Elements to appear as foundational 

to a sixteenth-century mathematics curriculum.  Indeed one of the justifications he 

gave for writing his commentary was that he perceived a need for a version of Euclid’s 

text that was easier to read, especially for those just beginning their mathematical 

studies.51 

Clavius’s consideration of the role of Euclid’s text in his curriculum is most 

evident in the longest of his opening comments, the introduction to the eleventh book.  

There he provided a summary of what the previous ten books had covered and 

indicated what books thirteen, fourteen, and fifteen would cover as the payoff for the 

study of books eleven and twelve.52  Because he taught The Elements in segments at 

different times in a mathematics course, the summary may well have been intended to 

reorient the reader to Euclidean geometry after his course of study had taken him to 

other subjects for some time.   In Clavius’s 1581 curriculum, the eleventh book of The 

Elements was the starting point for second-year mathematics students, meaning that 

several months may have passed since students had studied any mathematics, let alone 

																																																													
51 Clavius, Euclidis Elementorum, a6r.  “Ita enim, nostra sententia, Euclides facilius a studiosis, iis 
praesertim, qui ceu tyrones, haec Mathematica studia nunc primum auspicantur, ac maiore voluptate, 
utilitateque cognoscetur.”   
52 Clavius, Euclidis Posteriores, 117r. “Postquam Euclides in prioribus sex libris abunde de ea 
Geometria parte disseruit, quae circa plana versatur, sibique nomen Geometriae, tanquam proprium, 
usurpavit; In subsequentibus vero tribus diligenter ea de passionibus numerorum docuit, quae necessaria 
videbantur ad intelligendam doctrinam linearum commensurabilium, ac incommensurabilium, quas 
idcirco luculentissime in libro decimo deinde exposuit, ut constructio, atque natrua quinque corporum 
regularium, de quibus in postremis tribus libris, nimirum in 13, 14, & 15 subtilissime disseritur, 
perfectius posset cognosci: Nunc tandem aggreditur in hoc libro undecimo eam partem Geometriae, 
quae corpora, sive solida considerat, proprioque vocabulo Stereometria est appellata.”	
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Euclid.53  The opening summary could thus serve as a reminder of the previous year’s 

study and as a promise of the new year’s syllabus. 

 

The Foundations of Geometry: Definitions in Book I 

While it is to be expected that scholars with different agendas would create 

unique presentations of The Elements by tailoring the structure of their commentaries 

and carefully selecting additions to the ancient text that were in keeping with their 

individual goals, it is somewhat surprising that the contents of the core texts are far 

from uniform. After all, mathematicians in the sixteenth century often professed that 

The Elements had not been substantially changed since it was written.54  Nevertheless, 

while the differences found in the main text of the three versions studied here are 

small, they are able to bring Euclid’s mathematics into the service of the 

commentators’ various projects.  

Already in the enunciation of the first definition, the authors diverge slightly 

from one another.  Clavius’s formulation, which appears in most Latin texts, is the 

simplest, “A point is that for which there is no part.”55  Billingsley’s is not much 

																																																													
53 Christopher Clavius, “Ordo servandus in addiscendis disciplinis mathematicis (1581),” in ed. 
Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de Ratione 
Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 110-115.  While 
Clavius did not write his curriculum until 1581, when his first edition of The Elements was published in 
1574, he had been teaching mathematics at the Collegio Romano for over a decade.  It is possible that 
he was already using a curriculum similar to that which he would later provide to the Jesuits’ 
curriculum committee.  In the shortest curriculum in which he outlined how much time should be spent 
on each section, he suggested that books 5 and 6 of Euclid be taught in the seven weeks between Easter 
and Pentecost of the first year.  Perspective and horology were taught from Pentecost until the end of 
the first year.  No further study of Euclid was required until books 11 and 12 were introduced at the 
start of the second year.  Those two books would have been taught from then until Christmas (p. 114).   
54 See epigraph and Chapter 1. 
55 Clavius, Euclidis Elementorum, 1r. “Punctum est, cuius pars nulla est.”  
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different, but he does include an alternative name.  He says, “A signe or point is that, 

which hath no part.”56  Commandino provides two formulations: “A point is that of 

which there is no part, or that which has no magnitude.”57  All three definitions clearly 

express the same idea, but, given the commentators’ assertions that mathematics’ 

certainty allowed it to survive unchanged across the centuries, should it not be the case 

that all authors express complete agreement on the definition that begins the study of 

mathematics?  

Within the first definition, Billingsley’s and Commandino’s adjustments to the 

standard formulation found in Clavius’s text respectively emphasize the physical and 

the abstract components of mathematics, thereby aligning mathematics with their 

distinct goals.  Billingsley’s use of the alternative name “signe,” from the Latin root 

“signum,” conveys the materiality of a point, allowing even the foundation of pure 

mathematics to be an object that could be manipulated by enterprising artisans.58  

Because “sign” and its Latin root, “signum,” are used primarily to denote symbols, 

including this word choice suggests that a dot drawn to represent a point can, for all 

practical purposes, be accepted as an actual point.   Furthermore, the use of the word 

“sign” to mean “point” was not common in English.  According to the Oxford English 

Dictionary, the geometrical use of the word “point” appeared in English as early as 

1398, and in 1551, Robert Recorde used “poynt or prycke” to convey the geometrical 

																																																													
56 Billingsley, Elements of Geometrie, 1. 
57 Commandino, Euclidis Elementorum, 1. “Punctum est, cuius nulla est pars, vel quod magnitudinem 
nullam habet.”	
58 Billingsley was not the first to use this term in The Elements.  Candalla, whom Billingsley cited 
frequently, used “signum” instead of “punctum” in his definition.  See Candalla, Euclidis Megarensis 
mathematici (1566), 1. 
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entity in his Pathway to Knowledge.59  While both Recorde’s use of the word “prycke” 

and Billingsley’s use of the word “signe” allow a point to have a physical nature, 

Billingsley’s term makes that nature more explicit.  Recorde’s word suggests a means 

to produce a point (pricking a pen to the page), but it does not explicitly designate the 

resulting pinprick as a visible, manipulable point. Billingsley’s use of the word 

“signe” effectively equates the concrete symbol, a dot (which may be much larger than 

a pin-prick), with the abstract concept of a point. 

In contrast, Commandino’s definition introduced a point as the negation of 

magnitude, thereby tying the definition into an abstract discussion of the nature of the 

foundation of geometry, the study of magnitudes.  In the quadrivium, the most 

common division of mathematics in the early modern period, geometry was defined as 

the study of continuous quantity, i.e. magnitudes, as opposed to discrete quantity, i.e. 

numbers.60  As a continuous quantity, magnitude has dimension and, so, can be 

measured.  Defined as an entity without magnitude, then, a point cannot be measured.  

Since all material is measurable, Commandino denied the possibility of representing a 

point in any material way.  For him, it was simply an idea from which the definition of 

magnitude as a measurable entity could become clear. 

																																																													
59 Oxford English Dictionary, 3rd ed. (online version, updated 2006), s.v “point.” 
http://www.oed.com/view/Entry/146609?rskey=4X3mbE&result=1&isAdvanced=false#eid; Robert 
Recorde, Pathway to Knowledge, (London: Reynold Wolfe, 1551), Ar.   
60 Note that numbers as defined in the quadrivium included what we call rational numbers, not all real 
numbers.  Furthermore, the rational numbers are understood as they can be generated from whole 
numbers.  Thus, one, or unity, serves as the first number from which all other numbers are generated, 
which excludes 0.  Irrational numbers are discussed in the tenth book of Euclid, but they are developed 
geometrically as the measurements of magnitudes.  Today, real numbers are often represented on a 
continuous line, and rational numbers are discrete points along such a line. 
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In their commentaries on the definition, the authors cemented their visions of a 

“point.” Billingsley’s commentary begins by distinguishing a point from “quantitie 

(whereof Geometry entreateth).”61  Unlike quantity, whose nature – according to 

Billingsley – was to be divided, a point was indivisible.  But, while a point was not 

properly the subject of geometry, it was still a physical entity; specifically, it was “the 

least thing that by minde and understanding can be imagined.”  To help the reader 

imagine a point, Billingsley provided an example in the margin of his text.  “Point A 

in the margent” was presented as a point, not just a representation thereof.62  

Furthermore, in the second part of his commentary, Billingsley explicitly claimed that 

a point had material.  This section began with an alternative definition, which 

Billingsley attributed to Pythagoras: a point is “unitie which hath position.”63 Just as 

unity is the source of all number, a point is “the beginnyng of magnitude,” and like 

magnitudes, it can be assigned to a position, and, therefore, must be material.64   

Commandino’s discussion of a point denies the geometric concept the 

possibility of physical reality.  He began his commentary with the claim that, as the 

foundation of Euclid’s study of geometry, a point itself must be the negation of the 

objects of that study, magnitudes.65  Commandino credited this argument to Proclus’s 

																																																													
61 Billingsley, Elements of Geometrie, 1r. 
62 Ibid., 1r. The word “thing” needs to be understood as a physical entity in this context because the 
word “least” conveys an ability to measure things and compare their sizes.   
63 Ibid., 1r. Billingsley’s commentary on the Pythagorean version of the definition could be drawn from 
Proclus’s commentary on the definition of a point. While he does not cite Proclus in this definition, he 
does cite the fifth-century author in other places in Book 1, suggesting that he had access to some 
version of Proclus’s commentary. 
64 Ibid, 1r.  
65 Commandino, Euclidis Elementorum, 1r. “Euclides per negationem partium signicavit nobis 
punctum, quod est principium totius proposite contemplationis.  Cum enim principia aliam rationem 
habent ab iis, quorum sunt principia, & eorum negationes illorum quodammodo naturam ostendant; non 
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commentary on the definition, in which the fifth-century Neoplatonist cited 

Parmenides’s belief that only through denying the essences of the subject of study can 

the foundation of that subject illuminate the unique properties of those essences.66  

Thus, since magnitudes are physical entities, a point cannot have physical materiality.  

While Commandino continued his commentary with a discussion of the Pythagorean 

definition of a point, he left out the argument, which Proclus attributed to the 

Pythagoreans, that the positionality of a point required it to be material.67  Instead, in 

his presentation of unity and a point as analogous sources for discrete and continuous 

quantity, respectively, both foundational concepts were taken to be immaterial, 

philosophical constructs.   

Clavius’s commentary falls between the views found in his two 

contemporaries’ texts.  Like Billingsley, Clavius provided a discussion of physical 

quantity and an image to enable his reader to imagine a point, but like Commandino, 

he insisted that a point was immaterial.  Thus, his commentary offered a pedagogical 

discussion that was designed to lead students to the abstract truths of mathematics 

from an exploration of more easily understood physical entities.  He began his 

discussion with definitions of the three components by which continuous quantity 

could be measured – length, breadth and depth – and built to their negation to define a 

																																																													
immerito negantes sermones principiis ipsis convenire comperti sunt: quod etiam asserit Proclus 
auctoritate Parmenidis.” 
66 Proclus, Commentary on the First Book, 77. 
67 Ibid.,78. “By contrast the point is projected in imagination and comes to be, as it were, in a place and 
embodied in intelligible matter.  Hence the unit is without position, since it is immaterial and outside all 
extension and place; but the point has position because it occurs in the bosom of imaginations and is 
therefore enmattered.”			
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point. Citing Ptolemy’s Analemmata and Simplicius’s work on dimension, Clavius 

explained that the three spatial dimensions are the only possible dimensions for any 

magnitude.68  After describing the dimensions, he instructed his students to imagine – 

since it cannot be observed – a quantity that lacked any of the three dimensions; that 

entity is a point.  Like Billingsley, Clavius included an illustration of a point in the 

margin of his text to help his readers exercise their imaginations.  However, its 

placement near the sentence in which Clavius explained that a point cannot be found 

in anything material made it clear that the drawing was just a useful representation of a 

concept that cannot properly be illustrated.69  In order to provide his students with 

another tool with which to understand a point, Clavius ended his commentary with an 

analogy between a point and unity, but he never cited the Pythagoreans or gave their 

definition.  He simply said that a point is to magnitude what unity is to number or an 

instant is to time without dwelling on the connection between magnitude and the 

abstract concept of number or the more concrete notion of time.70  Clavius likely left 

out the formal statement of the Pythagoreans’ definition of a point because, in using 

unity to define a point, it violated his requirement that nothing in mathematics rely on 

																																																													
68 Clavius, Euclidis Elementorum, 1v.  “Neque aliam dimensionem habere potest res ulla quanta, ut 
recte demonstravit Ptolemaeus in libello de Analemmate, opera Federici Commandini Urbinatis nuper 
in pristinam dignitatem restituto, necnon, ut ait Simplicius, in libello de Dimensione, qui ciudem, quid 
sciam, hactenus nondum est excusus.”   
69 Ibid., 1v. “Huius exemplum in rebus materialibus reperiri nullum potest, nisi velis extremitatem 
alicuius acus acutissimae, similtudinem puncti exprimere; quod quidem omni ex parte verum non est, 
quoniam ea extremitas dividi potest, & secari infinite, punctum vero individuum prorsus debet 
existimari.” 
70 Ibid., 1v. “Denique in magnitudine id concipi debet esse punctum, quod in numero unitas, quodque in 
tempore instans.”   
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a concept not previously defined or demonstrated.  Unity is not defined until the fifth 

book.   

 

The Foundations of Geometry: Postulates and Axioms 

In the first book of The Elements postulates and axioms follow the definitions, 

thereby rounding out the three kinds of principles that must be accepted in order to 

prove the propositions that follow.  While definitions supply a vocabulary of concepts 

that do not rely on reason, postulates and axioms are principles that require some 

consideration, but no demonstration, before assenting to their truth. Aristotle described 

axioms as common notions that are universally acknowledged as true and postulates as 

assumptions that may go against the belief of the student.  Both were classed as 

necessary first principles of any discipline.71  As with the definitions, the authors did 

not express complete agreement on the content of these principles.  In fact, Clavius 

added one postulate and seven axioms to the content found in his contemporaries’ 

texts.  The additions all follow from the enunciations common to all three texts and, 

so, seem to be a pedagogical choice to make his text more accessible to readers who 

were not eager to think through the implications of the other enunciations.72  More 

telling are the differences in classification.  Billingsley’s and Commandino’s 

postulates and axioms differed only in the classification of one enunciation, and 

Clavius reclassified two enunciations found among the postulates in his 

																																																													
71  See the extended quotation of Aristotle in Thomas Heath, The Thirteen Books, vol. 1, pp. 117-119.   
72 The postulate Clavius adds says that for any magnitude a greater or a lesser magnitude can be found.  
All but one of the additional axioms included by Clavius deal with equality of sets of entities.  They are 
very much in keeping with the nature of the nine axioms shared by all three authors. See Table 1.  
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contemporaries’ works as axioms.  For a complete list of the postulates and axioms 

found in the texts, see Table 1. 

The differences in the commentators’ organization of the enunciations into the 

two categories arose from their interpretations of the two possible modes of distinction 

they all cited: that postulates have content specific to geometry, while axioms are 

general to all knowledge and that postulates call for some kind of construction, while 

axioms require only reason.  These distinctions are clearly drawn from Proclus’s 

commentary, which Commandino and Clavius both cite.  In Proclus’s text they are 

offered as two unique classification systems, each of which fails to fully account for 

the ordering of the enunciations in Euclid’s text.73  Thus, all three authors sought to 

clarify the distinction between postulates and axioms either by tweaking the 

classification schemes suggested by Proclus, or by changing the classification of 

enunciations.   

For Commandino, whose text follows the order that Proclus presented as 

Euclid’s, the preservation of the ancient order was too important to reclassify any of 

the enunciations.  Therefore, combining the two suggestions he drew from Proclus, he 

created a classification scheme based on the ease with which a claim could be 

accepted.  His scheme was a variation on the first distinction from Proclus named 

above.  An axiom depended only on general knowledge, while a postulate required 

																																																													
73 Proclus, Commentary on the First Book, 142-143.  Proclus also included a third possible distinction: 
postulates can be demonstrated, but axioms cannot.  This he attributed to Aristotle, but it was only one 
part of the latter’s discussion of the various kinds of first principles.  None of the three commentators 
discussed here gave that distinction any weight.  Indeed, Clavius even demonstrated the axiom that 
states all right angles must be equal.   
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Table 1: The Postulates and Axioms of Book One 

	

Commandino’s Postulates 
 
1. It is required to draw from 
any point to any point a straight 
line. 
 
 
2.To extend a bounded straight 
line in a continuous and straight 
manner. 
 
3. To describe a circle on any 
center and interval. 
 
4. All right angles are equal to 
one another.  
 
5. And if a straight line falling 
on two straight lines, makes the 
interior angles on the same side 
less than two right angles, then 
those straight lines extended to 
infinity will meet on that side in 
which the two angles are less 
than two right angles.    
 

Billingsley’s Postulates 
 
1. From any point to any point, 
to draw a right line. 
 
 
 
2. To produce a right line finite, 
straight forth continually. 
 
 
3. Upon any centre and at any 
distance, to describe a circle. 
 
4. All right angles are equall 
the one to the other. 
 
5. When a right line falling 
upon two right lines, doth make 
on one and the selfe same syde, 
the two inwarde angles less 
then two right angles, then shall 
the two right lines beying 
produced in length concurre on 
that part, in which are the two 
angles lesse then two right 
angles. 
 
6. That two right lines include 
not a superficies. 
 

Clavius’s Postulates 
 
1. It is postulated, that it is 
allowed to draw a straight line 
from any point whatever to any 
point. 
 
2. And to extend straight forth 
a bounded straight line in a 
continuous manner.  
 
3. Likewise to describe a circle 
on any center and interval. 
 
4. Likewise, for any given 
magnitude to be able to obtain 
another magnitude either 
greater or smaller.  
 

continued on next page 
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Table 1: The Postulates and Axioms of Book One (continued) 

Commandino’s Axioms 
 
1. Those things which are equal 
to the same thing are equal to 
each other 
 
2. And if equal things are added 
to equal things, the wholes are 
equal.   
 
3. And if equal things are taken 
from equal things, the 
remainders are equal.   
 
4. And if equal things are added 
to unequal things, the wholes 
are unequal 
 
 
5. And if equal things are taken 
from unequal things, the 
remainders are unequal.  
 
6. And things that are double to 
the same thing are equal to each 
other.  
 
7. And things that are half of 
the same thing, are equal to 
each other.   
 
8. And those things which 
coincide with each other are 
equal.   
 
9. The whole is greater than its 
part.  
 
10. Two straight lines do not 
include a space.   

Billingsley’s Axioms 
 
1. Thinges equall to one and 
the selfe same thyng: are equal 
also the one to the other.  
 
2. And if ye adde equall thinges 
to equall things: the whole 
shalbe equall. 
 
3. And if from equall thinges, 
ye take away equall thinges: 
the things remayning shall be 
equall. 
4. And if from unequall thinges 
ye take away equall thinges: 
the thynges which remayne 
shall be unequall. 
 
5. And if to unequall thinges ye 
adde equall thinges: the whole 
shall be unequal. 
 
6. Thinges which are double to 
one and the selfe same thing: 
are equall the one to the other. 
 
7. Thinges which are the halfe 
of one and the selfe same thing 
are equal the one to the other. 
 
8. Thinges which agree 
together; are equall the one to 
the other. 
 
9.Every whole is greater then 
his part. 

Clavius’s Axioms 
 
1.  Those things which are 
equal to the same thing are 
equal to each other 
 
2. And if equal things are 
added to equal things, the 
wholes are equal. 
 
3. And if equal things are taken 
from equal things, the parts 
that remain are equal.   
 
4. And if equal things are 
added to unequal things, the 
wholes are unequal.   
 
 
5. And if equal things are taken 
from unequal things, the 
remainders are unequal.  
 
6. And things that are double to 
the same thing, are equal to 
each other.   
 
7. And things that are half of 
the same thing, are equal to 
each other.   
 
8.  And those things which 
coincide with each other are 
equal.  . 
 
9. And the whole is greater 
than its part.  
 
10. Likewise, all right angles 
are equal to each other.  
 
 

 continued on next page 
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Table 1: The Postulates and Axioms of Book One (continued) 

	 	  
Clavius’s Axioms continued: 
 
11. And if a straight line falling on two straight 
lines, makes the internal angles on the same side 
less than two right angles, then the due lines 
extended to infinity will mutually fall on each 
other on the side where  
the angles are less than two right angles. 
 
12.  Two straight lines do not include a space. 
 
13. Two straight lines do not have one and the 
same segment in common.   
 
14. If unequal things are added to equal things, 
the excess between the totals will be equal to the 
excess between the things added to the equals.  
 
15. In equal things are added to unequal things, 
the excess between the totals will be equal to the 
excess between those things which diverged in 
the beginning.   
 
16. If unequal things are taken from equal things, 
the excess between the residuals will be equal to 
the excess between the things taken from the 
equal things.   
 
17. If equal things are taken from unequal things, 
the excess between the residuals, will be equal to 
the excess between the wholes.  
 
18.  All of a whole is equal to the all of its parts 
taken at the same time.   
 
19. If a whole is double another whole and things 
double to one another are taken from those 
wholes, the remainder of the larger pair is double 
the remainder of the smaller pair.  
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some peculiarly geometric concept so specialized that it cannot simultaneously exist as 

a common sense definition.  It was the other distinction from Proclus – the 

requirement of a construction – that removed a geometric concept from the realm of 

common sense.  Therefore, in Commandino’s classification, an axiom ought to be 

immediately obvious to anyone while a postulate may be foreign to a novice 

mathematician or an outsider, and, incorporating the other distinction, could only 

become evident if the geometric entities described were constructed.74  The only 

enunciation Proclus had identified as incorrectly categorized based on the distinction 

between general and particular knowledge was Commandino’s tenth axiom, which 

states that two straight lines cannot enclose an area.  According to Proclus, this axiom 

clearly treated a uniquely geometrical subject.75  However, since the only term in 

Commandino’s formulation of that axiom with a technical definition is “rectae lineae,” 

or straight lines, which can be understood without a technical definition, he believed 

that it could be understood by anyone even without a construction.76  Thus, 

Commandino saved the ancient ordering, since his separation of general and particular 

knowledge allowed a geometrical concept that did not require construction to fit in the 

former category. 

																																																													
74 Commandino, Euclidis Elementorum, **v.  “Cum enim is, qui audit propositionem aliquam, statim 
sine doctore ut veram admittit, elue certessimam fidem adhibet, hoc Axioma appellatur … Cum autem 
rursus & ignotum sit addiscenti, quod dicitur, & tamen eo assentiente assumatur, tunc id postulatum 
appellamus.”  
75 Proclus, Commentary on the First Book 143.  
76 Commandino, Euclidis Elementorum, 6v.  “Duae rectae lineae spacium non comprehendunt.”  The 
definition of a straight line is “a line that lies equally between its points.”  While the definition is 
precise, the idea of a straight line as a line that does not curve certainly falls within the realm of 
common knowledge.  The lack of curvature is all that is necessary to recognize that two lines cannot 
enclose a space. Commandino does use the word “spatium” for area, which is not a specialized term. 
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Billingsley equated the two distinctions from Proclus, i.e. that axioms are 

general to all knowledge while postulates are specific to geometry and that axioms 

require only reason while postulates require a construction.  Therefore, he reclassified 

the problematic axiom as a postulate (his sixth).  His classification treats geometry as a 

physical study of constructible entities.  A concept is particular to geometry if it can 

be constructed, i.e. the postulates are those enunciations that can be recognized in an 

image.  This is a much looser requirement than Commandino’s since some concepts 

that can be constructed, e.g. straight lines, need not be constructed to be understood.   

Thus, in Billingsley’s classification, the principle that two straight lines cannot enclose 

a surface is a postulate because a straight line, as a concept that can be drawn, is 

particular to geometry.  He offered a diagram (Figure 4) to help his reader assent to the 

claim.  Since the diagram illustrates an impossibility rather than a concrete entity, 

Billingsley suggested that the reader imagine moving the lines to attempt other 

configurations, cementing the image of geometry as a concrete study of physical, 

manipulable bodies. 

Unlike his two contemporaries, who found distinct ways to combine Proclus’s 

distinctions, Clavius chose one of the ancient distinctions as his guiding principle: 

postulates required something to be constructed, while axioms required only the use of 

reason.  In fact, he explicitly rejected the distinction that postulates were specific to 

geometry while axioms were general truths on the grounds that the postulates which 

address the extension of magnitudes could be recast as general to all kinds of 

quantities, and the axioms which address the physical configurations of magnitudes 
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Figure 4: Billingsley’s Sixth Postulate and its Construction. 

Note that the drawing is intended to convey the impossibility of enclosing a space.  This 
diagram is a “proof” by contradiction. 
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only applied to geometry.77  By abandoning the stipulation that postulates be more 

specialized than axioms, Clavius was able to offer a precise and easily identifiable 

distinction between the two kinds of principles.  Postulates require something to be 

done and are, therefore, presented as a permitted task.  For example, the first postulate 

says, “It is postulated that it is allowed to draw a straight line from any point whatever 

to any point.”78  In contrast, axioms rely only on reason and are written as true claims.  

For example, the first axiom says “Those things which are equal to the same thing are 

equal to each other.”79  Proclus had noted two enunciations that failed to meet this 

distinction in Euclid’s ordering.  Those were the fourth and fifth postulates.  The 

fourth postulate says that all right angles are equal.80  The fifth postulate is the parallel 

postulate which says that if two straight lines are cut by a third such that the interior 

angles made by each of the first two lines with the third on the same side sum to less 

than two right angles, the first two lines will eventually intersect on that side of the 

third line.81  Since neither can be reduced to a task, Clavius reclassified these entities 

																																																													
77 Clavius, Euclidis Elementorum, 20v. “Constat quoque Postulatorum alia propria esse Geometriae, 
qualia sunt illa tria, quae Euclides nobis proposuit; quaedam vero communia & Geometriae, & 
Arithmeticae, cuiusmodi est hoc, Quantitatem posse infinite augeri.  Tam enim numerus, quam 
magnitudo per additionem augeri potest, ita ut nunquam huius incrementi finis reperiatur.  Idem dices 
de Axiomatis, sive pronunciatis.”  The axioms in question are the eighth, tenth, eleventh, twelfth, and 
thirteenth.  See Table 1 for the enunciations. 
78 Ibid., 14r. “Postuletur, ut a quovis puncto in quodvis punctum, rectam lineam ducere concedatur.”		
79 Ibid., 15r “Quae eidem aequalia, & inter se sunt aequalia.”  
80 Clavius had already included a demonstration for this axiom in his commentary on the definition of 
right angles.  He made no mention of that demonstration in his discussion of the axiom. (Clavius, 
Euclidis Elementorum, 17r.) 
81 In the sixteenth century, mathematicians recognized the parallel postulate as somewhat problematic 
because it is much less obvious than the other postulates and axioms.  Indeed, its converse (the claim 
that if the internal angles do sum to two right angles, the lines are always separated by the same space) 
is later proven as one of the propositions.    Commandino and Clavius both noted the doubts about the 
status of the parallel postulate as obvious enough to be classed among postulates or axioms 
(Commandino, Euclidis Elementorum, 6v; Clavius, Euclidis Elementorum, 17v-18r.)  Many 
mathematicians, both ancient and modern, made efforts to prove the parallel postulate.  Clavius 
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as axioms without any discussion of that choice.  Furthermore, in Clavius’s eyes, the 

enunciation on which Commandino and Billingsley differed, clearly belonged with the 

axioms.  It is true that two straight lines cannot enclose a space, but it cannot be 

presented as a construction to be done, so it does not matter whether it is seen as 

particular to geometry.   

Besides eliminating the need to define what it meant for a concept to be 

particular to geometry, Clavius’s distinction served to combine the Platonic reason-

based approach to geometry emphasized by Commandino and the physical approach 

emphasized by Billingsley.  In Commandino’s distinction, physical constructions 

served as a tool to extend the reach of reason.  In Billingsley’s, reason operated as a 

tool to make sense of physical constructions.  By separating the two approaches to 

geometry from one another, Clavius was able to give them equal weight and to 

provide geometry a role in the development of both abstract and concrete knowledge, 

allowing it to be a versatile discipline.  Since, as Proclus and the three commentators 

studied here acknowledged, the same distinction was used to differentiate between the 

two types of propositions – problems, which require something to be constructed or 

done to a figure and theorems, which require the demonstration of a general property 

of a geometrical concept –  the  balance Clavius struck carried over into the rest of the 

																																																													
included a proof from Proclus’s work after Euclid’s demonstration of the converse. (Clavius, Euclidis 
Elementorum, 49r – 50r). Clavius made no comment as to the validity of the proof he presented.  His 
inclusion of the proof suggests that he thought it was perfectly sound.  Since he had already included a 
proof for another axiom, he clearly did not see a problem with including axioms that could be proven.  
Commandino did not include a proof for the postulate.  His choice to leave out any proof seems to be a 
choice to preserve the ancient Euclidean text as best as possible. He also may have been concerned that 
Proclus’s proof was invalid and did not want to include something that could damage his claims about 
the unquestionable truths found in mathematical demonstrations.  Billingsley makes no comment on 
any of the doubts surrounding the parallel postulate.  Nor does he include any demonstrations for it.  
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text and enabled him to show early on that each of Euclid’s enunciations was 

necessary piece of the foundation for the building of the mathematical disciplines. 82    

 

Propositions 

Propositions differ from the first three kinds of Euclidean principles in that 

they are not immediately obvious and require proof in order to be accepted.  Problems, 

propositions which instruct the reader to do something, require first a construction to 

fulfill the given task and then a demonstration that that construction did indeed solve 

the problem.  Theorems, propositions which state a relationship between geometric 

entities, require a demonstration that the claim is necessarily true.  It is through these 

demonstrations, which constitute the majority of the Euclidean text, that geometry 

builds its knowledge from the fundamental principles found in the definitions, 

postulates, and axioms to non-obvious claims like the Pythagorean Theorem.  Their 

																																																													
82 See Clavius, Euclidis Elementorum, 20r-v.  “Colligi potest ex dictis cum Proclo, & Gemino hoc 
discrimen inter postulata, & Axiomata, quod cum utraque sint per se nota, & indemonstrabilia, illa 
naturam sapiunt Problematum, propterea quod aliquid fieri exposcant; haec vero, Theoremta imitantur, 
cum nihil fieri petant, sed solum sententiam aliquam notissimam proponant.”; Commandino, Euclidis 
Elementorum, 6r. “At differunt axiomata a postulatis eodem prorsus modo, quo theoremata a 
problematibus.”; Billingsley does not explicitly acknowledge the similarity, but it is obvious from a 
quick comparison of his descriptions of the difference between postulates and axioms and of problems 
and theorems. Billingsley, Elements of Geometrie, On the difference between postulates (peticions) and 
axioms (common sentences):  “Peticions also are very manifest, but not so fully as are the common 
sentences, and therfore are required or desired to be graunted.  Peticions also are more peculiar to the 
arte wherof they are: as those before put are proper to Geometry: but common sentences are generall to 
all things wherunto they can be applied.  Agayne, peticions consist in actions or doing of somewhat 
most easy to be done: but common sentences consist in consideration of mynde, but yet of such thinges 
which are most easy to be understanded, as is that before set.”  (p. 6v).  On problems and theorems: “A 
Probleme, is a proposition which requireth some action, or doing: as the making of some figure, or to 
devide a figure or line, to apply figure to figure, to adde figures together, or to subtrah one from 
another, to describe, to inscribe, to circumscribe one figure within or without another, and such like.”  
“A Theoreme is a proposition, which requireth the searching out and demonstration of some propertie 
or passion of some figure: Wherin is onely speculation and contemplation of minde, without doing or 
working of any thing.” (p. 7v).  
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certainty was the grounds on which mathematical knowledge could be accepted.83  

Thus, in order to understand how each author defined mathematical knowledge, it is 

necessary to understand how they approached propositions and explained what was 

required for a complete demonstration.   

  All three authors included general descriptions of the parts of a proposition 

early in the first book.  The differences in the content and presentation of these 

descriptions illustrate each author’s vision of mathematics.  Even though Commandino 

and Billingsley both drew their six-part anatomy of a proposition from a common 

source, Proclus’s commentary on the first book, their uses of the ancient text reveal 

Billingsley to be interested solely in making the content of The Elements accessible, 

and potentially useful and show that Commandino sought to present geometry as a 

coherent system of knowledge.84  In both of their texts a complete proposition is said 

to consist of the proposition (the concept that is to be proved), the exposition (any 

given parameters), the determination (the declaration of what needs to be done), the 

construction (the diagramming of whatever is necessary to do the problem or prove the 

theorem), the demonstration (the reasoning and proof for the proposition), and the 

conclusion (just the proposition, again). Like Proclus, both Commandino and 

Billingsley noted that of these six parts only the proposition, demonstration, and 

conclusion were always necessary.85   However, while Billingsley stopped at that 

																																																													
83 For a discussion of sixteenth-century arguments for mathematical certainty, see Chapter 1.	
84 Proclus, Commentary on the First Book, 157-167. 
85 Billingsley, Elements of Geometrie, 8v, “But all those partes arte not of nessitie required in every 
Probleme and Theorem.  But the Proposition, demonstration, and conclusion, are necessary partes, & 
can never be absent: the other partes may sometymes be away.”; Commandino, Euclidis Elementorum, 
7r, “Maxime autem necessariae, & quae in omnibus insunt Propositio, Demonstratio, & Conclusio: 
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point, Commandino continued to follow Proclus to include an explanation for why the 

exposition, determination, and construction could be left out.  Thus, it is clear that 

Billingsley, who only presented the components a reader could expect to find in a 

proposition, used Proclus’s explanation to provide his reader with a practical guide to 

the text, not to describe the nature of mathematical knowledge.86  In his eyes, the 

content of the propositions mattered more than their philosophical status.   

In contrast, Commandino, in order to present Euclidean geometry as a 

complete system of knowledge, needed to assure his reader that the each proposition 

was in and of itself complete.  Thus, he could not be cavalier about discrepancies 

between his description of a complete proposition and the structure of the 

propositions.  Following Proclus, he observed that the exposition and the 

determination were simply restatements of pieces of the proposition.  Furthermore, in 

some propositions nothing is given, so an exposition becomes unnecessary.  And 

finally, while the construction is, by definition, always required in a problem, some 

theorems, especially those in the books on number theory, do not require a 

construction because the exposition in the proposition is sufficient basis for a reasoned 

demonstration of the claim.87   

																																																													
oportet enim ante cognoscere quaesitum, perque media ostendere.”  ; Proclus, Commentary on the First 
Book, 159. 
86 Billingsley’s willingness to ignore Proclus’s descriptions of the nature of mathematical knowledge 
was somewhat countered by John Dee’s “Mathematicall Preface,” which is devoted to a description of 
the nature of mathematics in all of the branches identified by Dee. However, Dee did not discuss the 
structure of mathematical demonstrations found in Euclid.   
87 Commandino, Euclidis Elementorum, 7v; Proclus, Commentary on the First Book, 159-161. 
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For Clavius the description of a proposition served to identify the ways in 

which Euclidean demonstrations created knowledge: physically through constructions, 

and rationally through logical demonstrations.  He did not include Proclus’s anatomy 

of a proposition, and instead only named the construction and the demonstration as the 

two essential pieces of most propositions, although he acknowledged that some 

theorems could be demonstrated without a construction.88  By simplifying the 

description of a proposition, he drew the readers’ attention to the ways in which 

geometry propositions developed new knowledge.  Even in Proclus’s six-part division, 

the constructions and demonstrations are the only parts that go beyond the enunciation 

of the proposition.  Constructions provide knowledge through the creation of physical 

diagrams; demonstrations use reason to uncover universal truths about geometrical 

entities (with or without a diagram).  Thus, in Clavius’s explanation of a proposition, 

mathematics is seen as a versatile combination of concrete physical study with rational 

demonstrations that lead to universal truths. 

The placement of each author’s discussion of the parts of a proposition further 

suggests his approach to mathematics.  Commandino was the only commentator who 

positioned his discussion of propositions as an abstract introduction to the structure of 

																																																													
88 Clavius, Euclidis Elementorum, 21v, “Quod idem in aliis problematis perspici potest.  Haec etiam duo 
reperiuntur fere in omni Theoremate.  Saepenumero enim ut demonstretur id, quod proponitur, 
construendum est, ac efficiendum prius aliquid, ceu manifestum erit in sequentibus Pauca vero 
admodum sunt theormata, quae nullam requirant demonstrationem.”  Because Clavius included his brief 
discussion of propositions immediately following the enunciation of the first proposition, which is a 
problem, he stated that constructions and demonstrations are necessary to all problems.  He did mention 
that most theorems include the same two parts, but not all theorems require a construction.  Clavius’s 
placement of his description of propositions between the enunciation of the first problem and its proof 
also provided a pedagogical reason for limiting the discussion to two parts of propositions.  While he 
prepared the reader for what to expect in the subsequent proof, he did not take a long tangent on the 
nature of propositions.   
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mathematical knowledge as it was developed in The Elements.  He placed it in 

between the last axiom and the first proposition, which established it as a treatment of 

the nature of Euclidean mathematics, rather than a description of a kind of Euclidean 

enunciation.  In fact, in addition to his description of propositions, Commandino’s 

discussion provided an extensive examination of the kinds of information that can be 

given, and various extensions that can be added to a proposition, namely, 

demonstrations for multiple cases, lemmas, and corollaries.  While it served to prepare 

the reader for the material to come, it also created a clear picture of geometry as the 

product of a rational development of simple pieces of given knowledge.  From given 

positions (i.e. points), magnitudes (e.g. lines) and kinds (e.g. right, acute, or obtuse 

angles) propositions revealed mathematical truths, and their demonstrations opened 

the door to new claims, lemmas and corollaries, which could transition into new 

propositions.89   Thus, he showed mathematics to be a coherent body of knowledge, 

not just a collection of unrelated facts, earning it a place among the sciences of 

philosophy as a means to make sense of the world.   

In contrast, Billingsley placed his description after the proof for the first 

proposition had been presented, allowing him to use the first proposition as a model of 

all propositions.  While his discussion named and defined the various parts of the 

proposition and made mention of the possibility of multiple cases, it offered no 

explanation of the role each part of a proposition played in building mathematics into 

a coherent system of knowledge from simple assumptions.  Instead, after his 

																																																													
89 Commandino, Euclidis Elementorum, 7r-v.  
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description of a proposition, he simply pointed out the locus of each of the six parts 

within the text of the preceding proof.  For example, he identified the exposition as the 

opening words of the proof: “Suppose that the right line geven be AB.”  As Billingsley 

observed, this sentence “declareth onely the thing geven,” which was the sole task of 

the exposition.90  Thus, his discussion was simply an instruction tool showing how to 

read a proof.  His interests lay in making the information contained within 

mathematics accessible to his readers, regardless of whether they saw the discipline as 

a complete system of knowledge or a collection of independent facts. 

Like Billingsley, Clavius used the first proposition as a concrete example to 

anchor his discussion of the nature of propositions.  However, he placed his 

description between the   enunciation and the proof, thereby allowing him to use the 

first proposition as a tool to guide his reader through a discussion on the development 

of mathematical knowledge and its validity.  In fact, Clavius ignored the specifics of 

the proof, and only used the example to clarify the two necessary components of a 

proposition: the construction, which relied on the postulates, and the demonstration, 

which relied on the axioms and definitions.  He explained that in the case of the first 

proposition, which requires that an equilateral triangle be drawn on a given line, the 

construction of the triangle fulfilled the request of the proposition, and the 

																																																													
90 Billingsley, Elements of Geometrie, 8r-8v. The breakdown of the first proposition also appears in 
Commandino’s commentary.  Like the discussion of the parts of a proposition, it is very similar in the 
two texts, and appears to have been drawn from Proclus’s work (Proclus, Commentary on the First 
Book, 162-164). While Billingsley indicated the exact words from the proof for all six parts of the 
proposition, Commandino did so only for the exposition, determination, and conclusion.  He indicated 
the exact words that begin the construction, but he only described the transition from construction to 
demonstration and from demonstration to conclusion.  Billingsley went on to indicate the parts of each 
proposition with marginal notes in the rest of his text.  
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demonstration showed that the construction was successful, both in that the 

appropriate triangle had been produced and in that the method used would always 

produce such a figure.  According to Clavius, all future problems and most theorems 

followed this pattern of demonstration.  (Some theorems did not require a 

construction).  Thus, for Clavius, the first proposition was an example of the process 

through which mathematics combined physical constructions and logic to build a 

coherent system of knowledge from first principles to complicated propositions.  And 

since he emphasized that Euclidean demonstrations continually built on certain, 

previously accepted truths, his description showed the validity of Euclidean 

demonstrations as sources of new knowledge.   

While Clavius was the only one of the three authors to address the method 

used in Euclidean demonstrations in his description of propositions, all three used their 

commentary on the first proposition to illustrate how Euclidean proofs were to be 

completed.  For Commandino, that meant emphasizing the exclusive use of previously 

accepted claims in building logical arguments from first principles.  To do so, 

Commandino used the first proposition as an exemplar of his earlier description of 

propositions and the way in which they generated knowledge.  His commentary was 

structured as a description of the six parts of the first proposition.  However, 

Commandino’s discussion focused on the construction and the demonstration by 

offering an explanation of the reasoning that made the proof possible and why that 

reasoning should be accepted as a proof of the claim made.91  In those sections he 

																																																													
91 Commandino, Euclidis Elementorum, 8r.  
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reminded the readers of the specific postulates that made the construction possible - 

that a circle can be drawn with any center and any radius, and that a straight line can 

be drawn from any given point to any other point.  Then he briefly alluded to the 

definition – that of a circle – and the axiom – things that are equal to the same thing 

are equal to each other - that made it possible to demonstrate the equality of the three 

sides of the triangle.  Instead of just giving the numbers of the relevant postulates and 

axioms, as Clavius and Billingsley did within their proofs, he provided their content, 

allowing the reader to recognize that the knowledge claims required by the proof were 

indeed first principles to which he had already assented.  Thus, Commandino’s use of 

the first proposition exemplified Euclid’s certain method, not just a complete 

proposition.   

While Commandino sought to convince his reader of the certainty of the 

knowledge created with the method used in Euclidean proofs, Billingsley sought only 

to show his reader what kinds of arguments they could expect in The Elements.  To do 

so, in his commentary to the first proposition, Billingsley included a description of the 

three kinds of demonstrations found in The Elements: composition, resolution, and a 

demonstration leading to impossibility.92  In his view, composition was the most 

common kind of demonstration found in The Elements.  It started with first principles 

																																																													
92 Resolution and composition were not unique to mathematics.  They are both found in Aristotle’s 
Posterior Analytics.  In the mid-sixteenth century, the Paduan philosopher Jacopo Zabarella developed 
their use in natural philosophy as part of his contributions to contemporary debates over the means 
through which knowledge could be created.  For a discussion of the significance of Aristotelian rational 
philosophy in the sixteenth century see Luca Bianchi, “Continuity and Change in the Aristotelian 
Tradition” in The Cambridge Companion to Renaissance Philosophy ed. James Hankins (Cambridge 
University Press, 2007), 49-71. 
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and built to the conclusion.  Resolution did the opposite, beginning with the 

conclusion and working backwards to first principles.  Finally, he described a 

demonstration leading to impossibility as an argument in which an impossible 

conclusion was reached when the principle to be proven or any of its premises were 

assumed to be false.93  Like Commandino, Billingsley relied on examples to illustrate 

the modes of Euclidean demonstration – he showed how the first proposition could be 

done by either composition or resolution, and he told the reader that the fourth 

proposition of the first book would provide an example of a demonstration leading to 

impossibility.94   However, unlike Commandino, he did not place those examples into 

the service of an argument for the certainty of Euclidean geometry as a whole.  While 

the examples asserted the validity of individual proofs, the three methods were not 

united by some underlying principle (such as reliance of first principles), and, 

therefore, Billingsley’s descriptions and examples served only to prepare the reader 

for the kinds of demonstrations used in the rest of the text. 

Since Clavius had already established the sole dependence of demonstrations 

on first principles and prepared his reader for the kinds of demonstrations to expect 

																																																													
93 Billingsley, Elements of Geometrie, 9r. 
94 Ibid., 9r – 9v. In order to complete the demonstration by composition Billingsley argues from the 
definition of a circle that the given line and one new side are equal because they are both radii of the 
same circle.  The same argument applies to the given line and the second new side.  The two new sides 
are then equal to each other because they are both equal to the given line.  Therefore all three lines are 
equal to each other which means that the triangle they form is equilateral, which was the conclusion that 
needed to be reached.  In order to complete the proof by resolution, Billingsley reversed the order of the 
arguments.  Since an equilateral triangle has three equal sides, the three lines must be equal.  Since all 
three lines are equal, each of the new sides is equal to the given line.  This he proved by making the 
parallel arguments about each new side and the given line being radii of the same circle.  The definition 
of a circle requires that the radii of the same circle are equal.  That definition is the undeniable first 
principle reached through resolution.		 
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within his description of proposition, his discussion of the method of Euclidean 

demonstrations was quite different from either of his contemporaries’.  In it he sought 

to justify the place of mathematics within philosophy by illustrating that mathematical 

demonstrations could be made to fit the scholastic standard of proof of syllogisms 

found in Thomas Aquinas’ work, which Jesuit schools used as their basis for much of 

their education.95  He used his commentary to work through the demonstration of the 

first proposition using syllogisms through a process called resolution.  That process 

works by breaking a universal claim into a more basic set of claims, including a 

particular claim about the proposition in question until a definition that cannot be 

resolved is reached.96  In the first proposition, the first syllogism begins with the 

universal claim that all triangles that have three equal sides are equilateral.  Its 

particular claim says that the three sides of the constructed triangle are all equal.  

Therefore, the triangle is equilateral. The next syllogism confirms the particular claim 

of the previous syllogism, and the process continues until the particular claim cannot 

be broken down further as it is a first principle – in this case, the postulate that allows 

																																																													
95 See George Ganss, St. Ignatius’s Idea of a Jesuit University: A Study in the History of Catholic 
Education (Milwaukee: The Marquette University Press, 1956), 54-56.  Ganss notes that Thomas 
Aquinas’s Summa Theologicae was the foundation of Jesuit “scientific theology.”  On page 120 Ganss 
notes that Ignatius “preserved what was of perennial value in the preceding education, especially the 
philosophy and theology which found its best expression in St. Thomas Aquinas.”  Marcus Hellyer 
notes that in natural philosophy the Jesuits were not hegemonically Thomistic.  (Marcus Hellyer, 
Catholic Physics: Jesuit Natural Philosophy in Early Modern Germany (Notre Dame: University of 
Notre Dame Press, 2005), 78.) However, since Aquinas’s methods defined the Jesuit approach to 
theology, it is reasonable to assume that the standard of syllogisms extended into the lower discipline of 
natural philosophy. 
96 Clavius, Euclidis Elementorum, 22r. The use of syllogisms outlined by Clavius is identical to 
Billingsley’s proof by resolution. 

208



the drawing of a line from any point to any other.97  Having illustrated that the first 

proposition could be demonstrated using syllogisms, Clavius immediately inferred that 

all mathematical proofs could be resolved in the same way.  However, he explained 

that most mathematicians neglected to do so because it was easier and more concise to 

build to the final conclusion from first principles as he had done in the original proof 

for the first proposition.98  Thus, Clavius’s syllogistic resolution of the demonstration 

for the first proposition can be seen as an effort to illustrate that mathematical 

demonstrations could be made to fit a contemporary standard of proof, namely, 

syllogisms, even while he embraced the more practical mathematical convention of 

building proofs from first principles to various propositions. 

After the first proposition, none of the authors devoted further discussion to the 

nature of propositions or the methods of demonstration.  However, their various 

approaches to mathematics and The Elements remain evident throughout their work.  

																																																													
97 Ibid., 22r. The whole syllogistic proof is as follows:  Syllogism 1: All triangles that have three equal 
sides are equilateral.  The three sides of the triangle constructed for the first proposition are all equal.  
Therefore, the triangle is equilateral.  Syllogism 2: If two magnitudes are each equal to a third 
magnitude, then they are equal to each other.  The two new sides are each equal to the given line.  
Therefore, all three sides are equal.  Syllogism 3a: Straight lines drawn from the center of a circle to its 
circumference are equal.  The given line, AB, and one new side of the triangle, AC, are both drawn 
from the center of a circle to its circumference.  Therefore, AB and AC are equal.  Syllogism 3b: 
Straight lines drawn from the center of a circle to its circumference are equal.  The given line, AB, and 
one new side of the triangle, BC, are both drawn from the center of a circle to its circumference.  
Therefore, AB and BC are equal.  The particular claims in the final two syllogisms are just versions of 
the postulate that allows the drawing of a straight line from any point to any other.  They cannot be 
further reduced, so the demonstration is complete.	
98 Ibid., 22r-22v. “Non aliter resolui poterunt omnes aliae propositiones non solum Euclidis, verum 
etiam caeterourm Mathematicorum.  Negligunt tamen Mathematici resolutionem istam in suis 
demonstrationibus, eo quod brevius, ac facilius sine ea demonstrent id, quod proponitur, ut perspicuum 
esse potest ex superiori demonstratione.”  Clavius had originally done the demonstration using the 
method Billingsley described as composition.  It is not clear why Billingsley separated composition and 
resolution since it seems where one would work, so would the other.  Clavius treated the two techniques 
as fundamentally the same, with composition being easier to understand.  
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In the rest of this chapter I will analyze the three authors’ approaches to the 

Pythagorean Theorem, the forty-seventh proposition of the first book, to provide a 

complete example of how each author uses the Euclidean text. 

 

Book I, Proposition 47: The Pythagorean Theorem 

The “most celebrated invention of Pythagoras,”99  the Pythagorean Theorem, 

was (and remains) the most famous proposition in The Elements.  As is well-known, it 

relates the lengths, a and b, of the legs of a right triangle to the length, c, of the 

triangle’s hypotenuse and can be interpreted by the now well-known formula a2+b2 = 

c2.  In Billingsley’s words, the Pythagorean Theorem reads, “In rectangle triangles, the 

square whiche is made of the side that subtendth the right angle, is equal to the squares 

which are made of the sides contaying the right angle.”100   

All three authors provide a similar proof and follow the same logical 

arguments.  Billingsley and Commandino include identical proofs that have their 

formal six-part structure for propositions.  Immediately following the statement of the 

proposition, they include the exposition, identifying the right triangle as ABC with the 

right angle BAC.  (See Figure 5 for their diagrams).  They then give the determination, 

stating that the square of side BC is equal to the sum of the squares on the sides AB 

																																																													
99 Ibid., 73v. “….ex celeberrimo hoc Pythagorae invento…” 
100 Billingsley, Elements of Geometrie, 57v. It is a word-by-word translation of the Latin found in both 
Commandino and Clavius’s texts.  Their enunciations read “In rectangulis triangulis, quadratum, quod a 
latere rectum angulum subtendente describtur, aequale est eis, quae a lateribus rectum angulum 
continentibus.”  Clavius, Euclidis Elementorum, 72r; Commandino, Euclidis Elementorum, 27v.   
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Figure 5: Diagrams for the Pythagorean Theorem. 

Billingsley’s (top left), Commandino’s (top right), and Clavius’s (bottom) diagrams are 
all quite similar. Clavius included two diagrams because he made explicit note of the 
fact that the theorem holds for both scalene and isosceles right triangles.  His labels are 
also slightly different because he chose to label the point at which the line extended 
from point A intersected line BC in addition to the point at which it intersected line DE.   
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and AC.101  The construction then begins by drawing squares on all three sides of the 

triangle. In the diagram, these are the squares ABFG, ACKH, and BCDE.  It then 

includes the drawing of lines AL, AD, and FC before moving on to the demonstration.  

The lines AE and BK are put off until later in the proof because they are unnecessary 

in the first part of the demonstration.  The demonstration shows that the square ABFG 

is equal to the rectangle BL (named for the diagonal corners).  Arguments based on 

previous theorems demonstrate that triangles FBC and DBA are equal to one another 

and that DBA and FBC are equal to half of BL and half of the square ABFG, 

respectively.  Since FBC and DBA are equal, FBC is also equal to half of BL.  Thus, 

ABFG and BL are both double FBC.  It then follows that square ABFG equals 

rectangle BL.  For the details of all of the arguments see Appendix C in which I 

present a translation of Clavius’s proof for the Pythagorean Theorem. At this point, the 

two authors instruct the reader to draw lines AE and BK to observe that the same 

pattern of arguments used in the demonstration can be show that square ACKH equals 

rectangle CL.  They do not repeat the arguments.  Since BL and CL make up the 

square BCDE, it follows that BCDE equals the sum of ABFG and ACKH.   This final 

claim, which both authors restate as their conclusion, is exactly the proposition.   

Clavius’s proof relies on the same arguments as those found in Billingsley’s 

and Commandino’s texts, but he reorders the elements of the proof in order to improve 

																																																													
101 Billingsley, Elements of Geometrie, 57v.  “Suppose that ABC be a rectangle triangle havying the 
angle BAC a right angle.  Then I say the square which is made of the line BC is equall to the squares 
which are made of the lines AB and AC.” Commandino, Euclidis Elementorum, 27v.  “Sit triangulum 
rectangulum ABC, rectum habens BAC angulum.  Dico quadratum descriptum a recta BC aequale esse 
quadratis, quae ab ipsis BA AC describuntur.” 
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its clarity.102  Like his contemporaries, Clavius opened with the instructions to draw 

squares on the three sides of right triangle ABC.  However, instead of leaving two 

lines out of his initial construction, he immediately instructed his reader to draw all of 

the necessary lines to create all of the required triangles and rectangles.  Only once the 

entire construction is complete did Clavius begin the demonstration, and, unlike 

Billingsley and Commandino, he presented it in full.   

Although Clavius’s changes to the proof were not substantive, they did allow 

him to provide greater guidance to his reader.  In preserving the distinction between 

the construction and the demonstration, he helped eliminate possible confusion owing 

to lines that appeared in the diagram but were not mentioned in the original 

construction.  His approach also allowed him to present the arguments for both halves 

of the demonstration side-by-side in only a few more words than Billingsley and 

Commandino had used for their presentations of just half of the proposition.  By 

leaving nothing to the reader, Clavius ensured that neither struggling students nor 

underqualified teachers would err in the development of the second half of the 

demonstration. 

Once the text of the proof was completed, all three authors included some 

commentary on the proposition.  Each began with the same basic story about 

Pythagoras’s discovery of the theorem: he was so overjoyed by the discovery of this 

																																																													
102 Clavius’s ordering of the elements of the demonstration seems to have been unique.  The order found 
in Commandino’s and Billingsley’s texts also appears in Campanus’s, Candalla’s, and Peletier’s. They 
also all leave the second half of the proof to the reader.   For Campanus, see H.L.L Busard, Campanus 
of Novara and Euclid’s Elements, Vol 1. (Germany, Franz Steiner Verlag, 2005), 92-93.  For Candalla, 
see Candalla, Euclidis Megarensis (1566), 14r-v.  For Peletier see, Peletier, In Euclidis Elementa, 46. 
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theorem that he immediately offered a sacrifice to the gods.  They differed as to the 

sacrifice’s extent.  For Commandino and Billingsley it was a single ox, but according 

to Clavius, there were those who increased that number a hundredfold.103  Regardless, 

the anecdotes establish that the ancients, whose authority was a significant part of 

arguments for the status of mathematics, valued the theorem without indicating 

why.104  On that point, the three commentaries diverge.  Commandino focused on the 

theorem’s generalizability, giving it value as the foundation for a more universal 

claim.  Billingsley emphasized problems that could be solved using it, thereby 

privileging its practical implications.  Clavius, whose commentary was the most 

extensive and included everything found in his two contemporaries’ works, did both.     

For Clavius and Commandino, the Pythagorean Theorem reflected more 

general claims about the relationships between figures drawn on the sides of triangles.  

Clavius offered two generalizations as the bookends of his commentary, while 

Commandino restricted his to a reference to a more general proposition that appears in 

																																																													
103 Commandino, Euclidis Elementorum, 28r, “Hoc theorema ad pythagoram referunt, dicuntque eum 
cum illud invenisset, bovem immolasse.” Commandino gave no citation for the story of the sacrifice.; 
Clavius, Euclidis Elementorum, 72v, “Inventio huius theorematis ad Pythagoram refertur, qui, ut scribit 
Vitruvius lib. 9 hostias Musis immolavit, quod se in tam praeclaro invento adiuverint.  Sunt qui putent, 
eum immolasse centum boves; sit amen Proclo credendum est, unum tatummodo obtulit.”  Billingsley, 
Elements of Geometrie, 58r;  “This most notable and excellent theorem was first invented by the 
philosopher Pithagoras, who for the exceeding joy conceived of the invention therof, offered in fair 
sacrifice an Oxe, as recorde Hierone, Proclus, Lycius, and Vitruvius.” Although Billingsley did not cite 
Peletier at this point in his commentary, his version of the story seems to be based on the French 
mathematician’s work.  Peletier’s text reads “Haec est illa tam celebris Demonstratio a Pythagora 
Philosopho pervestigata: ob quam per gaudio bovem Daemonibus immolavit, si Heroni, Proclo, Lycio, 
et Vitruvio credinus.” (Peletier, In Euclidis Elementa, 47.)   
104 For some discussion of the significance of the authority of ancient scholars in establishing the value 
of mathematics, see chapter 1 in which I presented the antiquity of mathematics as one argument 
humanist scholars made for the nobility of their discipline.  
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Euclid’s sixth book.105  That theorem, also the first bookend in Clavius’s commentary, 

claims that any rectilinear figure built on the hypotenuse of a right triangle will be 

equal to the sum of similar figures built on the legs.  While Commandino did no more 

than point the reader to this more general claim, Clavius used this opportunity to 

discuss how mathematicians might develop their theorems.  For him, the Pythagorean 

Theorem was not only a particular case of more general claims; it was also a stepping 

stone to their discovery.  

Clavius speculated that Pythagoras arrived at his theorem through the analysis 

of sets of numbers known today as “Pythagorean triples.”  Upon noticing that the 

numbers 3, 4, 5 share the relationship between squares described in the theorem, and 

observing that when formed into a triangle, the triangle has a right angle, Pythagoras 

investigated other such sets of numbers and eventually all right triangles to develop his 

famous theorem.  Clavius argued that the more general proposition in the sixth book 

came from pushing this inquiry a step further.  If the relationship holds true for 

squares, why not investigate other figures?  Through this discussion Clavius created an 

image of mathematics as a field of universal truths that can be found by observing and 

analyzing the relationships between numbers or magnitudes.   

Clavius’s second bookend is a further generalization of the theorem, namely, 

Pappus’s area theorem, that describes the conditions necessary for the sum of the areas 

																																																													
105 Commandino, Euclidis Elementorum, 28r. “Quod autem ab Euclide in sexto libro conscribitur multo 
unviersalius est. ostendit enim in rectangulis triangulis figuram, quae sit a latere rectum angulum 
subtendente aequalem esse figuris, quae a lateribus rectum angulum continentibus, priori illi similes, & 
similiter positae, describuntur.”  The referenced proposition is VI.31 This quotation is the second and 
third of the three sentences that comprise Commandino’s commentary on the Pythagorean Theorem.  
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of arbitrary parallelograms drawn on two sides of any triangle to be equal to the area 

of a parallelogram drawn on the remaining side of the triangle.106  Because Pappus’s 

area theorem describes a particular set of conditions, it could have been written in the 

form of a problem requesting the construction of the third parallelogram with a 

diagram-based description of the necessary steps to construct the third parallelogram.  

However, Clavius noted that he chose to write it as a theorem for increased clarity and 

because he judged it to be more general in that form.107  Using the semantic form of a 

theorem ensured that his reader could easily recognize that the generalization was 

indeed a universal truth with wider applications than the Pythagorean Theorem.   

For Clavius and Billingsley, the theorem’s utility was also paramount.  

Between his universalizing bookends, Clavius introduced eight claims with the 

																																																													
106 Commandino also included this generalization in his text, but he placed it in his commentary on the 
generalization of the Pythagorean Theorem found in Book Six (Commandino, Euclidis Elementorum, 
86r).  In his discussion of the Pythagorean Theorem, Commandino made no mention of this 
generalization, suggesting that he thought the more general claim found in the sixth book was more 
worthy of expansion and, therefore, more significant than the Pythagorean Theorem.  It is possible that 
Commandino’s text was Clavius’s source for this particular generalization.  In his commentary on the 
proposition in the sixth book, Clavius noted that he included Pappus’s area theorem in his discussion of 
the Pythagorean Theorem, which suggests that he was aware of his contemporary author’s placement of 
the theorem in the sixth book (Clavius, Euclidis Elementorum, 222r).  	
107 Clavius, Euclidis Elementorum 75v.  “Theoremate vero hoc Pythagoreo multo universalius est illud, 
quod a Pappo demonstratur in omni triangulo, sive illud rectangulum sit, sive non, & de quibuscunque 
parallelogrammis super latera trianguli constructis, tam rectangulis, quam non rectangulis, etiamsi non 
sint inter aequiangula.  Quod nos in formam theorematis redigentes, clarius hoc modo proposuimus, & 
meo iudico generalius.” In Clavius’s text the theorem reads “In omni triangulo, parallelogramma 
qauecunque super duobus lateribus descripta, aequalia sunt parallelogrammo super reliquo latere 
constituto, cuius alterum latus aequale sit, & parallelum rectae ductae ab angulo, quae duo illa latera 
comprehendunt, ad punctum, in quo convenient latera parallelogrammorum lateribus trianguli opposita, 
si ad partes anguli dicti producantur.” In contrast, in Commandino’s text Pappus’s area theorem appears 
as the solution to an unstated problem.  It describes the construction of the desired parallelograms on a 
particular triangle. “Si sit triangulum ABC, & ab ipsis AB BC describantur quaevis parallelogramma 
ABED BCFG, & lineae DE FG prducantur ad H, iungatur que HB fient parallelogramma ABED BCFG 
aequalia parallelogrammo contento AC HB, in angulo, qui utrisque BAC DHB sit aequalis.”  
(Commandino, Euclidis Elementorum, 86r). 
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assertion that they exhibit that utility.108  Although he gave no concrete examples of 

how or when any of the claims might actually be used, by presenting them as 

consequences of the Pythagorean Theorem, he imbued them with utility simply by 

virtue of being applications.  Billingsley must have held a similar notion of potential 

utility since his commentary consisted of four such applications. 109  In both Clavius’s 

and Billingsley’s works, most of the additions, five of Clavius’s and three of 

Billingsley’s, were presented as problems, which require the completion of a particular 

task, and so are useful.  Furthermore, five of Clavius’s claims and three of 

Billingsley’s address relationships between squares, extending Euclid’s discussion of 

triangles to other planar figures, a clear reminder that the propositions found in Euclid 

																																																													
108 Clavius, Euclidis Elementorum, 73v – 75r. “Colliguntur ex celeberrimo hoc Pythagorae invento 
plurima scitu non iniucunda tam theoremata, quam problemata, e quibus visum est ea duntaxat in 
medium proferre, quae utilitatem magnam rebus Geometricis allatura creduuntur, initium hinc 
sumentes.” The eight claims are as follows.  1. Si in quadrato quovis diameter ducatur, quadrtum a 
diametro descriptum duplum erit praedicti quadrati.  2. Quadratum diametri figurae altera parte 
longioris aequale est duobus quadratis laterum inaequalium.  3. Si fuerint duo triangula rectangula, 
quorum latera rectis angulis opposita sint aequalia, erunt duo quadrata reliquorum duorum laterm unius 
trianguli aequalia duobus quadratis reliquorum duorum laterum alterius. 4. Duobus quadratis 
inequalibus propositis, invenire alia duo quadrata, quae & aequalis sint inter se, & simul sumpta 
aequalia duobus inaequalibus propositis simul sumptis.  5. Propositis duabus lineis inaequalibus, 
invenire id, quo plus potest maior, quam minor. 6.  Propositis quotcunque quadratis, sive aequalibus, 
sive inaequalibus, invenire quadratum omnibus illis aequale.  7.  Propositis duobus quadratis 
quibuscunque, alteri illorum adiungere figuram, quae reliquo quadrato sit aequalis, ita ut tota figura 
composita sit etiam quadrata.   8. Cognitis duoobus lateribus quibuscunque trianguli, in cognitionnem 
reliqui lateris pervenire.  
109 Billingsley, Elements of Geometrie 58v-59r. The additions presented are as follows: 1. To reduce 
two unequall squares to two equall squares.  2. If two right angled triangles have equall bases, the 
squares of the two sides of the one are equal to the squares of the two sides of the other.  3. Two 
unequall lines being geven, to know how much the square of the one is greater than the square of the 
other.  4.  The diameter of a square being geven, to geve the square thereof.   This last addition is 
accompanied by a corollary: “Hereby it is manifest, that the square of the diameter is double to that 
square whose diameter it is.” Only the last of Billingsley’s additions is not found in Clavius’s text.  
However, Clavius did include the corollary as one of his additions, but, since that corollary was not 
written in the form a problem, it shows his own biases towards illustrating the nobility of mathematics 
with universal claims rather than the demonstrating the utility of mathematics with task-specific 
problems.   
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could be applied beyond their immediate topics.  In both texts, the additions lend a 

handbook quality to the commentaries.  While neither author presumed to guess when 

these particular tasks might be required, both supplied them, so that the reader who 

found a need to double a given square or find a square with an area equal to the sum of 

areas of any number of given squares could return to the commentary and find the 

relevant addition.       

Billingsley clearly made a conscious decision to include only concrete and 

potentially applicable claims in his commentary on the theorem.  The one claim that is 

not written as a problem could not take that form, but was clearly related to the two 

problems surrounding it.  It states that if two right triangles have the same hypotenuse, 

the sums of the squares of the sides of each triangle are equal to each other. It follows 

immediately from the demonstration of the previous problem, which requires that two 

unequal squares be reduced to two equal squares, and could have been called a 

corollary to that problem.110   It also was necessary to the completion of the problem 

laid out in the following addition, which asked the reader to find the difference 

between squares on unequal lines.  Furthermore, Billingsley used Jacques Peletier’s 

1557 commentary as his source for additions to the Pythagorean Theorem, but the four 

claims he added do not include all of the French mathematician’s commentary on the 

theorem.111   Besides the additions Billingsley translated, Peletier offered his reader a 

																																																													
110 Reducing two unequal squares to two equal squares means finding two equal squares which sum to 
the same total as the two unequal squares.  
111	Billingsley, Elements of Geometrie, 58v-59r.  He did explicitly credit Peletier’s work for all four of 
his additions.  Each one is introduced with a heading that says “An addition of Peletier” or “Another 
addition of Peletier.”	
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lengthy argument for the validity of the Pythagorean Theorem for both isosceles and 

scalene right triangles. In this discussion he included alternate proofs of the theorem 

for isosceles and scalene right triangles and demonstrations of relationships between 

angles and sides within right triangles.112  This section examines properties of right 

triangles to justify that the theorem holds true for all right triangles.  It does not extend 

the Pythagorean Theorem to possible applications. Billingsley’s likely left it out 

because it could not provide concrete benefits beyond what the theorem itself already 

covered.   

While Commandino and Billingsley both took a narrow approach to their 

commentaries on Pythagoras’s theorem, Clavius not only included everything his 

contemporaries discussed, but he attempted to combine the nobility of mathematics as 

a source for universal truths found in Commandino’s generalizations of the 

Pythagorean Theorem with the utility found in Billingsley’s consequences.  In one 

attempt at combining the two facets of mathematics, he included a practical 

description of two methods for generating Pythagorean triples.  One starts from any 

odd number and the other starts from any even number, thereby providing readers with 

a quick way to create a right triangle with any given length for the shortest side.  Yet, 

he also suggested that such practical tricks for finding Pythagorean triples may have 

																																																													
112 Peletier, In Euclidis Elementa, 47-48. The alternate proof for isosceles triangle relies on dividing the 
square on the hypotenuse into four equal triangles each of which is shown to be half of the square on 
one of the legs.  The alternate proof for scalene triangles also holds for isosceles triangles.  It relies on 
using the height of the original triangle to divide it into two smaller right triangles.  The two smaller 
triangles and the original triangle are all similar to one another.  The ratio between each of the smaller 
triangles and the large triangle is the ratio between one of the legs and the hypotenuse.  Using the 
principles of similarity and the ratios between the sides of the three triangles, Peletier deduces the 
Pythagorean Theorem.   

219



helped Pythagoras develop his universal theorem in the first place.  When introducing 

the intermediate eight claims Clavius describes them as “not unpleasant to know” 

before claiming that they illustrate the utility of geometry.113  By including elements 

of the two facets of mathematics throughout his commentary, Clavius allowed his 

students to see that mathematics was valuable both for its ability to uncover universal 

truths and for its potential for mundane applications.  

 

Conclusion 

 The three commentaries on The Elements studied here were part of a 

widespread sixteenth-century renaissance in mathematics that included the publication 

of myriad versions of Euclid’s foundational text.  And while mathematicians across 

Europe agreed that the content of The Elements had retained its value as true 

knowledge over the two millennia since Euclid had written, each commentator 

designed his own version of the text to advance a particular vision of mathematics and 

its value.   For Commandino and Billingsley, those projects were well-defined.  The 

former wrote his commentary as part of his project to restore ancient mathematics.  

His humanist goals were well-suited to his position as a tutor in the Urbino court and 

allowed him to present mathematics as a branch of philosophy, intermediate between 

natural and divine philosophy, worthy of study for its ability to uncover universal 

truths.  Billingsley’s project could not have been more different.  His commentary on 

																																																													
113 Clavius, Euclidis Elementorum, 73v. “Colliguntur ex celeberrimo hoc Pythagorae invento plurima 
scitu non iniucunda tam theoremata, quam problemata, e quibus visum est ea duntaxat in medium 
proferre, quae utilitatem magnam rebus Geometricis allatura creduuntur, initium hinc sumentes.” 

220



Euclid was intended as a resource for enterprising English artisans, and as such, it 

contained a variety of additions, ancient, medieval, and modern, in order to provide 

readers with as much potentially useful information as possible.  For him, mathematics 

was worthy of study as a tool to guide manipulations of the physical world. 

In contrast, Clavius was writing a textbook for a growing school system which 

did not yet have a clearly defined place for mathematics.  Thus, as part of his efforts to 

secure his disciplines’ status within the schools, he included elements similar to those 

found in both Commandino’s and Billingsley’s texts, illustrating the variety of 

benefits his discipline could offer to his Order.  His hope was that his students would 

be able to build on the ancient, medieval, and modern mathematics he presented to 

further their own studies in mathematics and beyond in order to benefit the Society in 

Europe and abroad.  The end result was an extensive two-volume commentary in 

which Clavius revised Euclidean proofs to improve their clarity and included additions 

from ancient, medieval, and modern sources, providing his students with a rich picture 

of mathematics as both a noble and useful study.   

 Although the commentators made their arguments for the value of mathematics 

most explicitly in their prefaces to their works, which I discussed in chapters one and 

two, their beliefs about mathematics clearly define their approach to the presentation 

of the Euclidean content itself.  This chapter has focused on the first book of The 

Elements, but the three commentators studied here continued in much the same ways 

throughout their texts.   Billingsley did everything he could to provide potentially 

useful information to his reader, frequently adding propositions, especially problems, 
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collected from other commentaries.  Sometimes he included alternate proofs that he 

believed were easier to understand than Euclid’s demonstrations.  In contrast, 

Commandino limited his commentary to clarifications of the proof and propositions, 

especially theorems, developed by ancient authors.  He frequently emphasized the 

universal truth of mathematical claims.  Clavius continued to include almost 

everything found in his two contemporaries’ works along with his own sometimes 

pedantic explanations of the text, showing mathematics to be both a means to access 

universal truths, a branch of philosophy, and a foundation to the practice of a variety 

of useful arts.  The differences in the texts illustrate that the arguments the authors 

made to defend their discipline were not simply rhetoric.  Clavius, Commandino, and 

Billingsley were each so convinced of the visions of mathematics that they painted in 

their prefaces that they tailored the mathematical content of Euclid’s text to embed 

those visions in the very foundations of mathematical study.  
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Chapter Four 
 

Euclid’s Elements of Arithmetic? 
 
“Since, truly, for many, this book is obstructed by difficulties on account of the lines 
which it discusses, I have therefore fought against obscurity with all of my industry, so 
that from these things which have been demonstrated by Euclid up to this point, it is 
rendered level and easy, such that it can be learned without much labor by anyone who 
rightly understands the demonstrations of the preceding books.  And I cannot go 
according to the opinion found in conversation of those who think that that the part of 
arithmetic which treats the roots of numbers, both rational and irrational as they are 
called, is necessary to the understanding of this book.” 1  
 

Clavius, on Book Ten of The Elements, 1574 
 
 

In their prefaces to The Elements, Commandino, Clavius, and John Dee (who 

wrote the preface to Billingsley’s commentary) all provided discussions of the 

divisions of mathematics.  Commandino adhered to the quadrivium; Clavius offered a 

division of mathematics based on intelligible and sensible branches, and Dee created 

his own extensive division.2  All three authors maintained the separation between 

geometry and arithmetic as the two branches of pure mathematics.3  Geometry was 

                                                
1 Christopher Clavius, Euclidis Posteriores libri sex ad XV. Accessit XVI de solidorum rgularium 
comparatione, (Rome: Vincentium Accoltum, 1574), 2r-v. “Quoniam vero hic liber multis obstructus 
est difficultatibus, ob linearum, de quibus disserit, obscuritatem omnes nervos industriae meae in eo 
contendam, ut ex his, quae hactenus ab Euclide sunt demonstrata, ita planus reddatur, ac facilis, ut sine 
multo labore a quovis, qui praecedentium tamen librorum demonstrationes recte intellexerit, possit 
percipi.  Neque in eorum possum sententiam ire, qui putant ad eius intelligentiam esse necessariam eam 
partem Arithmetices, quae de radicibus numerorum, tam rationalibus quam irrationalibus, ut vocant, 
sermonem instituit.”  
2 See Chapter 2 for a discussion of Clavius’s and Dee’s divisions of mathematics.  See chapter 1 for a 
discussion of the quadrivium. 
3 Clavius used the word “pure” to describe geometry and arithmetic in opposition to the “mixed” 
branches of astronomy and music in the quadrivium.  (Christopher Clavius, Euclidis Elementorum Libri 
XV Accessit XVI de solidorum Regularium comparatione (Rome: Vincentium Accoltum, 1574), a7v, 
“Ad has autem quatuor scientias Mathematicas, quarum Arithmetica & Geometria purae, Muscia vero, 
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taken to be the study of magnitude, i.e. continuous quantity, and arithmetic was seen 

as the study of number, discrete quantity.4  In the sixteenth century number was 

usually understood to cover what are today called natural numbers, excluding one, 

which had special status as unity.  Today’s rational numbers were understood as ratios 

between numbers, rather than being treated as numbers themselves.5  They are discrete 

quantities.  Magnitudes were understood as continuous quantities, i.e. lines, and they 

could have two or three dimensions, i.e. surfaces or solid bodies.  Within these 

divisions, there seemed to be little if any reason for geometry and arithmetic to 

overlap.  Indeed, the first six books of The Elements enforce the separation of 

geometry and arithmetic because they treat a wide variety of shapes and figures in one 

and two dimensions without the use of numbers. Even the study of proportion in the 

fifth and sixth books is presented through the relationships between lengths of lines 

and areas of figures.  However, the next three books of The Elements address the study 

of number, and the propositions found in those books are frequently used in the 

                                                
atque Astronomia mixtae dicunt.”  Dee and described geometry and arithmetic as the “principall” 
branches of mathematics.  (John Dee, “Mathematicall Preface” in Henry Billingsley, The Elements of 
Geometrie of the most auncient Philospher Euclide of Megara, (London: John Daye, 1570), *jr. “Of 
Mathematicall thinges, are two principall kindes: namely, Number, and Magnitude.”  On the 
Groundplat arithmetic and geometry are labeled “Principall.”   Commandino, in his description of the 
intelligible and sensible branches of mathematics called arithmetic and geometry the two “leading” 
branches of mathematics.  Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus 
Chriegher German, 1572), *4v, “Atque huius sane generis duas principes, longeque praestantes 
ponimus species, Arithmeticam 7 Geometriam.”) “Pure mathematics” has proved to be a long-lasting 
term, although today it applies to a great deal more than geometry and arithmetic.   
4 I will use “number” to indicate a subject of study and “numbers” to indicate the collection of entities 
that make up that subject. 
5 See Stillman Drake, “Euclid Book V from Eudoxus to Dedekind,” in Essays on Galileo and the 
History and Philosophy of Science, vol. 3.  Selected by N.M. Swerdlow and T.H. Lawrence, (Toronto: 
University of Toronto Press, 1999), 61.  Drake describes the definition of number at the time of 
Eudoxus of Cnidos in the fourth century BCE since Book Five of The Elements is believed to be mostly 
Eudoxus’ work.  That definition of number seems to have been transmitted to the sixteenth century 
along with the ancient texts.  
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demonstrations for the later propositions, especially in the study of commensurability 

in Book Ten.  Thus, by the end of The Elements, it is not clear that the divide between 

arithmetic and geometry was necessarily seen as rigid in the sixteenth century.   

The problem of the relationship between arithmetic and geometry is at least as 

old as The Elements, and is best seen in Book Five, in which Euclid defined proportion 

for magnitudes.  Stillman Drake noted that some recent commentators on The 

Elements, including Thomas Heath, assumed that Euclid saw number, which could not 

be indefinitely divided, as a special case of magnitude, which could be indefinitely 

divided.  However, Drake rightly pointed out that such an assumption, while an easy 

leap to make for a twentieth-century mathematics student who is familiar with the 

nineteenth-century definitions of the set of real numbers as a continuum, is not an 

accurate reflection of the Euclidean text, in which the divide between number and 

magnitude was seen as rigid.6  Thus, Euclid’s fifth and seventh books develop two 

distinct theories for proportion, one for magnitude and one for number.  However, 

between the fourth century BCE and the sixteenth century, a crucial definition from 

the fifth book (the definition that identifies what it means for two magnitudes to have a 

ratio to one another) was lost, effectively destroying a geometric notion of proportion 

until Bartolomeo Zamberti translated Theon’s version of The Elements along with the 

necessary definition in 1505.7  Thus, in the sixteenth century, scholars working on 

Euclid’s text were confronted with a numerical theory of proportion that had been 

                                                
6 Ibid., 62-63. 
7 Ibid., 64-68 
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used by medieval authors to make sense of Book Five, and a much less developed 

geometric theory of proportion that could be attributed solely to ancient authors.    

Because medieval scholarship had necessarily blurred the line between 

arithmetic and geometry in order to make sense of Euclid’s fifth book, as each 

sixteenth-century commentator worked his way through The Elements, he had to 

decide what role arithmetic played in the study of geometry.   Was arithmetic 

necessary to geometry as a foundational discipline?  Was it an equal and analogous 

study?  Was it a study that itself depended on geometry?  Was it simply a useful tool 

that could make the study of geometry easier?  Answering these questions required the 

each mathematician to define for himself a particular vision of his discipline based on 

his assumptions about the relationships between number and magnitude.  Thus, the 

role each author assigned to arithmetic within The Elements was an answer to the 

philosophical question of the nature of the subject of mathematical study. 

As was the case with many questions in philosophy of mathematics, the 

question of the relationship between arithmetic and geometry came to bear on the 

question of the status of mathematics.8  As I discussed in Chapter 1, arguments for the 

nobility of mathematics included arguments for the nobility of the subject being 

studied.  For many humanist mathematicians, including Clavius and Commandino, 

those arguments centered on the nobility of magnitudes.  The perfect entities that 

                                                
8 For a discussion of the importance of the philosophy of mathematics to the development of 
mathematical practice in the seventeenth century see Paolo Mancosu, Philosophy of Mathematics & 
Mathematical Practice in the Seventeenth Century, (Oxford: Oxford University Press, 1996).  In 
Chapter 1, Mancosu traces the significance of the “Quaestio de Certitudine Mathematicarum” which 
was at the heart of the sixteenth-century debate over the status of mathematics in the development of 
seventeenth-century mathematics.   
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authors claimed gave mathematics its nobility of subject matter are circles and 

spheres, geometric entities.  As the study of heavenly bodies, which were believed to 

be spheres, and their motions, which were believed to be circular orbits, astronomy 

examined precisely those entities.  Even arguments for the certainty of mathematics 

usually focused on the cumulative nature of geometric proofs found in The Elements.  

Other arguments imbued number with spiritual qualities.  John Dee, citing Boethius, 

argued that number was a link between the mind of the Creator and all creatures of 

nature and that it could be found in the human soul.9  However, Clavius explicitly 

rejected such a belief as contrary to the Christian faith.10  He instead argued for the 

value of arithmetic as a study that was necessary to civilization.  In his preface to the 

Epitome arithmeticae practicae, Clavius paraphrased Plato making a claim that “those 

who remove arithmetic from their way of life, to such an extent remove good sense 

and all of civilization from the world.”  After all, no business can be conducted 

without arithmetic.11   

The commentators’ arguments for the nobility of their discipline shaped the 

ways in which each mathematician treated the relationship between geometry and 

arithmetic.  For Commandino, who wished to establish mathematics as a branch of 

                                                
9 Dee, “Mathematicall Preface,” *jv.  Dee discusses “Number numberyng” as number in the mind of the 
Creator and “Number numbered” as numbers in all creatures.   
10 Clavius, Euclidis Elementorum, a7r, “Pythagorei enim, atque Platonici existimantes, animas 
rationales certo quodam, ac determinato numero contineri, easque de corpore in corpus migrare, (quod 
tamen christiana fides falsum esse perspicue docet) testantur, eas nomen doctrinae, sive disciplinae 
obtinere, quod maxime ex ipsis nanciscamur recordationem, reminiscentiamque scientia, qua anima 
nostra (ut eorum est error) antequam corpus informaret, erat praeditae.” 
11 Christopher Clavius, Epitome arithmeticae practicae (Rome: Dominici Basae, 1583), 3. “Itaque 
audacius illud quidem, sed tamen vere dixit Plato, prudentiam atque adeo humanitatem omnem e 
mundo eos tollere, qui Arithmeticam e vita tollant; cum sine ea neque publicae, neqe privatae res 
constare possint.” 
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philosophy intermediate between natural and divine philosophy, geometry, whose 

perfect entities he believed could connect the imperfect physical world to the perfect 

world of the divine, was the foundation of all mathematical study.  He used numbers 

as measurements for magnitudes, treating arithmetic only as a descriptive tool within 

geometrical study.  The ancient divide between number and magnitude remained 

intact through the first six book of his commentary, and books seven through ten, as 

they develop the notion of incommensurable magnitudes, show that geometry, as the 

study of continuous magnitude, could transcend arithmetical description.  Billingsley 

established the opposite relationship between geometry and arithmetic.  As was the 

case in Dee’s arguments that number was central to all Creation, in Billingsley’s 

relationship between the two branches of mathematics, number was the means through 

which all objects, including geometrical magnitudes, could be most effectively 

studied.  In fact, Billingsley took the presence of books seven through ten as evidence 

that geometry could not be understood without first grasping the more basic study of 

number.  In so doing, he emphasized the practical value of geometry for its ability to 

describe the physical world.  Clavius struck a balance between his contemporaries.  By 

using numerical analyses as analogs to geometric proofs, Clavius allowed arithmetic 

to serve as a pedagogical aid to geometry, the study he believed to be foundational to 

all of mathematics, but still treated the former field as its own source of mathematical 

knowledge.  

 In this chapter I will explore the relationships between arithmetic and 

geometry as they were developed in the three editions of The Elements.  To do so, I 
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will study the use of number in the first six books and the presentation of the 

mathematics in the seventh through ninth books, the number theory books.  Finally, I 

will conclude by illustrating each authors’ union of arithmetic and geometry in the 

study of commensurability within the proof that the diagonal of a square is 

incommensurable with the side of the same square, which is found at the end of the 

tenth book.12  I hope to show that in his definition of the place of arithmetic in The 

Elements Clavius took a middle road between the extreme approaches of his two 

contemporaries by treating arithmetic as a useful aid to the understanding of geometry 

through the analogies between the two fields.  In so doing, he paved the way for the 

seventeenth-century algebraization of geometry, which Paolo Mancosu has identified 

as one of two shifts in mathematics that allowed seventeenth-century scholars to break 

away from classical mathematics and contributed to the development of calculus.13 

 

Number in Plane Geometry: Barlaam’s Arithmetic Versions of Ten Propositions 

from Book Two 

The first four books of The Elements treat plane geometry through the study of 

various figures examining the properties of triangles, quadrilaterals, and circles.  

Because they present a study of pure magnitudes, there is no obvious reason for 

                                                
12 In modern arithmetical terms, this is the proof that the square root of two is an irrational number.  
13 Mancosu, p. 34.  The other shift was the development and use of infinitary techniques.  Mancosu’s 
discussion of the algebraization of geometry, found in his third chapter, focuses on Descartes’ 
Géométrie.  Descartes had studied at the Jesuit school of Le Flèche.  Another Jesuit, Gregory Saint-
Vincent (1584-1667), who was a student of Clavius’s has been credited with the “clearest early account 
of the summation of a geometric series.”  His work is a known source for Gottfried Leibniz (1646-
1716).  See Margaret Baron, The Origins of Infinitesimal Calculus, (Oxford: Pergamon Press, 1969), 
134. 
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arithmetic to have a presence in these books.  Indeed, as can be seen in Table 2, the 

three authors compared here offer only a few numerical examples to illustrate 

geometrical claims, and those only appear in the first and second books.  Some of 

these uses occur in extensions of the Euclidean proofs, allowing arithmetic to build on 

a geometric foundation.  For example, Commandino’s only use of numbers in these 

books was in an example accompanying instructions to the reader on how to find the 

area of an obtuse triangle.  This numerical example can be found in his commentary 

on a proposition about the relationship between the squares on the sides of an obtuse 

triangle, a concept which has no immediate connection to the area of the triangle 

itself.14  Clavius and Billingsley made similar extensions to a few propositions, and 

they also included a few numerical examples of the concepts described by Euclid.  For 

example, Clavius provided such numerical instances for two axioms addressing the 

differences between two pairs of magnitudes to show the reader that the relationships 

described by the axioms were indeed accurate.15   

The only sustained use of number in these books appears in Billingsley’s 

presentation of numerical versions of the first ten propositions of the second book, 

                                                
14 Commandino, Euclidis Elementorum, 34r-v. This example can be found in his commentary on the 
twelfth proposition of the second book which states, “In obtusiangulis triangulis, quod a latere obtusum 
angulum subtendente fit quadratum maius est quam quadrata, quae fiunt a lateribus obtusum anglum 
contientibus, rectangulo conteno bis uno laterum, quae sunt circa obtusum angulum, in quod scilicet 
protractum perpendicularis cadit, et linea assumpta exterius a perpendiculari ad angulum obtusum.”  
The proposition makes it possible to find the height of an obtuse triangle.  From there Commandino 
describes what the modern reader would recognize as the formula for the area of a triangle, half of the 
product of the base and the height.  Clavius gives a similar example in his commentary to the following 
proposition, where he also provides examples for finding the areas of right and acute triangles.   
15 Clavius, Euclidis Elementorum, 19v-20r. The axioms are the seventeenth (If from unequal 
magnitudes, equal magnitudes are taken away, the difference between the residues will be equal to the 
difference between the totals) and nineteenth (If one whole is double another, and parts are taken from 
each such that the part taken from the first is double the part taken from the second, then the remainders 
are such that the one is double the other).   
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Table 2: The Uses of Number in the First Four Books of The Elements.   
 

N.B. Clavius’s early use of numbers in the axioms of the first book is indicative of his 
pedagogical goals.  All three axioms for which he included numerical examples were 
about the equality of magnitudes, and could be readily seen by performing the described 
operations on numbers.  The numbers thus serve as shorthand for magnitudes. 
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 Billingsley Clavius Commandino 
Book One Proposition 4: 

Numerical lengths 
given to lines to clarify 
proposition and 
additional properties of 
triangles. 

Axiom 5: Numerical 
example to clarify text. 
 
Axiom 17: Numerical 
example to clarify text.  
 
Axiom 19: Numerical 
example to clarify text. 
 
Proposition 4: Numerical 
lengths given to lines to 
clarify proposition.  
 
Proposition 47: 
Discussion of 
Pythagorean triples as 
historical source of 
Pythagorean Theorem.  
Numerical example given 
to clarify additional claim 
in scholion. 

NONE 

Book Two Definition 1: Extension 
of definition from 
geometric into 
arithmetic form 
 
Propositions 1 – 10: 
Numerical examples 
offered as proofs; 
Barlaams’ arithmetical 
versions of 
propositions, including 
proofs 
 
Proposition 11: 
Numerical example 
showing use of 
irrational numbers  

Definition 1: Extension 
of definition from 
geometric into arithmetic 
form 
 
Proposition 13: 
Numerical lengths 
assigned to magnitudes to 
clarify additional claim in 
scholion.  

Proposition 12: 
Numerical lengths 
assigned to 
magnitudes to 
clarify additional 
claim in scholion. 

Book Three NONE NONE NONE 
Book Four NONE NONE NONE 
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which, while they lack an obvious need for arithmetic, have clear analogies in number, 

making it possible to easily introduce arithmetic into the second book.  However, of 

the three authors considered here, only Billingsley did so, showing his view of 

arithmetic as the foundational branch of mathematics. For him, even Euclid’s early 

geometric claims were easier to understand and use numerically.  He accompanied 

each of the first ten propositions in the second book with a numerical example and an 

arithmetical version of the proposition, complete with demonstration, that he credited 

to Barlaam, a fourteenth-century Greek monk, whose treatise giving arithmetical 

versions of the first ten propositions of Book Two was published in 1564 by the 

Strasbourg-based printer and author Konrad Dasypodius.16  The propositions in 

question address the equality of rectangles and squares built on lines with given 

relationships.  If one treats the rectangles and squares as plane numbers (i.e., numbers 

in which the units are arranged in a two-dimensional array), the properties of 

multiplication can be used to show that the same principles hold in arithmetic.17   

For example, in Billingsley’s text, the first proposition in the second book 

reads “If there be two right lines, and if the one of them be devided into partes howe 

many soever: the rectangle figure comprehended under the two right [straight] lines, is 

                                                
16 Barlaam, Barlaam Monachi Arithmetica Demonstratio eorum, quae in secundo libro Elementorum 
sunt in lineis & figuris planis demonstrata, in Euclidis quindecim elementorum geometriae secundum: 
ex Theonis commentariis Graece & Latine, (Strasbourg: Konrad Dayspodius, 1564), 71-116. 
17 A plane number is a number in which the units are arranged in a two-dimensional array.  According 
to the definitions found in the seventh book of The Elements a number is a collection of units and a unit 
is the source of all numbers.  It is similar to the integer number 1, but in the sixteenth century a unit was 
not considered to be a number.  For example 12 is a plane number as 3 x 4 or 2 x 6.  Plane numbers do 
not have to be rectangular.  They can be any shape.  For example 6 is easily represented as a triangular 
plane number with one unit in the first row, two in the second, and three in the third. However, when 
studying the properties of multiplication plane numbers are only represented by rectangles and the 
special case of squares.  
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equall to the rectangle figures whiche are comprehended under the line undevided, and 

under every one of the partes of the other line.”18  The proof is done by drawing a 

rectangle contained by lines of the length of the given line, and dividing one of those 

lines into parts.  From each division point of that line, a line is drawn to the opposite 

side parallel to the other edge of the rectangle.  Thus, the original rectangle is divided 

into several smaller rectangles, and it is obvious from the image that the smaller 

rectangles together are equal to the original rectangle.  (See Figure 6).  Billingsley’s 

translation of Barlaam’s arithmetical version reads, “Two numbers beyng geven, if the 

one of them be devided into any numbers how many soever: the playne or superficiall 

number which is produced of the multiplication of the two numbers first geven the one 

into the other, shall be equall to the superficiall numbers which are produced of the 

multiplication of the number not devided into every part of the number devided.”19  

This proof requires showing that if the two original numbers are called C and AB, and 

AB is divided into AD, DE, and EB, the product of C and AB is equal to the sum of 

the products of C and AD, C and DE, and C and EB.  (See Figure 7).  By the 

definition of multiplication, the number C measures the product of C and AB, which 

Billingsley calls F, by the number of unities contained in AB (i.e, F divided by C 

equals AB, in which F, C, and AB each represent an integer).  In other words, if you 

take sets of C unities and arrange them in a single row, you will have a row of F 

                                                
18 Henry Billingsley, The Elements of Geometrie of the most auncient Philospher Euclide of Megara, 
(London: John Daye, 1570), 61v. I have used Billingsley’s translation to avoid any modernization of the 
mathematics.  The content of the proposition is identical in Clavius’s and Commandino’s texts.  Today 
we express this simply as the sum of the products is equal to the product of sums, i.e. ax + ay + az = a 
(x + y + z).   It is known as the distributive property of multiplication.   
19 Ibid., 62v. 
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Figure 6: Diagrams for the Geometric Version of Book Two, Proposition, 1 

In Billingsley’s (left), Commandino’s (middle), and Clavius’s (right) images for 
Euclid’s first proposition in Book Two.  This proposition illustrates what we today call 
the distributive property of multiplication, but it does so using magnitudes, i.e. lines and 
rectangles. 

		

	
	

	

	

Figure 7: Diagrams for Barlaam’s Arithmetic Version of 
Book Two, Proposition 1 

In left to right order, Billingsley’s, Commandino’s, and Clavius’s images for 
Barlaam’s version of the first proposition of Book Two.  Note that Clavius and 
Commandino use dots to represent number, in keeping with their diagramming 
practice in the number theory books.  It is not clear why Commandino used a solid line 
for F.  Perhaps that was the printer’s choice.  The use of numerical labels still allows 
the reader to count the dots in the other numbers to verify the results.  Billingsley’s 
exclusive use of lines requires the reader to use the numerals and their knowledge of 
the properties of number rather than counting dots to verify equality.  In all three 
figures the product of AB and C is F and the product of AD, DE, and EB with C are 
GH, HI, and IK.  GH, HI, and IK sum to F.   
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unities once you have AB number of sets of C unities.  Likewise, C measures its 

products with AD, DE, and EB by the unities contained in each of those numbers.  

And, since AD, DE, and EB, total to AB, the sum of their products with C will contain 

AB unities of C.  Therefore, C measures the sum of its products with the segments of 

AB by AB, which means that the sum of the products of the segments of AB with C 

must be equal to the number F.   

While Billingsley is the only one of the three authors to include Barlaam’s text 

in the second book, both Clavius and Commandino included the monk’s versions of 

the ten propositions in the ninth book as part of their development of number theory.20  

Despite the fact that all three authors included the same arithmetical versions of the 

ten propositions, their placements of Barlaam’s work changed its significance in each 

text.  In Billingsley’s text, the arithmetical versions of the propositions are given after 

each of the geometric propositions and a numerical example thereof.  This placement 

gave Barlaam’s version equal importance to Euclid’s.  Commandino placed the ten 

propositions after his commentary on a proposition of the ninth book but did very little 

to delineate them from the rest of the commentary, suggesting that he saw the 

arithmetical versions as nothing more than a supplement to Euclid’s text.21  Clavius 

placed his ten propositions before the same proposition, but he clearly separated them 

from his commentary as a statement of numerical principles necessary to the 

                                                
20 All three authors attributed the arithmetical versions to Barlaam and have very similar wordings for 
them.  It is likely that they all used the same source, quite possibly the 1564 version. 
21 Commandino, Euclidis Elementorum, 114v.  
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remaining propositions in the ninth book.22  However, since those principles had 

already been established geometrically, the arithmetical versions served primarily as 

pedagogical aids to ease the readers’ understanding of Euclidean number theory by 

separating the arithmetic of the number theory books from the geometry of the second 

book.  

In Billingsley’s text, the arithmetic versions of the Euclidean propositions 

supplied by Barlaam were not merely equivalent to Euclid’s propositions, they were 

superior.  Billingsley made the mathematical equivalence of the arithmetical and 

geometric versions of the propositions clear in the first sentence of his commentary on 

the first of the propositions: “Because that all the Propositions of this second booke for 

the most part are true both in lines and in numbers, and may be declared by both: 

therefore I have added to every Proposition convenient numbers for the manifestation 

of the same.”23  He saw no distinction between the numerical and geometric versions 

of the problem.  The numbers he provided, served as demonstrations of the arithmetic 

truth of Euclidean claims.  In his treatment of the arithmetical versions, it becomes 

clear that Billingsley found those to be more valuable than the geometric propositions 

because they provided a simpler method of multiplication.  To transition the reader 

from his numerical example of the geometric version of the first proof to Barlaam’s 

arithmetical version, he observed that “by the aide of this Proposition is gotten a 

compendious way of multiplication by breaking of one of the numbers into his 

                                                
22 Clavius, Euclidis Elementorum, 315v. Interestingly, nowhere in the ninth book does Clavius actually 
cite any propositions from the second book.   
23 Billingsley, Elements of Geometrie, 62r. 
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partes.”24  Thus, the arithmetical procedure for multiplication outlined in Barlaam’s 

proposition was the source of the value contained in Euclid’s geometric principle.   

Furthermore, in Billingsley’s reading, the geometric proposition was at best a 

special case of the arithmetic claim.  This relationship between the two branches of 

mathematics is especially evident in the differences between the diagrams that 

Billingsley included for the geometric and arithmetic versions.  Even though the 

products in Barlaam’s proposition are described as “playne” numbers, Billingsley (and 

his Latinate contemporaries, who use the adjective “planus” to describe the products) 

represented the numerical proposition with lines or dots arranged linearly instead of 

repeating the rectangular areas drawn for the geometric version.  (See Figures 6 and 

7.)  The meaning of the term “plane numbers” is that the units composing the number 

could be arranged in a planar geometric figure, so the choice to visualize the 

proposition linearly served to clearly differentiated number and magnitude.  The 

visualizations all show that number, unlike magnitude, is not spatially defined.  

However, while Clavius and Commandino used series of dots to represent the 

numbers, thereby emphasizing the independence of arithmetic and geometry as, 

respectively, studies of discrete and continuous quantity, Billingsley represented the 

numbers with lines, suggesting that geometric magnitudes could be generalized to 

numerical quantities.  Furthermore, the lines Billingsley drew are not to scale with one 

another, making it impossible for the image to be used to confirm the proposition.25  

Only the numerical labels could lead the readers’ to assent to the truth of the claim.  

                                                
24 Ibid., 62v. 
25 In the Latin texts, the reader can count the dots in order to verify the proposition.   
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Four (C) times six (AB) is twenty-four. Four times two (AD/DE/EB) is eight, and 

eight plus eight plus eight is also twenty-four.  Thus the physical lines, which define 

the geometric version of the proof, are superfluous to the arithmetic proposition, and 

the latter becomes a general description of multiplication that applies to both abstract 

numbers and physical magnitudes. 

In contrast, Commandino’s placement of the arithmetical propositions 

minimizes their importance and treats the arithmetical formulations of geometric 

propositions as unnecessary supplements to Euclid’s discussion of number theory.  

While Billingsley’s juxtaposition of the geometric and arithmetical versions of the 

propositions allowed him to show that he valued the latter more, Commandino’s 

complete separation of the arithmetical topics from their geometric analogs allowed 

the geometry of the second book to stand on its own and raised no questions about its 

foundational status.  Furthermore, as seen in Figure 8, Commandino placed the ten 

theorems immediately following commentary on a proposition in the ninth book.  

There is no extra spacing between the last line of commentary and the first line 

introducing Barlaam’s work.  It is possible that the lack of space was an oversight on 

the part of the printer.  The font introducing the theorems is a little larger than the font 

for his commentary, but since it retains the same italic setting as Commandino used 

for his commentary, even if there had been a space, the arithmetical propositions 

would appear as a continuation of the immediately preceding commentary.  It is 

possible that he fully intended for Barlaam’s demonstrations to be read as part of his 

commentary.  The proposition that they follow (Book Nine, proposition fifteen) states 
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Figure 8: Commandino’s and Clavius’s Placements of Barlaam’s Theorems 

These two images show the introduction of Barlaam’s theorems in Commandino’s text 
(top) and Clavius’s text (bottom).  Both images are cut off immediately following the 
enunciation of the first theorem.	
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that if three numbers are the smallest sequence of numbers with a given proportion 

between them, the sum of any two of the numbers is relatively prime to the third.26  

The proof for that theorem relies on the ability of the reader to create and factor 

products, ideas developed in these demonstrations.27  In addition, Commandino did 

not give any discussion of why he chose to include arithmetical renderings of 

propositions from the second book.  Before providing the first theorem his text only 

says, “Barlaam of the Monks’ arithmetical demonstrations of those that Euclid had 

demonstrated in lines in the second book.”28  It is left to the reader to determine what 

significance these demonstrations have, suggesting that they serve only as an 

interesting addition to the preceding proposition. 

Clavius’s approach to the same arithmetical theorems took a middle road 

between those of his contemporaries, treating Barlaam’s collection of arithmetical 

demonstrations as a tool to aid the reader in his study of number theory as a whole, not 

just the proposition to which they were attached (again, Book Nine, proposition 

fifteen).  Like Billingsley, Clavius treated the arithmetical demonstrations as 

                                                
26 Two numbers are said to be relatively prime if they share no factors besides 1.   
27 The proof is set up with a total of five numbers: the three numbers in sequence, and the two smallest 
numbers that express the proportion between the original three.   In order to make the following outline 
of the proof intelligible, we will call those last two numbers x and y.  As the smallest numbers that 
express the proportion, they must be relatively prime to one another.  From a previous proposition, the 
reader can recognize that because the three numbers in sequence are said to be the least numbers with 
this proportion between them, they must be, in ascending order, the square of the smaller of the two 
numbers in the ratio, the product of the two numbers in the ratio, and the square of the larger of the two 
numbers in the ratio.  The proof is then based on these numbers.  If x is the smaller of the two numbers 
making up the proportion, the three numbers of the proposition are x2, xy, and y2.  The proof is then 
done by showing three cases to be true: x2 + xy is relatively prime to y2, xy+y2 is relatively prime to x2, 
and x2+y2 is relatively prime to xy.  Those cases are accomplished through factoring the terms in the 
sums.   
28 Commandino, Euclidis Elementorum, 114v. “Barlaam Monachi arithmetica demonstratio eorum, que 
Euclides libro secondo in lineis demonstravit.” 
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foundational propositions, albeit in the limited context of number theory.  However, 

like Commandino, he restricted the propositions to a role as supplements to the 

Euclidean text.  By presenting the demonstrations as their own section delineated from 

the rest of the text by a clear heading (see Figure 8), Clavius made it obvious that the 

arithmetical demonstrations, as part of the foundation of number theory, were 

propositions supplemental to the whole body of Euclid’s work rather than just 

commentary on a single proposition.  However, when Clavius introduced the ten 

theorems, he justified their presence saying, “Since in the following theorem, which is 

about to be demonstrated, Theon assumes certain things for numbers, which are 

demonstrated for lines in the second book, so that if the same have been shown in 

numbers, we think that it is not alien to our intention to demonstrate here in numbers a 

few of those which are demonstrated geometrically in lines by Euclid in the second 

book.”29   While the numerical demonstrations may have been foundational to more 

than one proposition, it was the assumption of their principles in a single proposition 

that allowed Clavius to justify their inclusion.  Their primary purpose thus appears to 

have been to assure the reader that the proof for that particular theorem in Euclid’s text 

did not rely on any unproven assumptions, making them pedagogical aids to assure the 

reader of the certainty of geometry.  Furthermore, Clavius never asserted that the 

numerical demonstrations were necessary to the ninth book; they were simply “not 

alien.”  This meant that the geometric proofs in the second book that demonstrated the 

                                                
29 Clavius, Euclidis Elementorum, 315v. “Quoniam in theoremate sequente demonstrando theon 
quaedam assumit in numeris, quae demonstrata sunt de lineis libro secundo, tanquam si eadem de 
numeris essent ostensa; non alienum instituto nostro duximus, nonnulla ex iis, quae Geometrice ab 
Euclide libro 2. demonstrata sunt de lineis, hoc loco de numeris demonstrare.”   
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same principles through the use of lines could serve as the foundation for the number 

theory found in Book Nine.  Thus, Clavius showed that, even though arithmetic could 

be independently developed, geometry was the foundational branch of all of 

mathematics. 

 

Proportion: Geometry or Arithmetic? 

Barlaam’s arithmetical propositions were not the only opportunity for the 

authors to systematically make use of numbers before the number theory books of The 

Elements. The fifth and sixth books undertake a study of proportion, whose obvious 

connections to the study of number provided the authors with myriad opportunities to 

employ numbers and arithmetic in the study of geometry.  Indeed, as can be seen in 

Table 3, all three authors accompanied several of the definitions for the fifth book with 

some use of numbers, suggesting that they all used arithmetic to make a geometric 

theory of proportion intelligible.30  However, only Billingsley used numbers to 

                                                
30 Sabine Rommevaux offers an analysis of the fifth book of Clavius’s Euclid in her book, Clavius une 
clé pour Euclide au XVIe siècle.  In her third chapter, she asks whether Clavius successfully 
arithmeticized the study of proportion found in the fifth book and comes to the conclusion that he did 
not.  According to Rommevaux, there are three forms of arithmeticization that Clavius could have 
pursued.  The first is the use of numerical examples, but in the fifth book Clavius avoided using 
numerical examples that required anything other than whole numbers, suggesting that he saw his 
numerical examples as aids to the reader rather than as the beginning of a study of arithmetic.  The 
second was the unification of the theories of proportion for magnitudes and numbers, but, as 
Rommevaux shows, Clavius presented the theories of proportion for magnitudes and numbers as two 
parallel theories.  Finally, Rommevaux argues that Clavius could have used ratios to establish a unity 
between magnitudes and numbers, but his use of ratios only appears to apply to magnitudes. By 
comparing Clavius’s text to Billingsley’s and Commandino’s, I hope to show that in 1574 Clavius did 
not intend to arithmeticize geometry.  Instead, his use of number in the study of proportion was 
designed to aid the reader’s understanding of geometry. However, the pedagogical use of arithmetic to 
facilitate the study of geometry, did more to unite the two branches of mathematics than either 
Billingsley’s or Commandino’s uses of number did.  Each of those authors kept the two entirely 
separate and attempted to make one branch the foundation of the other.  Clavius allowed the two 
branches to work together, which makes Rommevaux’s question a starting point for further study of the 
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Table 3: The Uses of Number in Books Five and Six 

 
The descriptions note the various ways in which number appears in these books.  I have 
also noted with an asterisk where the authors include examples that are only in 
magnitudes.  These are line diagrams without numerical labels.  In Clavius’s and 
Billingsley’s texts, some of the lines are divided by hash marks of the unit length of the 
shortest line.  I have counted these as magnitude only diagrams because the pieces of 
the line cannot be assigned a number without assuming that unit length is one, which it 
may or may not be.  When lines are divided by hash marks of unit length one, the unit 
length was determined either by the examples in the text that reference the diagrams or 
by the numerical labels on the diagrams. An empty table entry indicates that no 
numerical example was included for that definition.  NOT IN TEXT indicates that the 
definition itself is not found in that commentary. 
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Definition Billingsley Clavius Commandino 
V.1 Numerical examples in text. 

Lines labeled with numbers 
and divided by hash marks of 
unit length 1  

Numerical examples in text. 
*Example in magnitude 

Numerical example in 
text 

V.2 Numerical examples in text. 
Lines labeled with numbers 
and divided by hash marks of 
unit length 1 

  

V.3 Numerical examples in text. 
Lines labeled with numbers 
and divided by hash marks of 
unit length 1 

Numerical example in text 
(numbers described as lines 
of certain lengths) 

 

V.4 Numerical examples in text. 
Lines divided by hash marks 
of unit length 1 

Lines labeled with number 
and divided by hash marks of 
shortest lines’ lengths 

 

V.5 Numerical examples in text, 
*Example in magnitude  

Numerical example in text 
Lines labeled with number 
and divided by hash marks of 
shortest lines’ lengths 

Lines labeled with 
numbers 

V.6 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Numerical example in text 
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

 

V.7 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with number 
and divided by hash marks of 
shortest lines’ lengths 

Lines labeled with 
numbers 

V.8 Numerical examples in text, 
Lines divided by hashmarks 
of unit length 1 
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Numerical example in text 
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with 
numbers 

V.9 Numerical examples in text, 
*Example in magnitude 

Lines labeled with number 
and divided by hashmarks of 
shortest lines’ lengths 

Lines labeled with 
numbers 

V.10 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with numbers 
Numerical examples in text 

Numerical example in 
text 
Lines labeled with 
numbers 

V.11 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with numbers 
*Example in magnitudes 
visualized 
 

Lines labeled with 
numbers 

Continued on next page 
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Table 3: The Uses of Number in Books Five and Six (continued) 

 
Definition Billingsley Clavius Commandino 
V.12 Numerical examples in text,  

Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with number 
and divided by hash marks of 
non-one unit length 

 

V.13 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with numbers Lines labeled with 
numbers 

V.14 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitudes 

Lines labeled with numbers Lines labeled with 
numbers 

V.15 Numerical examples in text,  
Numerical examples 
“visualized” outside of text 
*Example in magnitudes 

Lines labeled with number 
and divided by hash marks of 
non-one unit length 

Lines labeled with 
numbers 

V.16 Numerical examples in text  
Numerical examples 
“visualized” outside of text 
*Example in magnitudes 

Lines labeled with number 
and divided by hash marks of 
non-one unit length 

*Example in 
magnitude 

V.17 Numerical examples in text  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with number 
and divided by hash marks of 
non-one unit length 

*Example in 
magnitude  

V.18 Numerical examples in text  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with number 
and divided by hash marks of 
unit length one 

Lines labeled with 
numbers 

V.19 Numerical examples in text  
Numerical examples 
“visualized” outside of text 
*Example in magnitude 

Lines labeled with number 
and divided by hash marks of 
unit length one, and other by 
hash marks of non-one unit 
length 

Lines labeled with 
numbers 

V.20    
V.21  NOT IN TEXT NOT IN TEXT 
VI.5 Numerical examples in text 

Lines divided by hash marks 
of unit length 1 
Numerical examples 
“visualized” outside of text 

Numerical examples in text 
Lines labeled with number 
and divided by hash marks of 
shortest lines’ lengths 
*Example in magnitude 

NO USE OF 
NUMBERS 
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develop an arithmetical theory of proportion that could serve as a foundation to the 

geometric version.  In contrast, Commandino used numbers only as a shorthand to 

help the reader interpret his diagrams by providing numerical lengths as part of his 

visual aids, giving arithmetic no place in his text as its own discipline.  Clavius fell in 

between his two contemporaries, developing numerical examples in his commentary 

to clarify the geometric theory of proportion. For him, arithmetic offered a study 

parallel to geometry that could be used to offer students a secondary way to 

understand proportions. 

According to Billingsley, the use of arithmetic to aid the study of geometry 

meant that the theory of proportion found in the fifth book of The Elements was 

properly an arithmetical study.  In his commentary on the second definition, 

“multiplex” or “multiple,” he called the reader’s attention to the foundational role of 

number in the study of proportion.31  Even though Billingsley presented the definition 

in terms of magnitudes, he claimed that because the term multiplex is “proper to 

Arithmetike and number, it is easy to consider that there can be no exact knowledge of 

proportion and proportionalitie, so of this fifth booke wyth all the other books 

followyng, without the ayde and knowledge of numbers.”32  In keeping with that 

sentiment, he provided numerical examples of all of the definitions as a means to 

develop an arithmetical theory of proportion within Euclid’s text.  In fact, 

                                                
role pedagogical texts played in the combination of arithmetic and geometry. Sabine Rommevaux, 
Clavius une cle pour Euclide au XVIe siècle, (Paris: Librairie Philosophique J. Vrin, 2005), pp. 59-75. 
31 Billingsley, Elements of Geometrie, 126v. “Multiplex is a greater magnitude in respect of the lesse, 
when the lesse measureth the greater.”   
32 Ibid., 126v. 
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Billingsley’s geometric discussions of each definition are quite brief.  Most of his 

commentary is devoted to his numerical examples, and, after the fifth definition, there 

are several purely numerical examples “visualized” outside of the main text.  (See 

Figure 9.)   In these examples, Billingsley made no attempt to link his study of 

proportion to geometrical magnitudes, leaving the reader with the impression that the 

arithmetical study of proportion was a sufficient foundation for the geometrical 

arguments yet to come in The Elements.  Furthermore, while Billingsley provided 

numerical labels on some of his line diagrams, the lengths shown in those labels were 

repetitions of the numerical examples given in the prose, making the magnitudes a tool 

to visualize the numbers rather than using the numbers to clarify the relationships 

between the lines. As a result, these visual aids emphasized that the definitions 

expressed in geometric terms could be rendered in arithmetic terms by replacing 

magnitudes with numbers.  In those cases when Billingsley did not provide numerical 

labels for the lines at all, his commentary only made brief mention of the magnitudes 

before turning to numerical examples, clearly suggesting that he expected his readers 

to rely on the numbers instead of the lines.  Thus, the lines representing Euclidean 

magnitudes became superfluous to the study of proportion.   

For Commandino, quite the opposite was true.  Arithmetic had no foundational 

place in the study of geometry, and it was the numbers that were superfluous to the 

study of proportion.  Indeed, Commandino never even used the word “arithmetic” in 

his edition of Euclid’s fifth book.  Numbers, in the context of geometry, were nothing 

more than a practical shorthand to aid the study of magnitudes. He only included them 
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Figure 9: Some Examples of Uses of Numbers in the Definitions of Book Five 

Top Two Rows: Billingsley’s visualizations from a selection of definitions in Book 5.  
Top Left: Book Five, definition 2, the image shows 9 as a multiple of 3 by using 
hashmarks of unit length one, allowing the reader to count three sets of three in line CD 
and one set of 3 in line AB.   

Top Right: Book Five, definition five, Billingsley shows that A and B have a proportion 
between them because A can clearly be multiplied to be greater than B.  The line above 
A and B includes hashmarks dividing it into 3 units of length A.  Unlike his use of 
hashmarks in the second definition, this use of hashmarks does not rely on arithmetic 
since the unit of 1 is not present.   

Bottom Left: Book Five, definition 6, This image is one of Billingsley’s numerical 
examples using proportions.  The interior numbers represent two equal proportions (8/6 
and 4/3).  The exterior numbers are the result of an operation described in the definition.   

Bottom Right: Book Five, definition 8 This is another example dealing with operating 
on equal proportions.  Again, the interior numbers represent the original proportions.  
Here, even though Billingsley calls it an example “in magnitudes,” he includes 
numerical labels and hashmarks that enable counting on the original numbers.   

Third Row: Two of Clavius’s visualizations.   

Left: Book Five, definition 5 These four lines represent that equimultiples of two 
numbers yield two numbers with the same proportion between them as the first two.  
Many of Clavius’s examples include lines either labeled with numbers or with 
hashmarks of the length of the shorter line in a pair.  In this case the pairs are 6 and 12 
and 8 and 16.  The hashmarks make it clear that the latter line is the double of the former.  
Unlike Billingsley, Clavius rarely used hashmarks of unit length, which kept his focus 
on the relationships between the lines rather than the numbers.   

Right: Book Five, definition 6 This is an example of Clavius’s visualization of a 
numerical example.  In it the numbers in the square represent the proportions being 
compared, in this case 3/2 and 6/4.  Going out from each number are three sets of 
equimultiples of the antecedent of one proportion and the consequent of the other, the 
operation required by the definition to show that the original proportions are equal.  That 
is 3 and 6 are multiplied by the same numbers and 3 and 4 are multiplied by the same 
numbers.  Each set of numbers produced is connected by a curved line allowing the 
reader to understand which numbers to compare to verify the conditions set forth in the 
definition. 

Bottom: An example of Commandino’s numerically labeled lines.  These lines go with 
definition 11 and show four numbers in proportion with each other.  The numbers, 8, 
12, 18, and 27 are a proportional series with the ratio 3/2 between each pair. 
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as measurements for the lines he drew as his visual aids for the definitions.  As such, 

they offered a shortcut to the reader who need not measure each line for himself and 

might also have acted as a safeguard against possible printing errors that could have 

created lines that did not have the relationship claimed in the text.  Moreover, 

Commandino did not acknowledge the presence of numbers in his commentary, which 

discussed the propositions purely in terms of the relationships between magnitudes.  

While numbers were tools to read the visual aids that he provided (Figure 9), they 

were not essential to the development of a Euclidean theory of proportions.   

Like Commandino, Clavius relied on numbers as a tool to clarify the geometric 

theory of proportion.  However, because all of the same basic principles applied to 

ratios of discrete and the ratios of continuous quantities, Clavius saw numerical 

proportions as direct analogs to those of magnitudes.  Therefore, even though linear 

magnitudes remained the focus of his text, his numerical examples were more than 

measurements of the lines, and they offered arithmetical proportion as a second, 

usually shorter, way to conceive of proportion.  The analogous relationship between 

arithmetic and geometry is evident in the structure of Clavius’s commentary.  He 

began his discussion of each definition with an examination of magnitudes without 

any mention of number.  His line diagrams, often labeled with numerically designated 

lengths, appeared in this section of his commentary.  After presenting a purely 

geometric explanation of a concept, Clavius included numerical examples, usually 

using the same numbers found in his labels, as a second way for the reader to grasp the 

definition.  Most of Clavius’s numerical examples appeared in the form of lengths 
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assigned to lines, but, on occasion, he gave examples complete with visual aids that 

had no connection to a given magnitude.  (See Figure 9).  Still, even these purely 

numerical examples were intended to help the reader interpret the geometric claims, 

not to develop the theory of proportion arithmetically.  Indeed, when Clavius 

introduced his first purely numerical example he said that it “was sufficient to 

persuade” the reader of the truth of the claim being made, suggesting that Clavius felt 

that a geometric example would have been more complete, but the analogy between 

proportion in geometry and arithmetic allowed him to supply the shorter numerical 

example instead.33   

Despite his use of numerical examples to help clarify the geometric theory of 

proportion, Clavius did not share Billingsley’s belief that arithmetic was a necessary 

foundation for the study of geometry.  He first introduced the idea that the theory of 

proportion could be developed outside of geometry in a treatise titled “On Proportion” 

inserted between the third and fourth definitions of Book Five.  He claimed that he 

included this treatise because a general introduction to the various kinds of proportions 

could be useful to Euclid’s study of proportion in magnitudes, suggesting that the 

study of proportion could be developed in multiple branches of mathematics, and that 

those analogous studies could lead to insights about geometric proportions.34  Book 

                                                
33 Clavius, Euclidis Elementorum, 155v. “placuit unum exemplum adducere in numeris.”   
34 Ibid., 145v. “Operae pretium esse arbitror, paucis hoc loco exponere, quotnam sint genera 
proportionum apud Mathematicos, vel ob hanc praecipue utilitatem, ut ea, quae in duobus libris ab 
Euclide demonstrantur de propotionibus magnitudinum, rebus possint materialibus accommodari, 
quando opus fuerit.” The treatise covers pages 145v-152v.  For most of it, Clavius treats the values 
discussed as magnitudes assigning units of length to values (e.g. a line of twenty palms).  However, he 
does on occasion allow the discussion to rely on numbers instead of lines.  Sabine Rommevaux notes 
that Clavius’s 1589 edition extended the treatise.  Her analysis of Clavius’s potential arithmetization of 
geometry in her book, Clavius un cle pour Euclide, relies on the later edition.  The extended version 
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Five of The Elements only addressed proportions between magnitudes.  Other texts 

were available to study proportion in the other branches of mathematics.  In fact, in 

Book Seven of The Elements, Clavius included several definitions on proportion in 

numbers, beginning the development of an arithmetical theory of proportion. 35  

Already in his commentary on the fourth definition of the fifth book, Clavius pointed 

the reader to Jordanus and Boethius as sources for the study of proportion in 

arithmetic and music, respectively. 36  However, these references are available for the 

interested reader without being required reading to understand the theory of 

proportion.  Clavius was only acknowledging the presence of analogous theories in 

other branches of mathematics, a far cry from Billingsley’s claim that proportion is 

“first and naturally founde” in number.37  From Clavius’s perspective, number and 

arithmetic could help readers to understand geometry but only as analogs to magnitude 

and geometry. 

                                                
furthers the treatment of arithmetic, but as Rommevaux convincingly argues, Clavius still did not 
arithmetize geometry.  Stillman Drake criticized Clavius’s inclusion of this treatise as an explanation of 
“medieval proportion terminology in Book V, where it was completely out of place.”  Drake, “Euclid 
Book V,” 70.  However, such a criticism says only that Clavius did not adhere strictly to the ancient 
separation of geometry and arithmetic without considering what purpose Clavius believed the treatise 
served. 
35 Clavius was not the only author to treat proportion in his definitions, but he treated it more 
extensively than the other two authors.  All three authors included one definition for proportional 
numbers, and Commandino included a definition identical to one in Clavius’s text describing a series of 
proportional numbers.  Clavius’s text contained three definitions not found in either of his 
contemporaries’ texts: a number measured by another number, proportion, and the roots of proportions 
(i.e. in today’s terminology, reduced fractions).   
36 Clavius, Euclidis Elementorum, 153r. “Multae autem habitudines proportionum, seu 
proportionalitates, (Nos enim comparationem duarum quantitatum, proportionem appellabimus; 
habitudinem autem propotionum, Proportionalitatem) a scriptoribus, praesertim Boetio, & Iordano, 
descributunr; inter quas primum semper locum obtinuerunt apud Ueteres, Proportionalitas Arithmetic, 
Geometrica, atque Musica, seu harmonica.” 
37 Billingsley, Elements of Geometrie, 126v. “For the opening of them [proportions] in numbers (in 
which they are first and naturally founde) geveth a great and marveilous light to their declaration in 
magnitudes.”  Billingsley’s treatise also comes between the third and fourth definitions, but he did not 
separate it from the text with a heading.  In his text it serves as the commentary on the third definition.  
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Number Theory in a Geometry Book? 

Books Seven through Nine of The Elements offer a study of number theory.  

While, given the ostensible division between number and magnitude in sixteenth-

century descriptions of mathematics, it may seem odd that there are three books on 

number theory in a geometry textbook, all three authors compared in this study agreed 

that the number theory books were a necessary interlude between the studies of plane 

and solid geometry in order to introduce numerical ideas that make commensurability 

and incommensurability, the topics of the tenth book, intelligible.38  Those concepts, 

in turn, are necessary to the books on solid geometry which rely on the relationships 

among the lines that compose solid figures to demonstrate the properties of the various 

figures.  The discovery of those relationships was often begun by determining whether 

                                                
38 Commensurability is the property of lines being able to measure one another or having a common 
measure.  It appears to be analogous to the numerical concept of factoring.  However, that analogy is 
not quite right because commensurable lines simply have a ratio from one to another.  For example, a 
line of length 2 and a line of length 3 are commensurable with one another because the ratio between 
them, 3/2, is a measurable quantity.  One could produce half of the smaller line and add it to the smaller 
line to produce a line of equal length to the larger line.  The two numbers, two and three, are both prime 
numbers with only one as a common factor.  Even if the length three were replaced with a non-integer 
rational length, such as 7/3, the first line could be used to create a line equal in length to the 
second.  Incommensurable lines share no common measure, numerical or proportional.  (Note that 
rational numbers were not considered proper numbers, but rather proportions of numbers.)  In modern 
terms, numerically, one line in a pair of incommensurable lines is irrational in length.  Because one line 
has an irrational length and the other does not, it is not possible to manipulate either line to produce a 
new line of the same length as the other line.  Commensurable and incommensurable numbers are 
respectively defined in propositions six and seven of the tenth book.  (Billingsley, Elements of 
Geometrie, 235v - 236v; Commandino, Euclidis Elementorum, 127r-128r; Clavius, Euclidis 
Posteriores, 12v – 14r.) It should be noted that two irrational numbers may be commensurable to one 
another.  The square root of two is irrational, but it is commensurable with all multiples of the square 
root of two.  Likewise, the circumference of a circle is incommensurable with the circle’s diameter, but 
if two circles have commensurable diameters, the circumferences of those circles are also 
commensurable since the factor of π cancels out.   That is, if the diameter of the first circle is a, and the 
diameter of the second is b¸ then the circumference of the first is πa and the circumference of the 
second is πb.  The ratio between the two circumferences is the ratio between the diameters, a/b.  
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two quantities were commensurable or incommensurable to one another.  Since the 

seventh through tenth books are the part of The Elements in which the study of number 

is formally developed, they offered the authors an opportunity to provide an explicit 

statement of the relationships between magnitudes and numbers and their respective 

studies, geometry and arithmetic. 

Of the three authors studied here, Billingsley provided the clearest analysis of 

the relationship between the two disciplines.  In his introduction to the seventh book, 

he offered extensive praise for arithmetic, explicitly claiming that it is the true 

foundation of mathematics because Euclid could not complete his study of geometry 

without introducing arithmetical ideas.  The solid geometry books require “the helpe 

and ayd of nombers” because the irrational quantities that are introduced in the tenth 

book and that appear in the solids of the remaining books cannot “be knowen and 

found out without number.”39  Billingsley’s praise of arithmetic offers arguments 

frequently found in cases for the nobility of mathematics.   Number is the purely 

abstract foundation of “all other sciences and artes. As to musicke, Astronomy, natural 

philosophy, perspective, with others.”40  By attributing the features of mathematics 

that give it nobility to arithmetic rather than to geometry (as Clavius and Commandino 

both did), Billingsley allowed the latter to become a useful practical application of 

                                                
39 Billingsley, Elements of Geometrie, 183r. 
40 Billingsley, Elements of Geometrie 183r. “Now thinges sensible are farre under in degree then are 
thinges intellectuall: and are of nature much more grosse then they.  Wherefore number, as being only 
intellectuall, is more pure, more immateriall, and more subtile, farre then is magnitude and exceedeth 
itself farther.”  
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number to the physical world rather than a noble study of abstract ideas.41  By making 

geometry a useful extension of the study of number, Billingsley reminded the reader 

that his motivation for translating The Elements was to provide his countrymen with a 

tool that could aid inventions.42   

The relationship Commandino outlined between arithmetic and geometry is 

quite the opposite of what Billingsley presented.   In his text geometry’s continuous 

magnitudes are shown to allow a more complete study of quantity than is possible 

with discrete numbers.  In his text, arithmetic is reduced to an inspiration for 

geometric study.  In fact, Commandino only addressed the relationship between 

number and magnitude in his scholium preceding the tenth book, and even there he 

focused on magnitude, mentioning number only as the source of Pythagoras’ 

inspiration for the notions of commensurability and incommensurability.  While he 

acknowledged that legend claimed that Pythagoras developed the notion of 

incommensurability through a consideration of number, he argued that the fact that 

unity serves as a common measure for all numbers prevents a complete development 

of the concept of incommensurability. As he explained, one cannot find a common 

measure for all magnitudes, as unity is for numbers, because “All numbers divided 

equally into however many sections, leave some minimum part that does not allow 

division [unity].  However, all magnitudes divided infinitely do not leave a part, no 

                                                
41 Of course, since Billingsley was a merchant, attributing the ennobling traits of mathematics to 
arithmetic, he also aggrandized his own profession.  If arithmetic was the most noble branch of 
mathematics, the arithmetic work of a business required expertise in a noble science.     
42 See Chapter 2 and Billingsley’s letter to his reader. 
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matter how small it is, that cannot be cut.”43  The notion of irrational, and therefore 

incommensurable, quantities is thus tied to the geometrical construction of lines 

because they can only exist as lines, which need not be composed of collections of 

unities as numbers must be.  While the idea may have historically originated in 

Pythagoras’s contemplation of number, it was only in geometry, the true foundation of 

mathematics, that the notions of commensurability and incommensurability could be 

developed through the creation of incommensurable quantities.  For Commandino, 

number, and thus arithmetic, were more limited in their scope than magnitude and 

geometry, allowing geometry to remain the foundational branch of mathematics. 

Once again, Clavius found a middle ground between his contemporaries by 

arguing that arithmetic acted as a tool for the study of geometry.  Like Billingsley, he 

began the seventh book with a brief comment expressing the utility of arithmetic to 

geometry.  He noted that the studies in the seventh through ninth books “concerning 

the qualities and properties of numbers, insofar as they serve the interests of 

geometrical things, are taken up, so that then in the tenth book the demonstrations of 

commensurable and incommensurable lines may be more easily and clearly 

executed.”44  However, he stopped short of arguing that arithmetic was foundational to 

                                                
43 Commandino, Euclidis Elementorum, 121v-122r. “Venerunt autem initio ad inquisitionem 
symmetriae, hoc est commensurabilitatis Pythagoraei primi, ipsam ex numerorum cognitione 
invenientes, cum unitas, sit omnium numerorum communis mensura, & in magnitudinibus communis 
mensura inveniri non possit.  Huius caussa est, quod omnis numerus, iuxta quaslibet sectiones divisus 
relinquit particulam aliquam minimam, & quem sectionem non admittit.  Omnis autem magnitudo in 
infinitum divisa non relinquit particulam, quae propterea quod minima sit, secari non possit. … Cum 
hoc intelligerent pythagoraei, ut fieri potuit, in magnitudinibus mensuram invenerunt. Omnes enim, 
quas eadem mensura metitur, commensurabiles appellarunt; eas vero, quas non metitur eadem mensura, 
incommensurabiles.”  
44 Clavius, Euclidis Elementorum, 233v. “Quare hoc libro septimo, & duobus insequentibus, circa 
numerorum proprietates, affectionesque, quantum eae rei Geometricae inserviunt, occupatur, ut in 

257



 

geometry or that arithmetic was essential to understanding geometric claims.  In fact, 

at the beginning of the tenth book, Clavius included an argument much like 

Commandino’s that claimed that the study of roots (i.e. square roots, cube roots, etc.) 

required knowledge of geometry.45  However, Clavius minimized the impact of this 

argument by placing it in a parenthetical comment following his dismissal of the 

argument that arithmetic, specifically the study of roots, was foundational to 

geometry.46  His focus was not on the fundamental relationship between the two 

branches of mathematics, but on the benefit arithmetic could provide to the student of 

geometry, specifically, easing the reader’s understanding of the notion of 

commensurability.  By treating arithmetic as a pedagogical tool, Clavius allowed it to 

be more than merely an inspiration for the geometric notion of commensurability, as it 

                                                
decimo deinde facilius, ac plenius demonstrations linearum commensurabilium, & incommensurabilium 
exequatur.”   
45 Clavius, Euclidis Posteriores, 2v. “Immo contra persuasum mihi prorsus habeo, cognitionem 
perfectam illius partis Arthmetices, pendere ex hoc 10. lib. tantum abest, ut existemem, tractionem illam 
radicum requiri, ut facilius hic liber intelligatur. Non negarim tamen, eum qui rationem radicum atque 
calculum tenuerit, maiore cum voluptate hunc librum precepturum, quam qui illarum omnino sit ignarus 
propterea quod ille demonstrationes ad usum potest revocare, hic vero nullo modo.  Hac enim de causa 
& nos priora decem theoremata secundi lib. numeris accommodavimus, ut oblectationem animi 
maiorem ex eo studiosus caperet, ac fructum, non autem ut ea, quae in illo demonstrantur, facilius 
aribtraremur intelligi posse ex numeris.  Cur ergo (dicet aliquis) ut in eo libro, non perinde etiam in hoc 
exempla numerorum, quibus Algebra utitur, usurpasti, ut ea res maiori voluptati esset, & commodo 
legentibus?  In promptu causa est, quare id omittendum putaviumus.  Cum enim perpauci sint hoc 
tempore, quibus celeberrima illa Algebrae ars sit congita, videbantur numeri illi, si adhiberentur, 
tenebras potius offusuri, quam lucis aliquid maioris daturi, & perspicuitatis; quippe ita ingenia 
studiosorum pro adiumento, ac luce, quam his nostris commentariis afferre laboramus, plus caperent 
incommodi, minusque demonstrationes ipsas perciperent.” 
46 Ibid., 2r-v. He dismisses the argument by refusing to give it a complete discussion.  “Quoniam vero 
hic liber multis obstructus est difficultatibus, ob linearum, de quibus disserit, obscuritatem; omnes 
nervos industriae meae in eo contendam, ut ex his, quae hactenus ab Euclide sunt demonstrate, ita 
planus reddatur, ac facilis, ut sine multo labore a quovis, qui praecedentium tamen librorum 
demonstrations recte intellexerit, possit percipi.  Neque .n. in eorum possum sententiam ire, qui putant 
ad eius intelligentiam esse necessariam eam partem Arithmetices, quae de radicibus numerorum, tam 
rationalibus quam irrationalibus, ut vocant, sermonem instituit.”  The quotation in the preceding note is 
separated from this text by a colon, indicating that it was an aside. 
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appears to be in Commandino’s text, without elevating it to the status of an essential 

foundation to geometry, as Billingsley explicitly does in his text.   

 

Developing Number Theory: Definitions in Book Seven 

Because the seventh through ninth books offer a formal development of 

number theory, Book Seven of The Elements begins in much the same way as Book 

One, with several simple definitions.  As their analogs in the first book establish the 

fundaments of plane geometry, these enunciations establish the fundaments of number 

theory.47  Just as the presentation of the definitions in Book One sets the tone for the 

entire study of geometry, the presentation of the analogous enunciations in Book 

Seven sets the tone for the study of arithmetic within the context of geometry.  

Therefore, an examination of the authors’ treatment of the definitions can illuminate 

how each author understood the relationship between arithmetic and geometry.  

Billingsley attempted to develop the study of arithmetic as a foundation to geometry.  

Commandino provided very little commentary, limiting the study of arithmetic to the 

minimum that the ancients felt was necessary to the remainder of Euclid’s text.  

Clavius developed arithmetic as its own discipline, but only to the extent that its 

analogy to geometry could be used in the subsequent study of commensurability. 

The first definition in Book Seven is “unity,” the numerical analog to a point.  

As Billingsley translated it, the definition says, “Unitie is that, whereby everything 

                                                
47 As the reader will recall from the previous chapter, “enunciations” is used to refer to the statements of 
Euclid’s propositions without any commentary or demonstration. 
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that is, is sayd to be on.”48  Billingsley’s commentary on the definition of unity 

establishes his interest in arithmetic as the discipline at the foundation of all others.  

He began his commentary by recalling the definition of a point and establishing a 

detailed analogy between a point and unity.  He writes, “As a point in magnitude, is 

the least thing in magnitude, and no magnitude at all, & yet the ground and beginning 

of all magnitudes: even so is unitie in multitude or nomber, the least thing in nomber, 

and no nomber at all, and yet the ground and beginning of all nombers.”49 Thus, in his 

first sentence of commentary he suggested the importance of unity beyond the scope 

of The Elements as the foundation of number.  By clearly stating that unity is not a 

number, this sentence elevates the study of number beyond enumeration of objects.  

Unity is not the number one; it is a concept that creates an understanding of oneness as 

discrete, and, therefore, orderable.  As Billingsley argued, unity made it possible to 

define individual objects and isolate one “thing” from another.  Without unity nothing 

could be distinguished from anything else, and everything would “be in confusion.  

And where there is confusion, there is no order, nor any thing can be exactly knowen, 

either what it is, or what is the nature, and what are the properties thereof.”50  As a 

final demonstration of the foundational nature of arithmetic, Billingsley concluded his 

commentary on the definition of unity by quoting the definition for the same term 

from Jordanus’s textbook on arithmetic and praising its clarity, ensuring that the 

                                                
48 Billingsley, Elements of Geometrie, 183v.  His translation closely matches the definitions found in the 
Latin texts.  Clavius’s definition reads “Unitas est, secundum quam unumquodque eorum quae sunt, 
unum dicitur.”  (Clavius, p. 233); Commandino’s: “Unitas est, qua unumquodque eorum, quae sunt 
unum dicitur.” (Commandino, p. 87b) 
49 Ibid., 183v. 
50 Ibid., 183v. 
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reader would recognize unity as an arithmetical, not geometric, concept.  That 

definition, which Billinglsey quoted in Latin, says, “Unitas est res per se discretio,” 

identifying the discrete nature of oneness as the foundation of arithmetic.51   

In contrast, by providing very little commentary throughout the books on 

number theory, Commandino presented arithmetic as a tool contained within the study 

of geometry.  He included no commentary on the definition of unity and no discussion 

of arithmetic.  He did not even remind the reader of the analogy drawn in Book One 

between unity and a point.  In fact, in contrast to his definition of a point, which 

included a commentary that might have whet the reader’s appetite for geometry with 

its discussion of how something as seemingly insignificant as a point could give rise to 

the entire field of geometry, Commandino’s definition of unity was presented without 

any remark on its role in arithmetic that could inspire further study of number.  His 

lack of commentary on the source of numbers indicates that he may have believed that 

The Elements did not require a complete study of number.  Indeed, Commandino’s 

treatment of the subject was minimal.  Instead of fleshing out the rudiments of number 

theory provided by Euclid with commentary based on other ancient studies of number, 

Commandino only provided commentary when he felt that rephrasing a passage or 

providing an example would contribute to the clarity of the ancient text.  For example, 

                                                
51 Ibid., 183v.  “According whereunto Iordane (in that most excellent and absolute worke of 
Arithmeticke which he wrote) defineth unitie after this manner. ‘Unitas est res per se discretio:” that is, 
unitie is properly, and of it self the difference of any thing.  That is, unitie is that whereby every thing 
doth properly and essentially differ, and is an other thing from all others.  Certainely a very apt 
definition and it maketh playne the definition here set of Euclide.”  The book referenced is likely 
Jordanus of Nemora’s De elementis arithmetice artis.  It is not clear what his precise source was, but 
printed versions were published in 1496 and 1514 along with other treatises.  It is possible Billingsley 
had access to one of those versions or to a manuscript of the text. 
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his commentary on the definition of prime numbers says only “No number measures a 

prime number, except insofar as it measures itself” which merely provides the 

converse of the definition which says, “A prime number is that which only unity 

measures”52  Thus, instead of beginning a new branch of study, in Commandino’s text 

the number theory books were the means by which the reader was given a tool to 

enable the subsequent study of commensurability. 

Like Commandino, Clavius treated the arithmetic developed in Euclid’s books 

on number theory as a tool for the study of geometry.  However, while Commandino 

presented those books as part and parcel of the Euclidean elaboration of geometry, 

Clavius argued that the utility of arithmetic arose from its status as an analogous 

branch of mathematics.  As he transitioned from his argument that knowledge of 

arithmetic would assist the reader in the remaining geometry books to his commentary 

on the definition for unity he said, “Beginning therefore, as is custom, at its 

[arithmetic’s] beginning, unity is first defined…,” establishing that the number theory 

books do indeed begin a new field of study.53  Still, unlike Billingsley, Clavius did not 

frame these books as the start of a complete study of arithmetic.  In contrast to 

Billingsley’s commentary on the definition of unity, which used the analogies between 

arithmetic and geometry to describe the intellectual priority of number over 

magnitude, Clavius commentary on the same definition focused on the analogy 

                                                
52 Commandino, Euclidis Elementorum, 88v. Definition: “Primus numerus est, quem unitas sola 
metitur.”  Commentary: “Primum numerum nullus metitur numerus, praeterquam quod ipse se ipsum 
metitur.” 
53 Clavius, Euclidis Elementorum, 233v. “Incipiens igitur more suo a principiis, definit initio unitatem 
…”  This phrase serves as Clavius’s transition between his justification for the presences of books 
seven through nine and his commentary on the definition of unity.   
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between unity and a point insofar as it could aid the study of commensurability in the 

tenth book.  After clarifying the definition by observing that it is “according to unity 

that we are accustomed to saying one rock, one animal, one body, etc.,” Clavius 

explained that unity is analogous to a point in that neither can be divided, a much 

narrower analogy than Billingsley’s.54  For Clavius, it did not matter that unity was the 

source of all number, as a point was the source of all magnitude.  It only mattered that 

unity could not be divided, meaning that not all numbers could measure one another, 

which allowed number to illuminate the notion of commensurability.  In his view, 

while pairs of incommensurable quantities could only be found in magnitudes, it was 

only by studying discrete quantity that the concept of commensurability could become 

meaningful. If quantity can be infinitely divided, for any two quantities a third 

quantity by which the first quantity measures the second can be found (though it 

cannot necessarily be created from the given quantities).55  The number theory books 

                                                
54 Ibid., 233v. “Nam secundum unitatem unum lapidem, unum animal, unum corpus, &c. dicere 
solemus.  Caeterum unitas in numeris nullam suscipit divisionem, quemadmodum nec punctum in 
magnitudinibus, ut in primo lib. docuimus.”  These two sentences are the only sentences that are 
commentary directly on the definition of unity.  They are the last two sentences of a short paragraph in 
which Clavius justifies the presence of the number theory books in The Elements.   
55 It is easy to see how indivisibility allows the development of the notion of commensurability by 
taking a more modern understanding of number as infinitely divisible, which is how modern 
mathematicians understand real numbers.  In the set of real numbers we can find a solution to the 
division of any number by any other non-zero number.  In other words, every number can be measured 
by any other number and thus all numbers are commensurable, rendering commensurability 
meaningless.  All real numbers are commensurable with respect to the set of real numbers.  Likewise all 
rational numbers are commensurable with respect to the set of rational numbers, and all integers are 
commensurable with respect to the set of integers.  Incommensurability is inconceivable in such a set 
up.  And while, as discussed in footnote 33, the early modern notion of commensurability allowed what 
we call the rational numbers as proportions of true natural numbers to serve as measures of 
commensurable pairs of numbers (which means that 3 and 2 are commensurable by the ratio 3/2), not 
all continuous quantities can be expressed as a ratio of whole numbers. In modern language, 2 and the 
square root of 2 are incommensurable, since the latter number is irrational.  In continuous magnitudes 
such incommensurable quantities can be found.  Even though magnitudes are continuous quantities, 
incommensurable magnitudes are recognized as such because it is not possible to create them by 
multiplying the line some number of times, even if that number is a ratio of whole numbers which could 
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may have introduced the field of arithmetic, but Clavius limited the development of 

that field to its function as a tool for geometry.   

From unity, Euclid’s text proceeds to define number and its various kinds from 

even numbers to square numbers to perfect numbers.  Among the categories of 

numbers, four have clear geometric analogs: plane numbers, solid numbers, square 

numbers, and cubic numbers.56  While Commandino offered no embellishment on 

these definitions, Clavius and Billingsley included diagrams alongside commentary 

for each one (See Figures 10 and 11) in which they illustrated the relationships that 

they had already articulated between geometry and arithmetic.  In their figures both 

represented units with dots.  For plane numbers and square numbers (Figure 10), the 

dots are arranged in rectangular arrays with the number of dots on each side of the 

rectangles corresponding to one of the numbers being multiplied.  In the special case 

of the square number, the array has a square shape.  Billingsley connected his dots, 

effectively enclosing the planar shape.  Thus, his diagram showed that numbers could 

be used to generate geometric figures.  However, in his commentary, Billingsley 

claimed only that plane numbers “represent some superficiall form or figure 

geometricall.”57  While Billingsley did not explicitly say that arithmetic could be used 

to develop geometric figures, the juxtaposition of the word “represent” with the 

                                                
be used to define cuts of the line.  (Think of multiplication as adding the line to itself.  One could easily 
add a segment of half the length of the line.)   
56 These categories of numbers are definitions sixteen through nineteen in Clavius’s and Commandino’s 
text and seventeen through twenty in Billingsley’s text.  Clearly, the analogies are plane surfaces, solid 
bodies, squares, and cubes. 
57 Billingsley, Elements of Geometrie, 186r. “They are called plaine and superficiall numbers, because 
being described by their unities on a plaine superficies, they represent some superficiall forme or figure 
geomtricall, having length and breadth.” 
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Figure 10: Billingsley’s and Clavius’s Diagrams of Plane and Square Numbers 

Top left: Billingsley’s image of a plane number.  Top right: Billingsley’s image of a 
square number.  Bottom left: Clavius’s image of a plane number.  Bottom right: 
Clavius’s image of a square number.  Note that square numbers are special cases of 
plane numbers.    
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enclosed rectangle created the impression that the arithmetical representation of a 

geometric figure, the plane number, can easily be made into the geometric figure 

itself, meaning that arithmetic can be the source of geometric quantities. In his 

diagrams for the solid figures (Figure 11), Billingsley shifted his emphasis away from 

the geometric figure by only sketching part of it.  In both cases he drew only three 

faces of the solids, leaving the reader to extrapolate the rest of the figure.  

Furthermore, the perspective is imperfect, so the shapes of the figures are not clear; 

the cubic number does not look like a cube.  By allowing the diagrams to be imperfect, 

Billingsley forced his reader to focus on the numbers described, but he still provided 

enough of an image to allow the reader to imagine using numbers to construct 

geometric forms.  Instead of providing the complete form, he provided the reader with 

the relevant numbers and an outline of how to arrange them in order to create the 

figure. 

Where Billingsley showed that geometric forms could be generated through 

the manipulation of the units that compose numbers, Clavius kept the numerical 

diagrams distinct from the geometric figures.  In his diagrams for plane and square 

numbers (Figure 10) he did not even connect the dots to enclose a shape.  However, in 

his commentary, he explained that the created number “is said to contain a rectangular 

parallelogram.”58  Without an accompanying drawing of a rectangle, this comment 

                                                
58 Clavius, Euclidis Elementorum, 237v. “Omnis numerus procreates ex multiplicatione mutua duorum 
numerorum, planus appellatur, quia secundum suas unitates in longum, & latum dispositas 
parallelogrammum rectangulum refert, cuius latera sunt duo numeri multiplicantes, qui idcirco latera 
numeri procreati vocantur, quod ipsum contineant, no secus, ac rectae lineae angulum rectum 
ambientes, parallelogrammum rectangulum continere dicuntur, ut latius lib. 2. explicavimus.”  
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Figure 11: Billingsley’s and Clavius’s Diagrams of Solid and Cube Numbers 

Top left: Billingsley’s image of a solid number.  Top right: Billingsley’s image of a 
cube number.  Bottom left: Clavius’s image of a solid number.  Bottom right: 
Clavius’s image of a cube number.  Note that cube numbers are special cases of 
solid numbers.  
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allowed the reader to imagine the rectangle contained by the dots but treated it as an 

entity separate from the array shown.  Although the arrangement of the dots made it 

possible for the reader to identify the rectangular magnitude contained therein, the dots 

themselves neither composed nor, as Billingsley claimed, represented that rectangle.  

Likewise, in his diagrams for solid and cubic figures, Clavius kept his emphasis on the 

arrays of dots, or the “multitude of unities [the dots]” that compose a number as 

distinct entities from the geometric forms they contain.59  Unlike Billingsley, Clavius 

included all of the dots to fulfill the multiplication problem he set up in his 

commentary to define solid numbers as the product of three terms.60  He also included 

the lines connecting the dots because they allowed him to visualize the breakdown of 

the multiplication into two steps, the first of which multiplied two terms to create a 

planar array and the second of which multiplied the planar array by the third term, and 

provided the necessary perspective to identify each individual planar array generated 

in the second step. In his descriptive image for a solid number he included all three 

possible orders of multiplication, so that the reader could see each face of the solid as 

an array that was multiplied some number of times.61  His carefully drawn images 

                                                
59 Ibid., 233v. The definition for number says that a number is composed of a multitude of unities.  
“Numerus autem, ex unitatibus composita multitudo.” 
60 Of course, there could be logistical reasons for this difference.  For the cubic number Clavius chose to 
represent 3 cubed, which is 27.  Billingsley chose to represent 9 cubed. Perhaps the latter’s printer told 
him that including all 729 dots was not possible.  Even for the solid number, Billingsley’s choice of 60 
was significantly larger than Clavius’s 24.    
61 Clavius, Euclidis Elementorum, 238v. The number shown in his figure is 24.  It is generated by 
multiplying 2, 3, and 4.  That can be done in three orders: (2x3) x4 = (3x4) x 2 = (4x2) x 3 .  By 
counting the number of dots on one face of the solid and then counting the number of parallel arrays, 
the reader could see that (2x3) x4 = (3x4) x 2 = (4x2) x 3 = 24.  Clavius described all three cases in his 
text.  “Ut quia hi numeri 2, 3, 4 mutuo sese multiplicatnes, producunt 24.  Nam ex 2 in 3 procreatur 
numerus 6 & ex 6 in 4 fit 24.  Vel ex 2 in 4 gignitur numerus 8 & ex 8 in 3 efficitur 24.  Vel denique ex 
3 in 4 producitur numerus 12 & ex 12 in 2 generatur 24.”   
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show the reader how a number can be constructed to contain a figure, but his emphasis 

was on the arrays of unities, not on the outline of the shape.  Indeed in his definitions 

for plane and solid numbers, Clavius noted that Euclid limited his discussion to right-

angled shapes, but that Jordanus had shown that numbers could be arranged in any 

geometric form.62  The shapes of the figures in those definitions were incidental.63   

Still, the possibility of arranging unities to contain certain geometrical forms 

allowed number to provide a useful analogy to magnitude because the geometric 

forms can be understood as lengths, breadths, and depths represented by specific 

arrangements of units.  In his commentary on square and cube numbers, Clavius made 

the analogy explicit by observing that the sides of the geometric figures were 

recognized as roots in arithmetic.64  These quantities would take on more significance 

in the study of commensurability, where roots are a ready source for incommensurable 

quantities.  Thus, where Billingsley showed how number could be used to represent 

geometry, Clavius built analogies that he could use in the later study of 

commensurability.  

 

                                                
62 Ibid., 237v – 238r,  “Caeterum cum infinita sint genera numerorum planorum apud Arithmeticos, 
quemadmodum & figurae planae apud Geometras: Euclides solum definit planum quadrangularem 
rectangulum, qui videlicet sub duobus mumeris, ex quorum mutua multiplicatione gignitur.”; Ibid.,  
239r, “Definit autem & hic Euclides tantum numerum solidum rectangulum, cuius bases oppositae sunt 
parallelae, contineturque sum tribus numeris, omissis infinitis aliis, de quibus Iordanus, ob causam in 
praecedenti definitione datam, quia scilicet hi prorsus aequales sunt, & similes cubis, & parallelepipedis 
Geometricis.”   
63 Square and cube numbers are special cases which, by definition, have to contain the shape described 
by their names. 
64 Clavius, Euclidis Elementorum, 239r, “Alteruter autem numerorum aequalium, sub quibus quadratus 
numerus continetur, vel ex quorum multiplicatione producitur, latus quadrati a Geometris, radix vero ab 
Arithmeticis plerisque appellatur.”; Ibid. 239v, “Quilibet vero trium numerorum aequalium, sub quibus 
cubus continetur, vel ex quorum mutua multiplicatione procreatur, Geometris latus cubi, plerisque 
autem Arithmeticis radix dicitur.”   
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Developing Number Theory: Postulates and Axioms in Book Seven 

Just as the authors all included a series of postulates and axioms, necessary 

first principles whose truth was readily assented to without demonstration, to establish 

the foundation necessary to the study of geometry in the first book of The Elements, 

they all included similar principles in the seventh book to establish the foundation of 

the study of arithmetic.65  Specifically, these postulates and axioms establish the rules 

for understanding the relationships between numbers. However, unlike those in the 

first book, where most of the differences between the texts were in the classification of 

the enunciations of the principles, the content of the postulates and axioms in the 

seventh book was not widely agreed upon in the sixteenth century.66  Thus, the 

principles that each author chose to include define the study of arithmetic and its 

relationship to the geometry found in The Elements.  Table 4 shows the number theory 

postulates and axioms from each text studied here.   Billingsley included only axioms, 

and his text had far fewer than either Commandino’s or Clavius’s, but the axioms he 

included created a foundation for the study of arithmetic as its own discipline.  In 

contrast, Commandino and Clavius both created a tool for the study of 

commensurability that appeared in Euclid’s tenth book.  However, while Commandino 

made sure to emphasize the more perfect nature of magnitude as compared to number 

in order to maintain geometry’s foundational role, Clavius showed arithmetic to be a 

                                                
65 See Chapter 3 for a discussion of the definitions of postulates and axioms and how they were 
understood by the three commentators examined here.     
66 See Chapter 3 for a discussion of the postulates and axioms in the first book.  It should also be noted 
that modern versions of The Elements do not include postulates and axioms at all in the seventh book.   
That exclusion is indicative of the modern equation of number and magnitude that would not have made 
sense to sixteenth-century authors. 
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Table 4: Postulates and Axioms in Book Seven 

 
Note that Billingsley’s second and third axioms are found in the first two axioms of the 
Latin authors.  His fourth through sixth axioms are in reversed order in the last three 
axioms of the two Latin texts.  Clavius and Commandino also have most of the same 
axioms, though the order is sometimes different.  Only Commandino’s fifth axiom is 
not found in Clavius’s text. 

 
 Billingsley Clavius Commandino 
Postulate 1  It is postulated that for 

any number, there can be 
found any number of 
equal numbers or 
multiples. 

For any number, there can 
be found any number of 
equal numbers or 
multiples. 

Postulate 2  For any number there can 
be found a greater 
number. 

For any number there can 
be found a greater 
number. 

Postulate 3   Number can be infinitely 
augmented, but not 
infinitely diminished. 

Axiom 1 The lesse part is that 
which hath the greater 
denomination: and the 
greater part is that, 
which hath the lesse 
denomination. 

Numbers that are equal to 
the same number or are 
equimultiples of the same 
number, are equal to each 
other.  

Whatever numbers are 
equal or equimultiples of 
the same number, are 
equal to each other. 

Axiom 2 Whatsoever numbers 
are equemultiplices to 
one & the selfe same 
number, or to equall 
numbers, are also 
equall the one to the 
other.  

Numbers to which the 
same number is an 
equimultiple, or for which 
equimultiples are equal 
are equal to each other.  

Numbers to which the 
same number is an 
equimultiples or for which 
equimultiples create equal 
numbers, are equal to 
each other. 

Axiom 3 Those numbers to 
whome one and the 
selfe same number is 
equimultiplex, or 
whose euqemultiplices 
are equall: are also 
equall the on to the 
other.  

For any number of equal 
numbers, the factors and 
the non-factors of those 
numbers are equal. 

Whatever numbers are 
equal, then both their 
factors and non-factors 
are equal. 
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Table 4: Postulates and Axioms in Book Seven (continued) 

 Billingsley Clavius Commandino 
Axiom 4 If a number measure 

the whole, and a part 
taken away: it shall 
also measure the 
residue. 

If the factors and the non-
factors of numbers are 
equal, then those numbers 
are equal to each other. 

If both the factors and 
non-factors of numbers 
are equal, then those 
numbers are equal to each 
other. 

Axiom 5 If a number measure 
any number: it also 
measureth every 
number that the sayd 
number measureth. 

Unity measures all 
numbers by the number of 
unities they contain, that 
is unity measures the 
number by the number 
itself.   

Every number is a factor 
of unity by its 
denomination, two is a 
factor of unity by the 
second denomination, 
which is called half, three 
is a factor of unity by the 
third denomination, called 
a third, four by a fourth, 
and so on in others 

Axiom 6 If a number measure 
two numbers, it shall 
also measure any 
number composed of 
them. 

All numbers measure 
themselves by unity.  

Unity measure every 
number by the unities that 
are in it.   

Axiom 7 If in numbers there be 
proportions how 
manysoever equall or 
the selfe same to one 
proportion: they shall 
also be equall or the 
selfe same the one to 
the other. 

If a number multiplying a 
number will have 
produced another number, 
the multiplying number 
will measure the product 
by the multiplied number 
and the multiplied number 
will measure the product 
by the multiplying 
number. 

Every number measures 
itself. 

Axiom 8  If a number measures a 
number, then that number 
by which it is measured, 
measures the same 
number by the unities 
which are in the 
measuring number, that is 
by the measuring number. 

If a number measures a 
number, then that number 
by which it is measured, 
measures the same 
number by the unities 
which are in the 
measuring number. 
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Table 4: Postulates and Axioms in Book Seven (continued) 

 Billingsley Clavius Commandino 
Axiom 9  If a number measuring a 

number multiplies that 
number by which it 
measures, or is multiplied 
by that number, it will 
produce the number that it 
measures. 

If a number that measures 
another, multiplying, or 
being multiplied by, that 
number by which it 
measures, will produce 
the number that is 
measures. 

Axiom 10  If a number measures 
however so many 
numbers, then it measure 
a number composed of 
those numbers.  

If a number multiplying a 
number will have 
produced another number, 
the multiplying number 
will measure the product 
by the unities in the 
multiplied number and the 
multiplied number will 
measure the product by 
the unities that are in 
multiplying number. 

Axiom 11  If a number measures 
some number, it measures 
all numbers that that 
number measures.  

If a number measures two 
or more numbers, then it 
measure a number 
composed of those 
numbers 

Axiom 12  If a number measures a 
whole and a part taken 
from it, then it measures 
the residue.  

If a number measures 
some number, it measures 
all numbers that that 
number measures. 

Axiom 13   If a number measures a 
whole and a part taken 
from it, then it measures 
the residue. 
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study whose analogies to geometry allowed it to inform that study through the notion 

of commensurability. 

In the postulates it becomes clear that all three authors used the same 

distinctions between postulates and axioms that they had drawn in the first book. 

Those distinctions became instrumental in defining the relationship between geometry 

and arithmetic.  For Billingsley, the difference between a postulate and an axiom was 

that a postulate was particular to its field of study while an axiom expressed a general 

truth.  In the case of geometry, he took that to mean that postulates could be 

demonstrated through construction.  However, the study of number does not rely on 

constructions, and Billingsley did not include any postulates.  Thus, he made it clear 

that arithmetic was a study of general truths, which earned it the status of the 

foundational branch of mathematics.   

In contrast, Commandino, who had distinguished between postulates and 

axioms based on the ability of a novice to understand the claim, included three 

postulates each of which alluded to some sort of infinite process; this suggests that 

only the infinite took arithmetic beyond common knowledge.  The first postulate 

allowed for the infinite production of multiples of any number.  The second permitted 

the infinite augmentation of a number.  The third prohibited the infinite division of a 

number.  However, where Billingsley treated arithmetic as the foundation of geometry 

because its knowledge was general, for Commandino it was precisely the failure of the 

infinite process described in the third postulate, a denial of the feature of number that 

he used to separate it from common knowledge, that showed that number lacked the 
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versatility of magnitude.  The fact that number could not be infinitely divided allowed 

geometry to be the more complete foundation for mathematics.  Commandino made 

this point clear in the wording of his postulates.  The third postulate reads, “Number 

can be infinitely augmented, but not diminished.” Because the preceding postulate 

said, “For any number, there can be found a greater number,” the emphasis falls on the 

negative second clause.67  Thus, Commandino called attention to the impossibility of 

an infinite division of numbers, something which was possible for magnitudes.  In so 

doing, he showed that arithmetical quantities were more restricted than geometric 

quantities, granting geometry the status as the foundational mathematical study. 

While Clavius supplied the same information as Commandino in his section of 

postulates, he emphasized the analogy between arithmetic and geometry, presenting 

the former as the key to understanding commensurability.  This emphasis arose from 

his definition of postulates as tasks to be done.  Because postulates had to be 

formulated as tasks, Commandino’s third postulate appeared only in the commentary.  

The two postulates Clavius provided, which made the same claims as Commandino’s 

first two postulates, both had a direct analog among the postulates of his first book and 

contributed to the study of commensurability.  Since the first number theory postulate 

allows for the infinite increase of a number through multiplication, it can be seen as 

analogous to the postulate that allows for the infinite extension of a line (Book One, 

Postulate 2).  However, this postulate does not allow for the creation of any number.  

Instead, it generates multiples of a given number, meaning that each number created 

                                                
67 Commandino, Euclidis Elementorum, 89v.  Postulate 2: “Quolibet numero sumi posse maiorem.”  
Postulate 3: “Numerus infinite augetur, sed non infinite diminuitur.”  
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is, by the definition of a multiple, measured by the original number, and, thus 

increasing a number according to this postulate, creates a series of obviously 

commensurable numbers.  The second postulate, which allows for the creation of a 

number greater than any given number, is analogous to the first half of the postulate in 

the first book that allows for the creation of magnitudes greater or smaller than any 

given magnitude (Book One, Postulate 4).  In this case, it is the breakdown of the 

analogy that allows arithmetic to prepare the reader for a geometric discussion of 

commensurability.  By imagining magnitudes as indivisible blocks, like numbers, 

commensurability is easily understood.68  However, by placing the failed segment of 

the analogy into his commentary instead of giving it is own postulate, Clavius 

emphasized the similarities between arithmetic and geometry that enabled readers to 

apply arithmetical concepts to magnitudes that they could imagine as discrete blocks. 

Because all three authors took the axioms to be general truths which were 

necessary to the development of number theory, these principles contained many of 

the same claims in all three texts.  Indeed, most of the axioms either make a claim 

about the equality of two or more numbers or explain conditions in which one number 

can be said to measure another number, thereby providing the necessary foundation to 

discuss commensurability.  For example, all three authors include an axiom explaining 

that if one number measures another, then the first number will also measure all 

multiples of the second (e.g. 3 measures 9, and 9 measures 18; therefore 3 measures 

18).69  However, despite their similarities, the axioms in these three texts differ in 

                                                
68 See note 55.  
69 This is Billingsley’s fifth axiom, Clavius’s eleventh, and Commandino’s twelfth.   
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ways which reveal how each commentator understood the purpose of the number 

theory books within The Elements. 

In Billingsley’s text the inclusion of two axioms not found in his 

contemporaries’ texts, and the exclusion of seven others serve to highlight his efforts 

to create a complete foundation for arithmetic within these books.  The two axioms 

Billingsley added to the text focus on proportion between numbers.  His first axiom 

establishes a general rule for numbers that the greater the denominator of a number, 

the smaller the number, and his last axiom establishes the transitive property for 

proportions.70  Since Euclid had already completed his study of proportion of 

magnitudes in Books Five and Six, their presence suggests that Billingsley strove to 

establish a complete foundation for arithmetic in Book Seven, rather than merely 

including what was necessary to the remaining Euclidean study of geometry.  The 

axioms Billingsley excluded were relevant to the study of commensurability and were 

already clearly expressed in the definitions.  For example, he eschewed two axioms 

that address unity (Commandino’s 6 and 7, and Clavius’s 5 and 6): unity measures all 

numbers, and every number measures itself.  Since a number was defined as a 

multitude of unities, it was obvious that any number be measured by unity and that the 

measuring number would be itself.  Thus, while these axioms defined the extreme 

cases of commensurability in which the smallest possible factor (unity) is involved, 

                                                
70 Billingsley, Elements of Geometrie, 187v-188r.  First Axiom: “The lesse part is that which hath the 
greater denomination: and the greater part is that, which hath the lesse denomination.”  E.g. One half 
(denominator of 2) is greater than one third (denominator of 3) since 3 is greater than 2.  The last axiom 
states, “If in numbers there be proportions how manysoever equall or the selfe same to one proportion: 
they shall also be equall or the selfe same the one to the other.”  In modern terms, it is the transitive 
property, which says that if a = b and b = c, then a = c.   
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they do not extend the definition of number to build a foundation for arithmetic.  By 

eliminating these axioms, Billingsley diminished the focus on commensurability as the 

most significant feature of arithmetic within The Elements. 

 While the content of Commandino’s and Clavius’s axioms showed that both 

developed arithmetic as a tool for the understanding of commensurability, the 

differences between their axioms illustrate that Commandino sought to present 

arithmetic as a subsidiary to geometry while Clavius saw them as analogous branches 

of mathematics.  One axiom in particular, Commandino’s fifth, which is not found in 

Clavius’s text, allowed arithmetic to be seen as simply a specific interpretation of 

geometrical quantities.  The axiom says, “Every number is a factor of unity by its 

denomination, two is a factor of unity by the second denomination, which is called 

half, three is a factor of unity by the third denomination, called a third, four by a 

fourth, and so on in others.”71 Thus, by dividing unity, it creates the possibility of 

fractional quantities such as one-half or one-third.  Although unity was defined as 

indivisible, this axiom shows that smaller quantities (albeit not technically numbers) 

can be created.  These quantities are easily seen in geometry, in which magnitudes are 

readily bisected or otherwise cut into segments.  Therefore, arithmetic is shown to be 

part and parcel of geometry as numbers are applied to measurement with any 

magnitude taking on the role of unity.  By leaving this axiom out, Clavius did not give 

the reader reason to question the indivisibility of unity, preserving the primary 

                                                
71 Commandino, Euclidis Elementorum, 89v. “Omnis numeri pars est unitas ab eo denominata, binarii 
enim numeri unitas pars est ab ipso binario denominaata, quae dimidia dicitur, ternarii vero unitas est 
pars, quae a ternario denominata tertia dicitur, quaternarii quarta, & ita in aliis.”  
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distinction between number (discrete quantity) and magnitude (continuous quantity), 

thereby allowing arithmetic to remain a separate field of study. 

Even when Clavius and Commandino included the same axioms, small 

changes to the presentation thereof created differing notions of the relationship 

between arithmetic and geometry that allowed the former to aid the latter.  For 

example, as part of their efforts to position arithmetic as a tool for the study of 

commensurability, both Commandino and Clavius included three axioms that 

established measurement as a geometric, rather than an arithmetic concept by 

exploring the connection of multiplication and measurement.  All three of these 

axioms (Clavius’s 7, 8, and 9; Commandino’s 8, 9, and 10) address what the modern 

reader will recognize as the commutative property of multiplication.  Each axiom says 

that if one number is a factor of another number, the factor multiplied by the dividend 

(the result of the factors division into the number of which it is a factor) will yield the 

original number, and that if the dividend is multiplied by the factor, the same number 

will be produced.  (For example, 3 is a factor of 18, with the dividend 6.  Both 3 times 

6 and 6 times 3 yield 18.)  Each axiom presents this information in a slightly different 

fashion.  One version (Clavius’s seventh axiom and Commandino’s tenth axiom) 

presents it in terms of multiplication.  Clavius’s version says, “If a number multiplying 

a number will have produced another number, the multiplying number will measure 

the product by the multiplied number and the multiplied number will measure the 

product by the multiplying number.”72  Another version (the eighth axiom in both 

                                                
72 Clavius, Euclidis Elementorum, 244r. “Si numerus numerum multiplicans, aliquem produxerit, 
metietur multiplicans productum per multiplicatum, multiplicatus autem eundem per multiplicantem.”  
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texts) presents it in terms of measurement.  Clavius’s version for this one reads, “If a 

number measures a number, then that number by which it is measured, measures the 

same number by the unities which are in the measuring number, that is, by the 

measuring number.”73  Finally, both texts present yet another version (the ninth axiom 

in both texts), which combines multiplication and measurement by setting the 

relationship up in terms of multiplying a number which measures another number by 

the number by which it measures the other number.  Clavius’s rendering of this 

combination reads, “If a number measuring a number multiplies that number by which 

it measures [the second number], or is multiplied by that number, it will produce the 

number that it measures.”74  By presenting the same relationship separately in terms of 

multiplying and measuring, Clavius and Commandino created a distinction between 

the two actions, one of which, measuring, is closely tied to geometry.   

However, the order in which the authors present these axioms changes the 

significance of that distinction.  Commandino used them to show that arithmetic was 

dependent on geometry, and Clavius, allowed arithmetic to stand as its own branch of 

mathematics that was analogous to geometry.  Commandino began with the geometric 

                                                
Commandino’s version is very similar, but he expresses the multiplicands in terms of the number of 
unities contained in each term.  Commadino, Euclidis Elementorum, 89v, “Si numerus numerum alium 
multiplicans aliquem produxerit, multiplicans quidem productum metitur per unitates, quae sunt in 
multipicato; multiplicatus vero metitur eundem per unitates, quae sunt in multiplicante.”  
73 Clavius, Euclidis Elementorum, 244r – v. “Si numerus numerum metiatur, & ille per quem metitur, 
eundem metietur per eas, quae in metiente sunt, unitates, hoc est, per ipsum numerum metientem.”  
Commandino’s is identical except that it leaves off the last phrase (beginning with “hoc est”). 
(Commandino, Euclidis Elementorum, 89v.) 
74 Clavius, Euclidis Elementorum, 244v. “Si numerus numerum metiens, multiplicet eum, per quem 
metitur, vel ab eo multiplicetur, illum quem metitur, producet.”  Again, Commandino’s is quite similar. 
“Si numerus metitur numerum, & ille, per quem metitur, eundem metietur per eas, quae sunt in 
metiente, unitates.” (Commandino, Euclidis Elementorum, 89v.) 
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notion of measuring, then offered the combination, and concluded with the arithmetic 

construction based on multiplication.  In so doing, he showed his reader that the 

arithmetic notion of multiplication grew out of the geometric notion of measuring.  In 

contrast, Clavius began with the arithmetic construction of multiplication, which he 

followed with the geometric construction of measuring, and concluded with the 

combined formulation.  In his case, the first two axioms are clearly analogous to one 

another; geometric measuring is seen as analogous to arithmetic multiplication.  The 

final axiom then brings multiplication into geometry, showing that the analogy present 

between geometry and arithmetic allows the latter to inform geometric reasoning and 

permits the geometry student to turn to arithmetic for clarification.   

    

Conclusion: Applying Number Theory to the Study of Commensurability 

While the three commentators studied here disagreed on the exact relationship 

between geometry and arithmetic, they all agreed that the pieces of arithmetic 

developed in the number theory books were necessary to Euclid’s study of 

commensurability in the tenth book.  Thus, the uses of number prior to Book Ten can 

be seen as preparatory efforts to grapple with the relationship between number and 

magnitude in that book.  Therefore, there is no more fitting way to conclude this 

chapter than to provide an example of how each author translated his understanding of 

the branches of mathematics into the combination of geometry and arithmetic in the 

final proof in the tenth book: the proof that the a square’s diagonal is 

incommensurable with its side.  It should be noted that this particular proposition is 
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not found in modern versions of The Elements because it is no longer believed to be 

original to Euclid.75  However, prior to in the sixteenth century, it was a key 

demonstration in understanding the relationship between geometry and arithmetic 

because it presented a commonly found pair of magnitudes (the side and the diagonal 

of a square) that could not be related to one another through numbers.  But, to 

understand the nature of incommensurability, one first had to understand number 

theory. 

In all three texts the contents of the final proposition in Book Ten follow the 

same outline.  All three authors present two proofs for the incommensurability of the 

side and diagonal of a square, each of which assumes that there exists a numerical 

proportion with the ratio between the diagonal and the side of the square.  The proofs 

are then done by showing that such numbers cannot exist because the requirements 

imposed on them by the relationship between the square of the diagonal and the square 

of the side (namely that the former is double the latter), lead to contradictions of basic 

principles of numbers.  In the first proof it is shown that for the proportion between the 

side and the diagonal of the square to be a rational number, one of two relatively prime 

integers composing that proportion would have to be both even and odd, which is 

impossible.  In the second proof it is shown that numbers that were assumed to share 

                                                
75 The proposition disappeared from versions of Euclid in the nineteenth century, which suggests that 
the objection to its non-original status may have been paired with the development of the real numbers 
in the decision to remove it.  Because real numbers include irrational numbers, they allow for a purely 
numerical demonstration of the irrationality of the square root of two.  Thus, the geometric structure to 
the demonstration found in The Elements, is unnecessary to a modern demonstration of the concept.  Of 
course, such a shift requires the understanding of a continuous number line, a fundamental break with 
ancient mathematics.   
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only one as a common factor, share the smaller of the two numbers, which cannot be 

one, as a factor.  Since such numbers cannot exist, there is no numerical proportion 

between the side and the diagonal of the square, and the two lines must be 

incommensurable.76  Thus, while geometry provides the scenario by raising the 

question of the possibility of identifying a proportion between the sides and the 

diagonal of a square, the demonstration itself is done purely with numbers.  Even the 

figures provided by all three authors (Figure 12), illustrate the use of number by 

including images of squares and series of dots or lines to represent the relevant 

numbers.  Finally, after the proofs for this proposition each of the commentators 

included a brief discussion of the extension of the study of incommensurability from 

lines and figures to the study of solids.77   

While all three authors provided similar proofs to demonstrate the 

incommensurability of the sides and diagonal of a square, each of their established 

relationships between arithmetic and geometry remained clear.  In the first of the 

proofs discussed above, both Billingsley and Commandino isolated the two branches 

of mathematics from one another by placing the relevant geometric constraint (that the 

square of the diagonal is double the square of the side) in the first sentence of their 

demonstrations.78  While the constraint is presented again towards the end of the 

                                                
76 See Appendix C for Clavius’s version of both of these proofs.  The proofs found in Commandino’s 
and Billingsley’s texts are very similar.   
77 All three authors have extremely similar discussions, suggesting that they were taken from some 
other source.  Billingsley claimed that it may have been written by Theon, so it may be present in the 
1533 printing of Theon’s Greek text.   
78 Billingsley, Elements of Geometrie, 309v; Commandino, Euclidis Elementorum, 187r. Billingsley’s 
proof begins, “It is manifest (by the 47 of the first) that the square of the line AC is double to the square 
of the line AB.”  Commandino’s begins the same way.  “Itaque manifestum est quadratum ex AC 
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Figure 12: Diagrams for the Demonstration of the Incommensurability of the 
Side and Diagonal of a Square 

Billingsley’s (top left), Commandino’s (top right) and Clavius’s (bottom) images for 
the proof that diagonal of a square is incommensurable with its side.  Each author 
included labeled series of dots to represent the numbers used in the demonstration.  EF 
and G are the hypothesized integers with a proportion between them equivalent to the 
proportion between the side and the diagonal of the square.  	
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proof, when it becomes relevant, beginning the proof with the geometric claim 

separates the arithmetic demonstration from the geometric problem.  However, the 

context of the preceding books changes how that isolation is seen.  In Billingsley’s 

work, the geometric constraint is presented as a description of the square under study 

and is restricted to setting up a problem about the relationship between roots of 

numbers, one of which is double the other.  Indeed, in his commentary, he provided a 

third demonstration (credited to Candalla) in which the original square is hardly 

mentioned, and the geometric constraint that the square on the side is half of the 

square on the diagonal is only discussed as the proportion between two square 

numbers, independent of their origins as the areas of particular squares.  Billingsley 

wrote that he thought this demonstration was “good to adde, for that the former 

demonstrations seme not so full,” revealing his own preference for the arithmetical 

demonstration.79   

In contrast, in Commandino’s work, the presentation of the geometric 

constraint at the start of the proof served to call attention to the geometrical origin of 

the problem, establishing that the arithmetical demonstration only became meaningful 

in the context provided by the geometric problem.  Instead of separating square 

numbers from their physical sources, Commandino allowed the geometric shapes to 

give the numbers meaning.  Only because the squares are constructed on continuous 

lines could the impossible proportion be imagined.  And thus, the numerical values 

                                                
duplum esse quadrati ex AB.”  It is not until the end of the demonstration that the significance of this 
relationship becomes clear.   
79 Billingsley, Elements of Geometrie, 310v. 
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were only descriptions of the geometric shapes to which they were attached.  

Furthermore, since this is a proof by contradiction, those numerical descriptions were 

shown to be unable to fully explain the relationships between magnitudes. 

Commandino’s emphasis on the status of arithmetic as a tool to geometry is especially 

pronounced in his placement of the aforementioned discussion of the application of 

the study of incommensurability to solid geometry.  Instead of treating it as an 

addition to the whole of Book Ten, as Billingsley had done, he appended it directly to 

the end of the proof (before his commentary), only using a paragraph break to denote 

that it was distinct from the demonstration.  Thus, he showed that even though the 

proof relied on arithmetic, its function was to develop geometry, the only branch of 

mathematics that could make sense of incommensurable quantities. 

Unlike either of his contemporaries, Clavius did not attempt to keep arithmetic 

and geometry distinct within the study of commensurability.  Instead of beginning 

with the geometrical portion of the proof, he opened his demonstration with the 

analogy between geometry and arithmetic that allowed the proof to be developed 

numerically, namely that if the side and the diagonal of the square were 

commensurable the proportion between them was the same as a proportion between 

some pair of numbers.80  He only introduced the geometric constraint of the 

relationship between the squares on the diagonal and the side of the square where it 

became relevant in the middle of the proof.   After the two demonstrations, Clavius 

included a scholion composed of the same additional proof found in Billingsley’s text 

                                                
80 Clavius, Euclidis Posteriores, 115r. “Si enim non est incommensurabilis, commmensurabilis erit 
longitudine; ac propterea AC, AB proportionem habebunt, quam numerus ad numerum.”   
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and the discussion on using incommensurability in solid geometry that the other two 

authors provided.  However, unlike Billingsley, he presented the arithmetical proof as 

merely another viable demonstration of the theorem, making no comment about its 

relationship to the two demonstrations already included.  Furthermore, the inclusion of 

the discussion on the uses of incommensurable lines in the study of solid geometry in 

the same scholion prevented the interpretation of the arithmetical proof as superior to 

those that made more use of the underlying geometry.  As in Commandino’s text, the 

placement of that discussion served to remind the reader that even the arithmetical 

demonstration of the claim was a tool to the further study of geometry.  However, 

Clavius introduced that discussion with a brief note that its role was an appendix to 

Book Ten, not just the final proof.81  Thus, commensurability, and through it, 

arithmetic, were allowed to stand as studies independent of the plane and solid 

geometry found in the rest of The Elements.   

Thus, in the culmination of the study of commensurability, Clavius maintained 

a relationship between arithmetic and geometry that was between the relationships 

established by his contemporaries.  On the one extreme, Billingsley saw arithmetic as 

the true foundation of all of mathematics.  In his eyes, geometry, along with the rest of 

mathematics, depended upon the study of number.  Even as early as the second book 

of The Elements, the geometric theorems could be recast as arithmetical theorems.  

                                                
81 Ibid., 116r. “Caeterum in exemplaribus Graecis reperitur hoc loco appendix quaedam, cuius 
intelligentia ex sequentibus Stereometriae libris pendet, ut merito omitti posset.  Verum quia in ea 
continetur doctrina non contemnenda ad commensurabilitatem omnium magnitudinum, & 
incommensurabilitatem pertinens visum est, eam paucis explicare, assignando more nostro solito in 
margine loca Stereometriae, quae ad demonstrationem eorum quae hic dicuntur, necessaria sunt.  Est 
igitur appendix haec.”  
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Once Euclid reached the study of proportion, arithmetic was necessary to make the 

geometric demonstrations intelligible.  According to Billingsley, Euclid himself 

recognized the inability of geometry to stand on its own, so he included three books on 

number theory before he introduced commensurability.  In contrast, Commandino saw 

arithmetic as a tool for geometry.  While number could be used to provide specific 

measurements for generalizable geometric examples, the study of number could never 

be as complete as the study of magnitude. In Commandino’s view, the discrete nature 

of number that made it useful for examples, especially in the study of proportion, 

prevented it from examining a complete range of quantities.  As was evident in the 

existence of incommensurable pairs of magnitudes, geometric quantities did not have 

that limitation.  For Clavius, geometry and arithmetic were separate branches of 

mathematics, whose similarities created informative analogies.  Through number’s 

analogy to magnitude, arithmetic served as a pedagogical tool because it provided 

another way to examine quantities that could provide insight into geometry.  This 

union of arithmetic and geometry was picked up by Jesuit students, including 

Descartes and Gregory of Saint-Vincent (1584-1667), and other seventeenth-century 

mathematicians who began to use arithmetic approaches in their studies of geometry, 

leading to the “algebraization of geometry” and the development of mathematics 

clearly distinct from the classical quadrivium, including its rigid divide between 

number and magnitude.82   

                                                
82 Mancosu, 34.  As noted at the beginning of this chapter Mancosu considered the “algebraization of 
geometry” to be one of the two significant shifts in mathematical practice that allowed seventeenth-
century mathematical scholars to break with classical mathematics.   
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Chapter Five 
	

Mathematics and the Visualization of 
Space: The Use of Diagrams 
in The Elements 
	

 
“And it shall be very necessary for you to have some of this pasted paper by you, for 
so shal you upon it describe the formes of other bodies as Prismes and 
Parallelipopedons, and such like set forth in these five bookes following, and see the 
very formes of these bodies there mencioned: which will make these bokes concerning 
bodies, as easy unto you as were the other books, whose figures you might plainly see 
upon a playne superficies.”1  

Sir Henry Billingsley, 1570 
  

  

In his 1570 edition of The Elements, Sir Henry Billingsley went to great lengths to 

ensure that his readers would be able to visualize all of the shapes and relationships 

between shapes that were described by Euclid.  As the above quotation notes, he even 

provided templates for his readers to use to create three-dimensional figures, so that 

those could be as fully accessible as the more easily represented two-dimensional 

figures. While Billingsley’s extensive use of three-dimensional images was unique, in 

the sixteenth century, no one questioned that images were an essential part of 

																																																													
1 Henry Billingsley, The Elements of Geometry of the most auncient Philospher Euclide of Megara, 
(London: John Daye, 1570), 340. (N.B. The folio number on what should be 320 is printed as 340.  The 
next folio shows 341; the following is numbered 327.  After that, the number is 323, which is what it 
should be.  From there the folios count up as one expects.)   
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geometric demonstrations.2  As the adage says, a picture is worth a thousand words.  

However, the words that are conveyed by each picture vary from book to book, and 

need not be found in the written text itself.  In the case of The Elements, a comparison 

of three sixteenth-century editions shows that authors’ conceptions of the discipline of 

mathematics, the reasons it was valuable, and consequently the place they each 

assigned to it within the hierarchy of disciplines, are revealed by their uses of 

diagrams.   

As the reader will recall from Chapter One, in the sixteenth century the status 

of mathematics was under debate.  At the start of the sixteenth century, mathematics 

had been considered a lower discipline, with its four branches, geometry, arithmetic, 

astronomy and music, making up the quadrivium, half of the seven liberal arts.  

Consequently, mathematics professors had lower social status than their colleagues in 

the higher faculties of medicine, law, and theology.3  In the middle of the sixteenth 

century, inspired by the rediscovery of ancient Greek texts, mathematicians challenged 

their subordinate status.  They argued that mathematics was able to make sure claims 

about the world, and this ability granted it epistemological status comparable to that of 

																																																													
2 During the late nineteenth and early twentieth centuries, Bertrand Russell, David Hilbert, and other 
mathematicians developed a standard of proof that required all mathematical demonstrations to be 
purely sentential, which reduced images to mere depictions of the words in the text.  For discussions of 
Hilbert and the potential roles of diagrams in geometry, see Jesse Norman, After Euclid: Visual 
Reasoning and the Epistemology of Diagrams (Stanford, CA: CSLI  Publications, 2006), 2-19; and 
Mark Greaves, The Philosophical Status of Diagrams (Stanford, CA: CSLI  Publications, 2002), 7-9.   
3 See Robert Westman, “The Astronomer’s Role in the Sixteenth Century: A Preliminary Study,” 
History of Science 18 (1980): 117-119.  Westman notes that the mathematics professors were often still 
studying medicine or theology and treated the less lucrative mathematics chair as a stepping stone to the 
more prestigious positions in the higher faculties. 
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natural philosophy.4  However, mathematicians themselves did not agree on exactly 

what it was that enabled mathematics to make claims about the world.  Some argued 

for its value based on its practical ability to study physical bodies, placing it alongside 

physics within philosophy. These arguments centered on the utility of the “mixed” 

sciences, which combined abstract mathematical entities with physical objects.  Others 

argued for mathematics’ ability to make certain, universal claims based on abstract 

principles, placing it alongside metaphysics.  These arguments emphasized the purely 

mathematical studies of magnitude and number as perfect, abstract quantities.  In this 

chapter, through a comparison of their uses of diagrams in commentaries on The 

Elements,  I will show that Billingsley fell into the former category, while his 

humanist contemporary Federico Commandino fell into the latter.  In his commentary, 

Christopher Clavius, the Jesuit mathematics professor in Rome, created a view of 

mathematics that combined those of his contemporaries and positioned mathematics as 

a bridge between physics and metaphysics. 

The ability of diagrams to reveal an author’s approach to his discipline is not 

inherently surprising.  Art historians have long connected the content of images with 

significances for their contexts.  In his Painting and Experience in Fifteenth-Century 

Italy, Michael Baxandall argued that the style of Renaissance paintings was a product 

of the artists’ social context and, as such, could reveal the artist’s culture by showing 

what had recognizable value in numerous areas, including economics, religion, and 

																																																													
4 Of course, these arguments were not entirely new in the mid-sixteenth century.  As discussed in 
chapter one, Regiomontanus, a fifteenth-century humanist, had made them in his famous Padua Oration 
of 1464.  During the Middle Ages, mathematically inclined scholars such as Roger Bacon (1214-1292) 
and Nicole Oresme (1320-1382) had made similar arguments for mathematics.   
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even mathematics.5  Surely, then, the style of diagrams in a natural philosophy text 

could reveal the author’s understanding of his own discipline.  Recently, historians of 

science have begun to explore the visual arguments that go beyond the texts of their 

sources.  Sachiko Kusakawa has argued that, in the context of a debate about the value 

of medical images, sixteenth-century physicians who used images in their works did 

so to make arguments about their discipline and how it should be studied.6  Historians 

of early modern astronomy have also begun to examine the use of diagrams in their 

sources.  A collection of articles in the Journal for the History of Astronomy shows 

that astronomers used images for a variety of purposes, showing the myriad values 

that could be ascribed to mathematics (in the form of astronomy, a branch of mixed 

mathematics).  Some, notably John Blagrave’s Mathematical Jewel, provided practical 

aids that emphasized the physicality of mathematics and its utility to various tasks of 

everyday life.  Others, notably Giordano Bruno’s schematic diagrams of the structure 

of the universe, conveyed theories that connected mathematics, especially astronomy, 

to a philosophical search for the universal truths governing the world.7   

																																																													
5 Michael Baxandall, Painting and Experience in Fifteenth-Century Italy, Second Edition, (Oxford: 
Oxford University Press, 1988), 29-40.  On page 30, Baxandall alludes to Euclidean geometry as an 
example of one part of training architects and artists would have had in the fifteenth century. His 
allusion suggests that it was through Euclidean studies that such artisans learned to make sense of the 
shapes they used in their own work, particularly in schematic sketches.  J.V. Field has shown that the 
mathematics of the Renaissance can be understood through examinations of artwork, especially because 
the development of perspective and the use of vanishing points were mathematical endeavors.  Indeed, 
many artists, notably Piero della Francesca, were also mathematicians.  See J.V. Field, The Invention of 
Infinity: Mathematics and Art in the Renaissance. (Oxford: Oxford University Press, 1997.) 
6 Sachiko Kusakawa, Picturing the Book of Nature: Image, Text, and Argument in Sixteenth-Century 
Human Anatomy and Medical Botany, (Chicago: The University of Chicago Press, 2012).    
7 Journal for the History of Astronomy, August 2010; See Katie Taylor, “A “Practique Discipline”? 
Mathematical Arts in John Blagrave's The Mathematical Jewel (1585)”, pp.  329-353 for Balgrave.  See 
Christoph Lüthy, “Centre, Circle, Circumference: Giordano Bruno’s Astronomical Woodcuts,” pp. 311-
327 for Bruno. 
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Of course, the diagrams in the astronomy texts are not the only means through 

which the arguments about mathematics are made.  The topics of the texts themselves 

suggest broader arguments about mathematics. Blagrave’s treatise is about a physical 

tool he had created, namely, an astrolabe, pushing him towards a physical 

interpretation of mathematics.  Bruno’s texts are about the structure of the heavens, 

leading him to show mathematics as the source for truths about the universe.   Given 

the right topic, it was easy for images to show certain arguments for the status of 

mathematics.  For example, in his Geometria practica, which sought to apply 

Euclidean geometry to everyday problems, Clavius often sketched his abstract 

diagrams with images of towers and mountains in problems about measurements 

involving such entities (Figure 13), showing that mathematics could combine the 

abstract and the concrete.8  While the claim that images served a variety of purposes 

across texts that explored different aspects of mathematics is fundamentally 

uninteresting, differences in images in versions of the same text, such as commentaries 

on The Elements, can reveal differing conceptions of mathematics as a discipline.  

Indeed, although the prescriptions within the Euclidean text heavily constrain images 

such that the variations between diagrams across commentaries must be minor (e.g., 

an equilateral triangle is always composed of three equal sides meeting at 60 degree 

angles), the small differences that exist in the presentations of the diagrams can and do 

drastically change how the image affects the interpretation of the value of 

mathematics.  

																																																													
8 Christopher Clavius, Geometria practica (Rome: Aloisyius Zannettus, 1604), 54.   
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Figure 13: A Problem from the Geometria practica with a Diagram Superimposed 
on a Sketch  

Page 54 from Clavius’s Geometria practica.  This diagram accompanies the first 
problem in the second book, which instructs the reader on how to measure a distance in 
a plane using a quadrant when there is an object of known height, such as a tower, at 
one end of the distance to be measured.  In it the reader can easily see the tower, and the 
two necessary iterations of the quadrant, all with labels typically of points and lines on 
a diagram.  The measurements to be taken and the plane itself are drawn simply with 
the relevant lines.  The tower even has one edge that clearly serves as a side of a several 
triangles.   
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In this chapter, I will compare the use of diagrams in Billingsley’s, 

Commandino’s, and Clavius’s commentaries on The Elements.  I will examine the use 

of diagrams in the first book as an example of planar geometry diagrams.  The 

definitions provide valuable source material for a comparative study because, unlike 

most propositions, they do not require diagrams, giving the authors flexibility in their 

use of images.  However, the diagrams for the propositions are not entirely uniform.  

Therefore, I will discuss the first two propositions of the first book to give the reader a 

sense of how the small differences between the authors’ diagrams can affect the 

interpretation of the images.  These early definitions and propositions set the tone for 

each author’s book.  In addition, the challenges presented by representing three-

dimensions on paper makes a study of the solid geometry books worthwhile.  I will 

examine the definitions in the eleventh book and one proposition from the twelfth 

book to show how the authors approached three-dimensional objects and to 

demonstrate the continuity of their early patterns in the last section of The Elements.  

 

The Basics: Definitions in Book One 

When studying various editions of The Elements, it almost immediately 

becomes clear that most authors used images to do more than provide necessary 

illustrations of proofs. Commentators usually included illustrations for nearly all of the 

definitions in the first book.  While these images provide the reader with visual 

training that would enable them to identify the elemental forms of geometry in 

subsequent diagrams, most of those concepts are so simple that images might seem 
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superfluous.9  Nevertheless, even in 1482, in the first printed edition of The Elements, 

Erhard Ratdolt placed diagrams in the margin for most of the Book One definitions, no 

mean feat in the early days of printing (Figure 14).  However, because the diagrams of 

these definitions are non-essential to the understanding of the Euclidean enunciations, 

commentators had more freedom in their presentation of these images than they did in 

diagrams for the propositions.  Therefore, the relationships authors created between 

the text of the definitions and the illustrations provide a particularly interesting lens 

into each author’s use of visualizations and, in turn, into his vision of mathematics.   

In Billingsley’s text, the images were often the subject of the commentary, 

establishing the importance of the physical nature of mathematics.  In contrast, 

Commandino rarely referred to the diagrams, allowing the physical particularities of 

the drawn mathematical objects to remain incidental to the universal principles the 

images were intended to illustrate.  As usual, Clavius struck a balance between his two 

contemporaries by using diagrams as vital pieces of his explanations of the properties 

of defined entities.  As a result, he placed mathematics at the intersection of the study 

of the physical objects presented by Billingsley and the universal ideas emphasized by 

Commandino.  In this section, I will examine each author’s treatment of illustrations in 

the definitions through general patterns that emerge in each text and a comparison of 

the three texts on two definitions: an equilateral triangle and a plane.   

																																																													
9 Baxandall, Painting and Experience, 30-31.  Baxandall notes that familiarity with the forms found in 
the definitions of Euclid’s first book could provide scholars with visual tools to identify and make sense 
of similar forms in other images.  
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Figure 14: Erhard Ratdolt’s Diagrams for the Definitions of Book One  

The definitions for the first book and their diagrams in Erhard Ratdolt’s 1482 edition 
of The Elements fit almost entirely on one page.  Most definitions are represented by 
an image, but the labels must be read to attach any image to its definition.  The close- 
up image below the full page shows the diagram for the definitions of a circle and the 
diameter of a circle.  

Source: http://www.math.ubc.ca/~cass/euclid/ratdolt/ratdolt.html	
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The general patterns of diagram usage in each text are most clearly seen in 

their placements of diagrams, which reveal the value each author attached to the 

physical nature of mathematics.  Unlike Ratdolt, the sixteenth-century commentators 

studied here did not place all of their diagrams for the definitions in the margin of a 

single page.  In part, this could be due to advances in printing, but it is more likely that 

the authors saw the images as themselves part of their commentary, and so placed 

them alongside the individual definitions as their commentary demanded.  In none of 

the texts did the commentary require that every definition be accompanied by its 

diagram.  So, while all three commentators included images for nearly all of the 

definitions, their placement of the images gave them meanings beyond their role as 

physical instances of the concepts.10  Table 5 gives a complete list of the definitions 

and the diagram placement for all three texts.   

The table clearly shows that Billingsley consistently provided images 

alongside his definitions.  Thirty-one of his thirty-five definitions have an 

accompanying diagram, and the commentary for two of the remaining definitions 

explicitly refers readers to diagrams for nearby definitions.  His placement of diagrams 

enabled his emphasis on the physical instances of mathematical objects by providing 

his reader with examples of each definition.  Indeed, much of his commentary is 

simply a discussion of the visual aids he had created.  For example, in his definition of 

a semicircle, he identified the two semicircles in the diagram he provided (Figure 15).  

																																																													
10 As discussed in the previous chapter both Billingsley and Clavius included an image of a point with 
their commentary on the first definition.  Commandino did not.  Clavius left out an image of a 
multilateral figure.  That lacuna will be addressed shortly. 
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Table 5:  The Definitions and Diagrams of Book One 
 
 
 
 
 
 
  Billingsley Clavius Commandino 

1. Point Diagram Diagram No diagram 
2. Line Diagram Diagram No diagram 
3. Limits of a Line Diagram Refers to diagram 

for def. 2 
Diagram 

4. Straight Line 2 diagrams Diagram Diagram 
5. Surface Diagram Diagram No diagram  
6. Limits of a Surface Refers to diagram 

for def. 5 
Refers to diagram 
for def. 5 

Diagram* 

7. Plane Diagram 2 diagrams Diagram* 
8. Plane Angle Diagram 2 diagrams No diagram 
9.  Straight-line Angles Refers to diagram 

for def. 8 
Diagram Diagram (includes non-

straight line angles) 
10. Right Angle Diagram Diagram No Diagram 
11. Obtuse Angle Diagram* Diagram No Diagram 
12. Acute Angle Diagram* Refers to diagram 

for def. 11 
Diagram covering 
defs. 10-12 

13. Limit No diagram No diagram No diagram 
14. Figure Diagram No diagram No diagram 
15. Circle Diagram Diagram No diagram 
16. Center of a Circle Diagram Refers to diagram 

for def. 15 
Diagram 

17. Diameter Diagram 2 Diagrams Diagram 
18. Semi-Circle Diagram Refers to 1st diagram 

for def. 17 
No diagram 

    Continued on next page 
 
 
 
*These pairs of definitions are represented by a single diagram placed such that it clearly 

accompanies both definitions.  
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Table 5:  The Definitions and Diagrams of Book One (continued) 
 
 
 
 
 
 
 
  Billingsley Clavius Commandino 
19. Portion of a Circle Diagram N/A** Diagram covering 

defs. 18-19 
20. Straight-Line Figures No diagram No diagram No diagram 
21. Three-Sided Figure Diagram No diagram No diagram 
22. Four-Sided Figure Diagram No Diagram  No diagram 
23. Many-Sided Figure Diagram No Diagram Diagram of covering 

defs. 20-23 
24. Equilateral Triangle Diagram Diagram No diagram 
25. Isosceles Triangle Diagram Diagram No diagram 
26. Scalene Triangle Diagram Diagram No diagram 
27. Right Triangle Diagram Diagram  No diagram 
28. Obtuse Triangle Diagram Diagram No diagram 
29. Acute Triangle Diagram Refers to diagrams 

for defs. 24-26 
2 Diagrams covering 
defs. 24-29  

30. Square Diagram Diagram No diagram 
31. Rectangle Diagram Diagram Diagram covering 

defs. 30-31 
32. Rhombus Diagram Diagram No diagram 
33. Rhomboides Diagram Diagram Diagram coving 

defs. 32-33 
34. Trapezia Diagram Diagram Diagram 
35. Parallel Lines Diagram Diagram Diagram 
36.  Parallelogram N/A** Diagram N/A** 
37.  Complement N/A** Diagram N/A** 
 
 
 
*These pairs of definitions are represented by a single diagram placed such that it clearly 

accompanies both definitions.  
** These definitions are not present in the author’s text. 
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Figure 15: Billingsley’s Definition of a Semicircle 

The commentary merely observes that because BGC is a diameter of the circle, ABC 
and BDC are both semicircles. 
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Two definitions – numbers thirteen and twenty, respectively, of limits and straight-

lined objects – neither have their own image nor directly refer to another related 

definition’s image.  These are definitions of broad concepts, so, by leaving out images 

for only these definitions, Billingsley downplayed the importance of general concepts 

in favor of studying their particular cases, for which he included diagrams.  

Furthermore, the commentary on these definitions directed readers to a study of the 

particulars rather than the general concepts.  In the case of the definition of limits, his 

commentary was just a recitation of the earlier definitions of the limits of lines (points) 

and the limits of surfaces (lines), though it gave no direct reference to their 

corresponding diagrams (Figure 16).  Similarly, Billingsley’s commentary on his 

definition for a straight-lined figure says only that a straight-lined figure may be 

contained under three, four, or more lines.  The next three definitions, which include 

diagrams, are for the specific cases of three-, four-, and more-sided figures (Figure 

17).   

In contrast, Commandino used visuals to call the reader’s attention to the 

universal ideas found in the definitions by grouping images for the definitions 

belonging to a general category into a single diagram accompanying the last definition 

of that category.  As a result, only fifteen of his thirty-five definitions have 

accompanying diagrams, even though he still included images for all but one of the 

definitions (a point).  Despite the fact that most diagrams included an image for 

multiple definitions, it would be a mistake to see the groups of images as multiple 

diagrams.  Instead, they are best understood as single entities because each diagram 
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Figure 16: Billingsley’s Images for a Line and a Surface 

In his image for the limits of a line (left), Billingsley accentuated the endpoints A and 
B to call attention to them as the termini of the line.  His image for a surface (right) 
doubles as his image for the limits, or extremes of a surface.  In his commentary to the 
definition for the extremes of a surface he merely points out that line AB, BD, DC, and 
CA are the limits of the surface ABCD.	
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Figure 17: Billingsley’s Images for Three-, Four- and More-Sided Figures 

Billingsley’s images for each definition appear alongside their accompanying text. 
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shows the reader the relationships between the definitions illustrated, and sometimes 

can even uncover assumptions within definitions.   

For example, the diagram accompanying the definition of an acute angle 

(Figure 18) has an image of a right angle (definition 10), an obtuse angle (definition 

11), and an acute angle (definition 12), all three kinds of straight-lined plane angles.  

By placing all three images next to one another, Commandino’s diagram made it easy 

to see the comparisons outlined by the definitions.  An obtuse angle is an angle larger 

than a right angle, and an acute angle is smaller than a right angle. However, the 

definitions for obtuse and acute angles did not specify that they are straight-lined 

angles.  Commandino’s image shows three straight-lined angles, showing the only 

situation in which the comparisons defining obtuse and acute angles make sense.  On 

this point, the diagram provided reinforcement for the argument found in the 

commentary, but that argument relied primarily on the description of counterexamples 

and never referenced the image.11  In fact, Commandino rarely referenced his visuals 

in his text, minimizing the physical nature of mathematics embodied by the diagrams.  

Clavius struck a balance between Billingsley and Commandino in his 

treatment of diagrams, showing mathematics to be the study of both the abstract 

																																																													
11 Federico Commandino, Euclidis Elementorum Libri XV, (Pisa: Jacobus Chriegher German, 1572), 2v. 
“In diffinitione anguli obtusi, & acuti genus subintelligi oportet, est enim uterque ipsorum rectilineus; 
hic quidem minor recto, ille autem maior.  Sed non simpliciter quicumque minor est recto, is est acutus; 
neque quicumque maior recto est obtusus.  Nam qui grece κεζατοειδµς  dicitur, hoc est cornicularis, qui 
continetur recta linea circulum contingente, & circumferentia ipsa, non tantum recto, sed etiam omni 
acuto est minor, acutus autem non est.  & semicirculi angulus omni recto est minor, sed tamen non est 
acutus, quorum quidem causa est, quod sunt mixti, & non rectilinei.  & eorum, qui lineis circularibus, 
aut alioqui curvis continentur multi recto maiores apparent, non tamen sunt obtusi.  Cum igitur rectum 
angulum diffinire proposuisset Euclides rectam assumpsit lineam super aliam rectam insistentem; & 
angulos qui ex utraque parte sunt, quos angulos deinceps appellat, inter se aequales facientem.” 
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Figure 18: Commandino’s Diagram Accompanying the Definition 
of an Acute Angle 

This diagram shows all three kinds of straight-lined plane angles, allowing easy 
comparison, but it separates images from their definitions. 
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concepts expressed in the definitions and the physical objects found in the diagrams.  

Like Billingsley, Clavius made the connection between most definitions and their 

diagrams explicit.  Twenty-four of his thirty-six definitions had accompanying 

diagrams, and the commentaries of six more definitions referred the reader to 

diagrams for nearby definitions. However, in cases in which his diagram served 

simply as an illustration of the concept, Clavius, unlike Billingsley, usually did not 

refer to the diagram in his text.  Therefore, the image, rather than acting as a particular 

instance of the defined concept, served as a generic form of the concept. Still, because 

the images are attached to individual definitions, they lack the emphasis on 

universality found in Commandino’s diagrams of categories of objects.  Furthermore, 

when no one image could fully represent a broad class of objects, Clavius refrained 

from including diagrams. The six definitions that do not have clearly associated 

diagrams are all larger classes of objects, such as multilateral figures, the only 

definition for which Clavius does not provide any image.12  By leaving out diagrams 

for the more general definitions, Clavius implied that visuals were indeed physical 

instances of specific objects, despite their ability to represent sets of visually similar 

objects.   

Clavius’s own understanding of the relationship between the physical and the 

abstract aspects of mathematics as intertwined becomes clear in a few definitions in 

which he allowed the image to define the concept by asking the reader to imagine 

																																																													
12 The other five definitions without explicit connections to diagrams are represented in the images 
accompanying cases of the concepts they define.  For example, the definition of a limit is 
diagrammatically represented in the images for the definition of the limits of a line.  No specific cases 
of a multilateral figure are defined, so no illustrations are included. 
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some physical manipulation of the diagram in order to explain the concept.  By using 

the image to create a functional definition for concepts, he united the physical 

diagrams with the metaphysical notions of geometric elements, requiring the two 

aspects of mathematics to work together.  For example, Clavius’s diagram of a line 

appears next to the section of commentary in which he explains how a line can be 

understood as “a point in motion.”13  The explanation relies on the ability of the reader 

to imagine point A, which Clavius had insisted was immaterial in his commentary on 

the definition of a point, traveling to point B, leaving a trail in its wake.  The diagram 

(Figure 19) assists the reader by presenting two possible paths for point A to follow.14 

The commentary’s hypothetical moving point is made real by the diagram, and the 

line becomes its physical path.  Thus, even though neither a point nor a line can 

properly exist in the physical world, the metaphysical dimensionless point is used to 

create a physical definition of a metaphysical line’s breadthless length.15   

The general patterns just described show that each author approached 

mathematics with a unique understanding of its value.  These same patterns manifest 

themselves in the individual visualizations for each definition, making diagrams for 

specific definitions valuable sources for studying the authors’ perceptions of the 

importance of mathematics.  Even in heavily constrained definitions, for which all 

																																																													
13 Christopher Clavius, Euclidis Elementorum Libri XV. Accessit XVI de Solidorum Regularium 
comparatione, (Rome: Vincentium Accoltum, 1574), 2r. “Hinc factum est, ut alii dixerint, lineam nil 
esse aliud, quam puncti fluxum.” 
14 Ibid., 2r. “Ut si punctum A, fluere intelligamus ex A in B, vestigium effectum AB, linea 
appeliabitur…”  
15 Ibid, 1v.  Clavius’s definition of a line is “Linea vero, longitudo latitudinis expers.”  That is, “A line, 
properly named, is length free from breadth.”   
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Figure 19: Clavius’s Diagram of a Line as a Point in Motion 

In the text, the reader is instructed to imagine point A moving to point B.  The contrast 
of the straight and the curved lines shows that any path taken by a point is a line.   
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three authors necessarily had very similar images, small differences in the presentation 

of the diagrams can expose significant variations in the authors’ understandings of 

mathematics.  For example, because equilateral triangles can only differ from each 

other by a scale factor, if the illustrations for the definition of an equilateral triangle 

are isolated from each text (Figure 20), they look virtually identical.  Besides slight 

differences in their sizes, the only distinction between these three images is the label 

Billingsley included for his triangle.  However, that label is not an insignificant 

difference.  It reflects Billingsley’s emphasis on the physical nature of mathematics 

because its presence calls attention to the specificity of “triangle A,” rather than a 

generic “equilateral triangle.”  Indeed, in his commentary he referred to triangle A as 

an example of an equilateral triangle, not a representation of all such triangles.  In 

contrast, Clavius and Commandino maintained their images’ representative quality by 

neither labeling nor referring to the diagrams.  Without anything to render them 

specific instances of an equilateral triangle, the diagrams clearly serve to represent the 

abstract concept.  

Besides the use of labels and references to the image in their texts, authors 

could change the meaning of an image by changing its placement.  In this example, 

Billingsley and Clavius presented their images alongside their definitions for an 

equilateral triangle (Figure 21), emphasizing the physical attributes of that specific 

kind of triangle. Commandino placed his in a group of images that represented all 

seven possible kinds of triangles (Figure 22).  By grouping the triangles into a single 

diagram, Commandino emphasized the universal concept of the triangle both by not 
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Figure 20: Diagrams of an Equilateral Triangle 

From left to right: Billingsley’s, Commandino’s, and Clavius’s images of an equilateral 
triangle.  

 

 

 

Figure 21: Billingsley’s and Clavius’s Diagrams for an Equilateral Triangle 
in Context 

 

 

Figure 22: Commandino’s Diagram for an Equilateral Triangle in Context 

313



	

verbally distinguishing the various kinds of triangles with clear labels and by making 

it possible for readers to see relationships between kinds of triangles.  His is the only 

diagram that makes it obvious that, because triangles are defined both by angles (right, 

acute, and obtuse) and by sides (equilateral, isosceles, and scalene), every triangle fits 

two of Euclid’s definitions.  The diagram accomplishes this by arranging the triangles 

in tabular form.  The columns show right, acute, and obtuse triangles.  The rows show 

equilateral, isosceles and scalene triangles.  Thus, it becomes immediately obvious 

that equilateral triangles are necessarily acute, but isosceles and scalene triangles may 

also be right or obtuse.   

Other definitions offered more room for visual interpretation, leading to more 

varied diagrams.  For example, the definition of a plane states, “A plane surface is that 

which lies equally between its lines.”16  From the previous two definitions which 

define a surface as that which has only length and breadth, and declare the edges of a 

surface to be lines, the reader could recognize that the lines of a plane surface are its 

edges, but he would not have any indication of how he should visually represent a 

surface lying equally between its edges.  The freedom afforded the authors by the 

abstract definition of a plane allows the patterns visible in the section of definitions to 

manifest themselves in the diagrams for this definition (Figure 23).  Billingsley 

offered a physical example of the concept; Commandino used his diagram in service 

of a conceptual argument about the nature of surfaces; and Clavius used the physical 

																																																													
16 Clavius, Euclidis Elementorum, 4r. “Plana superficies est, quae ex aequo suas interiacet lineas.”  
Commandino, Euclidis Elementorum, 2r. “Plana superficies est quae ex aequali suis interijcitur lineis.” 
Billingsley, Elements of Geometrie, 2r. “A plaine superficies is that, which lieth equally between his 
lines.” 
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Figure 23: Diagrams for the Definition of a Plane 

From top to bottom: Billingsely’s, Commandino’s, and Clavius’s diagrams.  Note that 
in Clavius’s diagram, lines AE, AF, AG, and AH are meant to be iterations of the same 
line.  
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diagram to create a physical definition for a plane, thereby uniting the physical and the 

conceptual in one diagram.   

Billingsley’s diagram was the simplest of three.  He drew a rectangle, and 

described for the reader that it “lyeth equally and smoothe betwene the two lines AB 

and CD: or between the two lines AC and BD so that no part thereof eyther swelleth 

upward or is depressed downward.”17  His visual representation relied on the flatness 

of the paper to convey the flatness of the plane, effectively making the enclosed 

portion of the page a physical example of a plane. Commandino also represented a 

plane with an enclosed rectangular area, but he relied on even shading, not the flatness 

of the page, to indicate to the reader that the rectangle should be seen as flat.  But 

Commandino’s rectangle was not just an example of a plane.  It was also part of a 

collection of images that served to make arguments about the broader nature of a 

surface.  First, by including three planar figures – a circle, an ellipse, and a rectangle - 

Commandino showed his reader that a plane need not be any one shape, rectangle or 

otherwise.  The diagram also offered a much larger argument that Euclid’s definition 

for the boundaries of a surface effectively limited surfaces to planes and things that 

could be easily projected onto planes, by excluding surfaces without linear boundaries. 

At the time Commandino was writing, the impossibility of projecting a sphere or an 

ellipsoid onto a plane was a much studied problem due to the contemporary interest in 

cartography. 18  It is possible that Commandino had this problem in mind when he 

																																																													
17 Billingsley, Elements of Geometrie, 2r. 
18 Knowing which shapes could be projected onto Euclidean planes mattered.  It allowed one to 
consider when Euclidean geometry could be meaningfully applied.  It can’t on the surface of a sphere.  
Thus, cartography relied on developing projections of a sphere that allowed the Euclidean geometry of 
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created his diagram for a plane.  Rather than focusing on the definition of a plane 

itself, Commandino’s image centered on the linear boundaries of planes (and surfaces 

that can be projected onto planes) as the defining feature that allows Euclidean 

geometry to be applied.  It included a sphere and an ellipsoid, which lack linear 

boundaries, as contrasts to the planar circle and ellipse, which are each bounded by 

their circumferences, single, curved lines. 

Clavius’s diagram for a plane provided a physical means to define and identify 

a planar surface, uniting the abstract concept with the physical tool he created.  Like 

his contemporaries, he started with a rectangle, but instead of using his description of 

the diagram or shading to convey its flatness, he devised a theoretical manipulation of 

the diagram to allow the reader to “check” whether or not a surface was a plane. The 

diagram thus becomes the tool with which the concept of a plane is defined.  In it (see 

Figure 23), Clavius presented the rectangle ABCD as the surface under study.  One 

edge, AB is extended to point E.  In the commentary, Clavius instructed the reader to 

imagine rotating the straight line AE around the point A such that it passes over the 

surface ABCD.  In order to convey this rotation he drew lines AF, AG, and AH as 

iterations of AE passing through its rotation.  If every point in the surface touches line 

AE as it passes over, then the surface is a plane. 19   Later in his commentary, in order 

																																																													
a flat map to approximate the globe.  Several such projections were developed in the sixteenth century.  
Mercator’s famous projection was published in 1569.  For a discussion of the variety of map projections 
known and produced by the sixteenth century, see John P. Snyder, Flattening the Earth: Two Thousand 
Years of Map Projections (Chicago: The University of Chicago Press, 1993), 1-54.   
19 Clavius, Euclidis Elementorum, 4r. “Ut superficies ABCD, tunc demum plana dici debet, quando 
linea recta AE, circa punctum A, immobile circunducta, ita ut nunc eadem sit, quae AB, nunc eadem, 
quae AF, nunc eadem, quae AG, & nunc eadem quae AH, nihil in superficie offendit depressum, aut 
sublatum, sed omnia puncta superficiei a linea recta tanguntur, & quodammodo raduntur.” 
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to cement the validity of his physical definition, he provided several examples of 

curved shapes that would fail the test of the rotating line.  He even included one image 

that showed such a surface, though he did not provide a line to conduct the imaginary 

test because the surface “could not in all parts fasten on a straight line.”20   

The variation in these diagrams demonstrates that while the definitions of the 

first book may not have required diagrams to be understood, the authors’ 

visualizations for these definitions showed the reader what each author took to be the 

significance of mathematics and, therefore, were essential sources for establishing the 

value of the discipline.  For Billingsley, diagrams served to ground mathematics on the 

physical page.  They gave him a way to create concrete mathematical objects for his 

reader.  For Commandino, visualizations offered a means to make relationships 

between the definitions clear and to emphasize the abstract, universal concepts of 

mathematics.  Bridging the approaches of his two contemporaries, Clavius used his 

images, especially those that provided mechanical definitions, to establish the 

mutually informative relationship between the physical instances of mathematical 

objects and the abstract concepts that defined them.   

The definitions to the first book set the tone for the rest of The Elements, but, 

because the simplicity of the concepts meant that most readers would have had a firm 

grasp of most definitions even without the visual aids, the authors had a great deal of 

freedom in choosing how to illustrate them.  In the next section, I will turn to an 

																																																													
20 Ibid., 4v. “Caeterae omnes superficies, quibus non omni ex parte accommodari potest linea recta, 
quails est superficies interior alicuius fornicis, vel exterior alicuius globi, columnaeuve rotundae, vel 
etiam coni etc. appellantur curvae, & non planae.”  
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examination of visual aids in two propositions to understand how the visions of 

mathematics that emerged from the authors’ visualizations in the definitions carried 

into the more constrained environment of the propositions. 

 

Diagrams for Planar Propositions: How to Make an Image Represent Big Ideas 

 When preparing the diagrams to accompany the propositions in The Elements, 

commentators had much less freedom than they had for the definitions.  As the reader 

will recall from Chapter Three, a complete proof of a proposition usually included a 

construction.  In other words, the demonstration usually included some description of 

what the diagram should look like and how to produce it.  For those propositions 

classified as theorems, which make a claim about some geometric entity, the diagram 

is used to advance the arguments necessary to justify the claim.  For the propositions 

classified as problems, whose goal is a construction of a specific entity, the diagram is 

the solution to the problem and serves as an example of the construction process 

described in the text.  In both cases, the diagram offers a physical entity with which to 

verify arguments made in the text.21  In some cases, the diagram also serves as the 

source of necessary arguments that are not present in the text.  The diagram is thus an 

integral part of the textual arguments, so it is not surprising that, at first glance, most 

diagrams accompanying propositions show very little variation across numerous 

editions of The Elements. However, because the diagrams are both individual 

																																																													
21 See Norman, After Euclid for elaboration on the ways in which diagrams can be used to justify a 
claim.  His work relies on an analysis of what a reasoner does as she reads and works through a 
Euclidean proposition.  He suggests a “neo-Kantian” approach to diagrams which allows diagrams to 
make justificatory contributions to knowledge through a priori reasoning.  
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instances of the objects described by the proposition and representations of the 

universal claims made by the propositions, even small changes could shift an author’s 

focus to the role of diagrams either as individual instances of the objects described or 

as representations of the universal claims made by the propositions.     

The first proposition, which requires the reader to construct an equilateral 

triangle on a given line, offers a clear example of the various roles played by 

diagrams.  As discussed in Chapter 3, the construction is done by drawing two circles 

with radii the length of the given line and centers at either end point.  The point of 

intersection of the circles is then used as the third vertex of the triangle.  The argument 

of the demonstration relies on the diagram to be intelligible.  Even before the 

discussion of the triangle begins, the diagram is essential to verify the assumption that 

the circles will intersect one another.  The Elements does not offer a verbal argument 

on that point, so the image is the only source for a demonstration of that assumption.22  

Once the triangle is drawn, the image makes the relationships between the sides of 

triangle developed by the demonstration’s argument immediately clear.  The argument 

works by observing that each constructed side of the triangle is a radius of one of the 

circles and the original line is a radius of both circles with centers of the circles at 

opposite endpoints.  Since all radii in any circle are equal to each other, each drawn 

side is equal to the original line, and, therefore, the three lines are equal to each other.  

																																																													
22 None of the sixteenth-century authors I have read make note that the diagrams fill in assumptions left 
implicit in the text.  That became a concern to philosophers such as Hilbert in the late nineteenth and 
early twentieth centuries who wanted to eliminate diagrams from geometrical reasoning.   
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Hence, the triangle is equilateral.  The reader can use the diagram to verify the text’s 

assertion that the sides of the triangle are indeed radii.   

The diagrams most authors provided aligned closely with the construction 

described in the proof.  They showed two circles with a triangle drawn on their shared 

radius, which is the given line.  The other sides of the triangle meet at an intersection 

of the circles.  Most mid-sixteenth-century diagrams seem to come from one of two 

earlier commentaries.  The first of these commentaries could be the first edition 

printed in Greek, Simon Gyrnaeus’s 1533 edition, which is believed to have been the 

text on which both Commandino and Billingsley based their translations.23  Indeed, 

Commandino’s and Billingsley’s diagrams share all of the same features.24  The same 

diagram can be found in a 1573 Parisian edition of The Elements that only included 

the enunciations and diagrams.25  Another edition from the early sixteenth century, 

Bartolomeo Zamberti’s 1516 text which was based on Campanus’s medieval work, 

shows the same diagram with slight variation in the labeling: the second point of the 

circles’ intersection is also labeled.  His diagram seems to have been the source for 

																																																													
23 For Commandino’s source see Paul Rose, The Italian Renaissance of Mathematics, (Geneva: 
Librairie Droz, 1975), 206.  For Billingsley’s source see George Bruce Halsetd, “Note on the First 
English Euclid,” American Journal of Mathematics, Vol. 2, No. 1 (Mar. 1879), 46-48. 
24 There is a difference in the placement of the labels for the third point defining the diameter of each 
circle, points D and E in the diagrams.  Billingsley placed his labels inside the circle, whereas 
Commandino’s are on the outside.  It is likely that Billingsley used his placement of the labels to save 
space. 
25 Euclid, Euclidis elementorum, libiri XV (Paris: Gulielmum Cavellat and Hieronymum de Marnes, 
1573), 47. The reader will recall from previous chapters that the enunciations in Euclid’s text are the 
sentences that compose the definitions, axioms, postulates, and propositions without any further 
commentary or proof.  For example, the enunciation of the first proposition is “To draw an equilateral 
triangle on a given line.”    
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Clavius’s work, among others, including the French commentator, Jacques Peletier 

(1517-1582).  These images can be seen in Figure 24.  

While the differences in the labels of the diagrams may appear to be a minor 

discrepancy arising only from the reliance on different sources, they can reveal how 

the diagrams helped to define the status of mathematics.  The second label found in 

Clavius’s text is the key to a significant argument for mathematics as a discipline 

intermediate between physics and metaphysics.  By labeling both points of 

intersection, he gave the reader a choice of two possible equilateral triangles that can 

be constructed on a given line.  As Clavius and the other authors who label the second 

intersection point observe in their commentary, either point of intersection will do as 

the third vertex of the triangle.26  This choice calls attention to the diagram’s role as a 

representation of the abstract idea of an equilateral triangle in addition to its role as a 

physical instance of a triangle and solution to the problem.  The reader can see two 

distinct physical solutions to the problem, namely, the drawn tringle (ABC in Clavius’s 

image) and the potential triangle using the other point of intersection (D in Clavius’s 

image) as the third vertex.  But, since the only difference between the two possible 

triangles is their orientation, either triangle can represent both options for any further 

discussion of an equilateral triangle drawn on the given line.  Furthermore, the given 

																																																													
26 Clavius, Euclidis Elementorum, 21v. “…secans priorem in punctis C & D.  Ex quorum utrovis, 
nempe ex C, ducantur duae rectae lineae…;” Jacques Peletier, In Euclidis Elementa Geometrica 
Demonstrationum Libri sex (Lyon: Ioan. Tornaesium et Gul. Gazium, 1557), 13. “Atque hi duo Circuli 
se mutuo secabunt in duobus punctis, ut in E &C: quum utriusque communis sit Semidiameter AB.  A 
duobus igitur terminis A& B, ad alteram intersectionum ut ad C, duco AC & BC lineas…;” Bartolomeo 
Zamberti, Euclidis Geometricorum elementorum libri XV (Paris: Henrici Stephani, 1516), 5v. “…qui 
circuli intersecabunt se in duobus punctis quae sint c, d.  Et alteram duarum sectionum sicut sectionem 
d, contiuabo cum ambabus extremitatibus datae lineae….” 
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Figure 24: Diagrams for Book One, Proposition 1 

The diagrams for the first proposition of The Elements from a selection of sixteenth 
century editions and commentaries.  Grynaeus’s 1533 commentary was the source used 
by both Billingsley and Commandino.  Clavius had certainly read both Zamberti’s and 
Peletier’s commentaries.  
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line is arbitrary, so, once it has been accepted that the drawn triangle represents both 

options for that line, it is easy to see that it also represents all equilateral triangles, 

since any other line could have been the starting point.   

While Clavius’s diagram allows the reader to identify visually two 

interpretations of the triangle, Billingsley and Commandino used their commentaries 

to enable the reader verbally to recognize both interpretations of the diagram.  

However, because their arguments are purely verbal, they keep the two interpretations 

of the diagram separate from each other.  In their commentaries, Billingsley and 

Commandino identify a “particular conclusion” – that triangle ABC is equilateral - 

and a “universal conclusion”  - that the construction process described can generate an 

equilateral triangle on any line.   If the goal of the problem is understood simply as 

constructing an equilateral triangle, then the particular conclusion is a sufficient 

solution to that problem.  The universal conclusion shows that the problem is not 

about drawing a specific triangle, but about providing a method to construct an 

equilateral triangle on any finite line. 27  For that conclusion to hold, the triangle in the 

diagram must represent all equilateral triangles.  Showing that ABC is equilateral is a 

																																																													
27 Billingsley, Elements of Geometrie, 8v. “For there are commonly in every proposition two 
conclusions: the one perticuler, the other universal: and from the first you go to the last.  And this is the 
first and perticuler conclusion, for that it concludeth, that upon the lyne AB is described an equilater 
triangle, which is according to the exposition.  After it, followeth the last and universal conclusion, 
wherefore upon a right line geven not being infinite is described an equilater triangle. For whether the 
line geven be greater or lesse then thys line, the same constructions and demonstrations prove the same 
conclusion.” (Italics serve as Billingsley’s way to represent the text copied from the demonstration); 
Commandino, Euclidis Elementorum, 8r. “Unde colligitur triangulum ABC aequilaterum esse, atque 
haec est prima conclusio, quae expositionem consequitur; post hanc est ipsa unversalis. [In data igitur 
recta linea triangulum aequilaterum constitutum est.] Sive enim duplam eius, quae nunc exposita est, 
feceris datam, sive triplam, sive aliam quamlibet maiorem, vel minorem; aedem constructiones, & 
demonstrationes congruent.” (Commandino used the change in font, here indicated by italics, and 
brackets to differentiate the text taken from the proof of the proposition from the commentary.)   
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step towards the universal conclusion, but the two conclusions, and the corresponding 

versions of mathematics, as a study of physical bodies or a study of universal truths, 

remain separate from each other.   

There was one sixteenth-century commentator who made substantial changes 

to the ancient text, including the diagram for the first proposition.  Francois Flussas 

Candalla, who claimed to have eliminated “unskilled repartees,” “stammering 

writing,” and anything that would obscure the clarity of the geometric principles, 

replaced Greek proofs with his own and added a sixteenth book to The Elements in his 

1566 edition.28  For the first proposition, he provided a diagram that includes only 

portions of the circles showing the intersection of arcs that defines the third vertex of 

the triangle.  It gives just enough visual information to convince the reader that each 

edge of the triangle is a radius of one or both circles, and it can be recognized as an 

enlargement of the relevant portion of the image found in the other versions of The 

Elements (Figure 25).  Candalla’s diagram separated the particular solution of the 

drawn triangle from the universal conclusion of the technique for creating a traingle.  

By showing arcs instead of circles, the diagram offered a truncated procedure for the 

construction that allowed the physical solution to the problem to supersede the 

																																																													
28	Francois Flussas Candalla, Euclidis Megarensis Mathematici Clarissimi Elementa Geometria, Libris 
XV (Paris: Iannem Royerius, 1566), aiiir.  “In hoc autem operis tuae celsitudini consecrandi votum me 
rapuit (candide Princeps) non imperitae arguitiae, non balbutientia scripta, non harum inventionum 
obtusi conatus, tanti principis dignitate alieni.”  Commandino summarized Candalla’s arguments for 
replacing the ancient proofs by saying that the French Duke saw the Greek proofs available to 
sixteenth-century authors as less elegant than his own. Commandino, Euclidis Elementorum, *2v -*3r, 
“At Candalla vir & generis nobilitate, & rerum congitione insignis, licet omnes Elementorum libros, qui 
postulari a latinis videbatur, latinos fecerit, locupletaueritque, parum tamen (ut audio) eo nomine 
commendatur, quod longius iter ab Euclide averterit, & demonstrationes, quae in graecis codicibus 
habentur, velut inelegantes, & mancas suis appositis reiecerit.”   According to Commandino, his own 
edition of The Elements was superior to Candalla’s precisely because he provided the ancient proofs.	
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Figure 25: Candalla’s Diagram for Book One, Proposition 1 
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theoretical requirement of using complete circles to identify the triangles’ third vertex.  

Because the proof that the triangle is equilateral depends on a property of circles, 

namely that all radii of any one circle are equal, including the full circles in the 

construction made the proof intelligible. Indeed, Candalla’s text maintains the 

dependence on the full circles, and he, like all the other authors, begins the 

construction with instructions to draw circles, not arcs, of radius length AB centered 

on A and centered on B. 29  However, his diagram deviates from the text and shows 

that the circles are not required for the construction, drawing the reader’s attention to 

the particular rather than the universal conclusion.   

While Candalla was the only author to give such precedence to the particular 

conclusion in the diagram for his proof, Clavius and Billingsley highlighted the 

physical nature of that conclusion in their commentaries by introducing the use of arcs 

as a shorter, less cumbersome technique to produce triangles, including isosceles and 

scalene triangles.  In so doing, they separated the physical result of construction from 

the theoretical process of demonstration, and the particular conclusion of a single 

equilateral triangle from the universal conclusion of a procedure that could be shown 

always to generate an equilateral triangle.  The diagrams they presented as guides for 

these shorter techniques have very small arcs showing little more than the intersection 

of the two circles (Figure 26).  Unlike the diagrams for the proposition, these 

procedural diagrams relay very little information about the triangle to the reader.  The 

																																																													
29 Candalla, Euclidis Megarensis, 5r. “Si proposita recta AB terminata in A&B, centro A: intervallo 
autem AB circulus ducatur BG, per. 3 postulatum, centro item B, intervallo BA, circulus ducatur 
AG…” 
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arcs are so small that the reader cannot rely on them to infer anything concrete about 

the relative lengths of the sides of the triangle.  If the reader wanted to verify that the 

procedure described was in fact what the diagram represented, he would have to 

measure the triangles and arcs on the printed page and trust that nowhere in the 

printing process had an error been introduced. Thus, the triangles and the arcs used to 

define them are nothing more than physical examples of a construction process made 

possible by the reader’s knowledge of the missing circles.  While both Clavius and 

Billingsley embraced the physical nature of mathematics by including a discussion of 

practical shortcuts, it should be noted that Clavius was far more careful than 

Billingsley to separate the use of such shortcuts from any theoretical meaning.  

Billingsley explicitly observed that the techniques were only useful when no 

demonstration of the properties of the drawn triangle was required, but that note 

appeared simply as a transition from one part of his commentary to another, giving the 

physical shortcuts just as much weight as the theoretical discussion preceding it.30  In 

contrast, Clavius’s constructions appeared under their own heading, “Praxis,” which 

suggests an active, rather than a contemplative, approach to mathematics.  Indeed, he 

justified their presence by offering them as a means to speed up the reader’s 

construction of triangles as they were frequently necessary in the rest of the Euclidean 

text, reducing the value of the physical conclusion to that of a tool.31 

																																																													
30 Billingsley, Elements of Geometrie, 10r. “This is to be noted, that if a man will mechanically and 
redely, not regarding demonstration upon a line geven describe a triangle of three equall sides, he 
needeth not to describe the whole forsayd circle, but onely a little part of eche; namely, where they cut 
the one the other, and so from the point of the section to draw the lines to the ends of the line geven.”    
31 Clavius, Euclidis Elementorum, 23r. “Conabimur in singulis fere problematibus Euclidis tradere 
praxin quamdam facilem, & brevem, qua effici possit id, quod Euclides pluribus verbis, atque lineis 
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The distinction between universal and particular conclusions may not appear 

terribly significant in the first proposition. The conclusion that ABC is an equilateral 

triangle is of little interest beyond the first proposition, but the certain method for 

drawing equilateral triangles is often required in later propositions for which an 

equilateral triangle is part of the construction.  Thus, it is essential that triangle ABC 

does represent all equilateral triangles.  It is easy to assent to that claim because ABC 

is one of only two possible equilateral triangles on line AB, and those only differ from 

one another by orientation.  Furthermore, any other equilateral triangle could be found 

by scaling the original line up or down.  However, in some propositions the universal 

nature of the claim leaves the exact configuration of the diagram ambiguous in more 

ways than allowing for multiple possible orientations.  When multiple cases arise, the 

particularity of any one diagram threatens the ability of the proposition to convey a 

universal claim.  Why should a reader agree that the proof of the proposition would be 

valid for multiple possible configurations, especially if one does not closely resemble 

another? The problem of multiple cases actually arises quite early, first appearing in 

the second proposition of the first book.  The proposition asks the reader to draw a line 

from a given point that is of equal length to a given line without specifying the 

relationship of the point and the line.  The point could be separate from the line, either 

in line with it or off to one side, or it could be part of the line, either an endpoint or in 

																																																													
contendit construere; Idque in iis praesertim observabimus, quae frequentiorem usum habent apud 
Mathematicos, & in quibus praxis compendium aliquod secum videtur afferre.”  Note that this 
justification implies that Clavius expected his reader to be drawing his own diagrams as he worked 
through the Euclidean demonstrations.  Learning mathematics was therefore both active and 
contemplative. 

332



	

the middle of the line (Figure 27).  It is not immediately clear that any one 

construction and demonstration could be a valid solution for all four cases.  Thus, the 

authors were faced with the challenge of devising ways to represent the universality of 

the proposed conclusion across the possible arrangements of the given entities.   

In order to make sense of the differences between the diagrams, it will be 

helpful to understand how the problem is solved for each of the four cases.  The first 

case, in which the point is removed from the given line and off to one side of it, begins 

by connecting point A to the endpoint B of the given line BC.  The reader is then 

instructed to draw an equilateral triangle on line AB.  The two new legs of the triangle, 

DA and DB are extended to points E and F.  The reader then is told to draw a circle of 

radius BC and center B.  That circle is GCH.  Then the reader is asked to draw another 

circle, this time with D as the center and DG as the radius.  That circle is GKL.  In this 

process, the required line has been drawn.  Line AL is a line from point A of the same 

length as line BC.  The remainder of the demonstration shows the congruence of lines 

AL and BC by observing that since DG and DL are the same length, and DB and DA 

are the same length, BG and AL are the same lengths.  BG is also the same length as 

BC, since they are radii of the same circle.  Thus, BC and AL are the same length.  

Two of the other three cases follow nearly identical procedures.  For the case of point 

A being on an extension of line BC, the diagram looks different, but the procedure is 

the same as the first case.  The only possible change is that B be replaced with point C 
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Figure 27: Billingsley’s Diagrams for the Four Cases of Book One, Proposition 2 

In all four diagrams the given point is point A, and the given line is line BC. The desired 
line is line AL.   

Top left: The case of the point removed from the line and off to one side,  
Top right: The case of the point removed from the line and in-line with it 
Bottom left: The case of the point as an endpoint of the line 
Bottom right: The case of the point in the middle of the line   
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in the first step if C is closer to point A.32  In the case in which point A is part of the 

line, no line needs to be drawn to connect A and B since that connection already exists 

within BC.  Otherwise the procedure is the same as the first case.  For the last case, 

when A is an endpoint of the line, drawing a line of length equal to that of BC 

becomes much easier.  Just draw a circle with point A as the center and a radius of 

BC.  Any radius of that circle fills the requirements of the problem.   

When, as in this proposition, there were only a handful of possible cases, the 

simplest way to use diagrams to demonstrate the universality of a proposition was to 

include multiple diagrams such that every possible case had a visual representation 

and some accompanying verbal explanation.  That is exactly how Billingsley and 

Commandino approached the second proposition.33  Both authors presented the 

demonstration with the diagram for the case in which the point was off to one side of 

the given line as the demonstration that was original to Euclid’s text.  The then both 

included diagrams for the remaining three cases in their commentary.  By presenting a 

diagram for each case, Billingsley and Commandino separated the particular 

conclusions of each case from the universal conclusion that a line equal to a given line 

could be drawn from any point.  However, the relationship of the diagrams to the text 

determined which kind of conclusion received the most emphasis. Figure 28 shows 

																																																													
32 Commandino is the only author to raise this point, but since his diagram still shows the triangle 
constructed on AB, the discrepancy is little more than a semantic point, noting that the line AC is all 
that is needed to connect A and B since BC composes the rest of the line AB.  
33 If there were too many cases to diagram each one, verbal explanations for the universality of the 
given images would have to suffice.  Such explanations could involve an inductive approach in which 
the truth of one case could be used to argue for the validity of all other cases, but in Euclid’s text the 
justifications for universality usually appealed to the universality of the entities in question and the 
immutability of the properties of those entities that were relevant to the demonstration. 
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Figure 28: Billingsley’s and Commandino’s Diagrams for 
Book One, Proposition 2 – In Context 
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Billingsley’s and Commandino’s diagrams in their contexts.  On the one hand, 

Billingsley emphasized the particular conclusions, and thus the physical nature of 

mathematics by treating the four cases as independent entities.  He provided a separate 

section of commentary alongside each diagram, in effect offering four separate proofs.  

Of course, two of the proofs in his commentary made such minor changes to the 

original that his commentary needed only to tell the reader that the construction and 

demonstration are the same or nearly the same as the ancient proof, but for the case in 

which the point is an endpoint of the line, Billingsley offered an entirely new proof in 

which he made no reference to the other cases.34  On the other hand, Commandino 

emphasized the universal conclusion by treating each case as a variation of the ancient 

proof.  He provided only a single paragraph of commentary in which he addressed 

only the changes to the construction outlined in the ancient proof for each remaining 

case.  Even in the case in which the point coincides with an endpoint of the line, 

Commandino focused on the differences between that case and the original rather than 

treating it as its own proof.  He introduced that case by saying, “If the given point is in 

either of the endpoints of the line, neither the triangle nor the second circle will be 

useful, but the description of only one circle will be enough.”35   

																																																													
34 Billingsley, Elements of Geometrie, 10v-11r. “The third case is the easiest of all, namely, when the 
poynt geven is in one of the extreames.  As for example, if it were in the point C, which is one of the 
extreames of the line BC. Then making the center the poynt C, and the space CB describe a circle BLG: 
and from the centre C drawe a line unto the circumference, which let the CL, which by the definition of 
a circle, shalbe equall to the line geven, BC.”   
35 Commandino, Euclidis Elementorum, 9r. “Denique si punctum datum fuerit in altero rectae lineae 
termino, non opus erit neque triangulo, neque altero circulo, sed sola drscriptio unius circuli satis erit. 
Centro enim dicto termino, in quo est punctum datum, intervallo autem reliquo, si circulus describatur, 
quot quot ab eo ad circumferentiam rectae linae ductae fuerint, problema efficient.” 
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Unlike his contemporaries, Clavius attempted to unite the universality of the 

propositions’ claim with the physical reality of multiple cases by minimizing the 

number of diagrams he included.  Furthermore, he placed his diagrams next to each 

other so that it was easy for readers to identify their similarities.  He even claimed in 

his commentary that in all four cases the “construction and demonstration is always 

the same.”36  Reflecting that claim, Clavius only provided two diagrams, each 

representing one of the two broad cases – the point removed from the line and the 

point as part of the line – with no separate diagrams given for the further gradations of 

those cases (Figure 29).  He also placed both of his diagrams alongside his original 

demonstration making it natural for the reader to examine both diagrams as he read the 

proof so that it was immediately clear that the procedure was nearly identical for the 

both cases represented by the diagrams.  Within the text of his demonstration Clavius 

noted the slight difference in the procedures: if the point was part of the line, the step 

connecting the two is unnecessary.  However, he made this comment in parentheses, 

illustrating the insignificance of the difference to the overall procedure and 

argument.37  Furthermore, when he discussed the other two cases, including the special 

case of point A as an endpoint of the line, he relied on the existing diagrams.  Thus, 

																																																													
36 Clavius, Euclidis Elementorum, 24r. “Huius problematis varii esse possunt casus, ut ait Proclus.  
Autem datum punctum in ipsa data recta est positum, aut extra ipsam: Si in ipsa, erit vel alterum 
extremorum eius, vel inter utrumque iacebit extremum.  Si vero extra ipsam, erit vel e directo datae 
lineae, ita ut producta in rectum, & continuum ipsum punctum transeat vel non e directo, ita ut ab ipso 
ad datae lineae extremorum quodvis recta linea ducta cum data recta angulum efficiat; Quo modo vel 
supra datam lineam erit constitutum, vel infra, ut manifestum est.  In omnibus aut istis casibus semper 
eadem est constructio, & demonstratio.” 
37 Ibid., 23v.  “Et ex A, ad centrum C, recta ducatur AC; (nisi punctum A, intra rectam BC, fuerit: Tunc 
enim pro linea ducta sumetur AC, ut secunda figura indicat.) Super recta vero AC…” 
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Figure 29: Clavius’s Diagrams for Book One, Proposition 2 

The diagram on the left shows point A removed from the line BC.  The diagram on the 
right shows A as part of line BC.  Clavius used these diagrams to describe all four 
possible cases. 
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even though his proof for the special case did not refer to the proofs for the other 

cases, the diagrams subsumed it into those cases.  

In this section, we have seen how the authors balanced the particular and 

universal conclusions of each proposition in the relationships they established between 

their diagrams and commentaries.  Billingsley’s visual emphasis on particular 

conclusions made manifest his understanding of mathematics as a physical discipline.  

Commandino’s focus on universal conclusions illustrated his belief that mathematics 

was the study of universal truths. As he had done in the diagrams for the definitions, 

Clavius struck a middle road between his contemporaries and attempted to unite the 

particular and universal conclusions.  In so doing, he situated mathematical 

demonstrations as a bridge between the concrete objects of physics and the abstract 

concepts of metaphysics.  In the next section, we will turn to the solid geometry books 

to examine how the authors responded to the challenge of representing three-

dimensional objects in a two-dimensional medium. 

 

Solid Geometry: Depicting Three-Dimensional Space on Two-Dimensional Paper 

While multiple cases made it possible for a diagram in plane geometry to 

represent a situation that did not exactly line up with the case depicted, two-

dimensional diagrams, assuming that they were accurately drawn, were always 

instances of a general case described.  For example, a diagram of an equilateral 

triangle is in fact an equilateral triangle.  A diagram showing how to create a line of 

equal length to a given line from a fixed point, actually contains the desired line.  But 
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geometry is not always two-dimensional. When the authors wrote their commentaries 

on the last several books of The Elements, which treat solid geometry, they had to 

contend with the difficulty of representing three-dimensional objects in two-

dimensions.  By the sixteenth century, perspective was the most obvious solution to 

this challenge.  In figures for which interior lines did not need to be visible, authors 

could also employ shading to indicate a third dimension.   However, even a well-

drawn diagram, has its limitations.  Because perspective relies on foreshortening, the 

lines and angles drawn in perspectival diagrams will not all have the actual 

measurements of the solid objects they portray.  A skeptical student could not measure 

the diagrams to prove equality, as is possible with one and two-dimensional figures.38  

Faced with these challenges, the authors were forced to decide just how much they 

valued the ability of mathematics to describe concrete physical objects.   

In this section, we will see that Billingsley emphasized the importance of 

mathematics’ ability to study physical bodies, and, consequently, he devoted his 

efforts to providing the most accurate possible representation of the entities discussed.  

Commandino’s efforts focused instead on the universal truths of mathematics could 

discover based on abstract forms, and he reduced the physical bodies and their images 

to tools in the search for such truths.   As he did throughout The Elements, Clavius 

combined the particular physical bodies and the universal forms by entwining his 

																																																													
38 Of course even for one and two-dimensional figures the student who sought to rely on measuring the 
diagram needed to count on the accuracy of the printed image.  If the compositor let an inaccuracy slip 
through, measurements of the image would no longer work.   
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physical representations of mathematical bodies and the universal ideas in his 

commentary such that each informed the other. 

As in the plane geometry books, the definitions for the solid geometry books 

afforded the authors more freedom to create their own visualizations than the 

propositions did.  Of the three original solid geometry books, only the eleventh book 

has definitions.  I will examine the definitions from that book in order to show how 

each commentator used visualizations of the definitions to establish the place of 

mathematics within the hierarchy of disciplines.  As was the case in the plane 

geometry books, the authors’ visions of mathematics can be seen in their patterns of 

diagram usage in the definitions.  Of these three authors, Commandino used diagrams 

most sparingly in the eleventh book.  He only included images to clarify and develop 

any supplementary concepts that were introduced in the definition.  All seven of his 

diagrams are for definitions that rely on the use of lines or figures beyond those being 

defined.  In contrast, Billingsley used diagrams whenever possible to render the 

definitions as physical entities using three-dimensional models.  He only excluded 

diagrams for definitions with clear analogs in plane geometry.  As a result, more than 

two-thirds (twenty-four out of thirty) of his concepts are diagrammed, and nearly half 

of them (fourteen, to be precise) have diagrams that offer three-dimensional 

renderings of the concepts either in the form of pop-up diagrams or in templates for 

three-dimensional models.  For example, the definition of a line perpendicular to a 

plane, which will be discussed shortly, relies on lines contained in the plane.  

Clavius’s use of diagrams is more varied, reflecting that he saw diagrams as a versatile 
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tool that could be useful both in the study of physical mathematical objects and in the 

study of the universal ideas found in mathematics.  Some of his sixteen images are 

designed to be simple physical expressions of the defined concepts.  Others extend the 

definitions with supplementary ideas.  Table 6 provides a summary of the diagrams 

included by each author for each definition. 

In both Billingsley’s and Clavius’s texts, an examination of the definitions 

without diagrams reveals that they are all either definitions with clear analogs in plane 

geometry or are so closely related to preceding definitions that they needed little 

explication, visual or otherwise.  In fact, they are consistently the definitions for which 

Clavius included the least commentary. In Billingsley’s text all of the definitions 

without diagrams have clear analogs in plane geometry.  They are those for a solid, the 

edges of solids, parallel planes, similar solid figures, equal solid figures, and the 

diameter of a sphere. A solid is analogous to a plane, and just as a plane’s borders are 

lines, a solid’s borders are planes.  Parallel planes are analogous to parallel lines.  

Similar solid figures and equal solid figures are analogous to similar planar figures and 

equal planar figures in that the requirements for similarity and equality are the same in 

plane and solid geometry: for two figures to be similar to one another, they must have 

all of their angles equal to one another, and equality demands that all angles and edges 

be equal to one another.  The diameter of a sphere is analogous to the diameter of a 

circle.  Clavius excluded a few additional diagrams, but each of those definitions could 

be easily identified elsewhere.  For example, he did not include diagrams for a sphere, 
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Table 6:  The Definitions and Diagrams of Book Eleven 
 

 
 
 

  Billingsley Clavius Commandino 
1. Solid No diagram* No diagram No diagram 
2.  The limits of a solid No diagram* No diagram No diagram 
3. Line perpendicular 

to a plane 
Pop-up 2 diagrams w/o 

perspective 
Diagram w/ 
perspective 

4. Plane perpendicular 
to a plane 

Pop-up* Diagram w/o 
perspective 

Diagram w/ 
perspective 

5.  Inclination of a 
straight line to a plane 

Pop-up* Diagram w/o 
perspective 

Diagram w/ 
perspective 

6. Inclination of a 
plane to a plane 

Pop-up Diagram w/ 
perspective 

Diagram w/ 
perspective 

7. Similarly inclined 
planes 

Pop-up No diagram Diagram w/ 
perspective 

8. Parallel planes No diagram Diagram w/ 
perspective 

No diagram 

9. Similar solid figures No diagram No diagram No diagram 
10. Equal solid figures No diagram No diagram No diagram 
11. Solid angle Pop-up Diagram w/o 

perspective 
No diagram 

   Continued on next page 
 
 
*These pairs of definitions were each combined into single definitions in Billingsley’s text. 
**N/A indicates definitions that were not present in that author’s text.   
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Table 6:  The Definitions and Diagrams of Book Eleven (continued) 
 

 
  Billingsley Clavius Commandino 

12. Pyramid Diagram w/ 
perspective  
2 pop-ups, 2 
Templates 

3 diagrams w/ 
perspective 

No diagram 

13. Prism 2 diagrams w/ 
perspective and 1 
pop-up 
Template 

3 diagrams w/ 
perspective 

No diagram 

14. Sphere 2 diagrams w/ 
perspective, 
1 diagram of 
semicircle 

No diagram No diagram 

15. Axis of a sphere Refers to diagrams 
for def. 14 

No diagram No diagram 

16. Center of a sphere Refers to diagrams 
for def. 14 

No diagram No diagram 

17. Diameter of a sphere No diagram 2 Diagrams No diagram 
18. Cone 3 diagrams w/ 

perspective 
3 diagrams w/ 
perspective 

No diagram 

19. Axis of a cone Diagram w/ 
perspective* 

Refers to diagram for 
def. 18 

No diagram 

20. Base of a cone Refers to diagram 
for def. 19* 

Refers to diagram 
for def. 18 
Diagram for right 
vs. scalene cones w/ 
perspective 

Diagram 
w/perspective of 
orthogonal cone 
Diagram for right vs. 
scalene cones w/ 
perspective 

   Continued on next page 
 
 
*These pairs of definitions were each combined into single definitions in Billingsley’s text. 
**N/A indicates definitions that were not present in that author’s text.   
  

345



Table 6:  The Definitions and Diagrams of Book Eleven (continued) 
 

 
  Billingsley Clavius Commandino 

21. Cylinder 2 diagrams w/ 
perspective 

Diagram w/ 
perspective 

No diagram 

22. Axis of a cylinder Refers to diagrams 
for def. 21* 

Refers to diagram for 
def. 21  

No diagram 

23. Base of a cylinder Refers to diagrams 
for def. 21* 

Refers to diagram 
for def. 21 
Diagram for right vs. 
scalene cylinders w/ 
perspective 

Diagram w/ 
perspective 

24. Similar cones and 
cylinders 

Diagram Diagram No diagram 

25. Cube 2 diagrams w/ 
perspective 
Template 

No diagram No diagram 

26. Tetrahedron 2 diagrams w/ 
perspective 
Template 

No diagram No diagram 

27. Octahedron 2 diagrams w/ 
perspective and 
w/o perspective 
Template 

No diagram  No diagram 

28. Dodecahedron 2 diagrams w/ 
perspective and 
w/o perspective 
Template 

No diagram No diagram 

29. Icosahedron 2 diagrams w/ 
perspective and 
w/o perspective 
Template 

No diagram 2 Diagrams covering 
defs. 24-29  

30. Parallelepiped 3 diagrams w/ 
perspective  
Template 

4 diagrams w/ 
perspective 

No diagram 

31. Inscription N/A** No diagram N/A** 
32. Circumscription N/A** No diagram N/A** 
 
*These pairs of definitions were each combined into single definitions in Billingsley’s text. 
**N/A indicates definitions that were not present in that author’s text.   
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the axis of a sphere, or the center of the sphere, but all three of those concepts could be 

identified in the diagram for the diameter of a sphere.39  

The only diagram for which Billingsley excluded a diagram and Clavius 

provided one is the definition of parallel planes.  In that case the analogy Billingsley 

drew does not hold in Clavius’s text because of a difference in the wording of the 

definitions.  Clavius’s definition only says “Parallel planes are those which never 

come together.”40 Billingsley’s definition notes that parallel planes never intersect 

even when they are “produced or extended any way.”41  Because the definition of 

parallel lines notes that the lines must not intersect when they are extended infinitely 

in either direction, without that phrase, the analogy breaks down.  What Billingsley 

inserted into his definition to ensure an analogy to a previously diagrammed concept, 

Clavius sought to reveal through the use of a diagram.  Indeed, Clavius’s diagram is 

clearly intended to reveal the information left implicit in his definition rather than to 

show parallel planes because his commentary actually describes the intersecting 

planes in the diagram rather than the planes that appear to be parallel. The diagram 

offers a negative example to explain that parallel planes must be able to be infinitely 

extended in all directions without touching.   

																																																													
39	Clavius also excluded diagrams the five regular solids, but he added templates for each of those in his 
commentary on relevant propositions.  Nor did he provide diagrams for his definitions for inscription 
and circumscription, which neither Billingsley nor Commandino included.  Those definitions apply 
equally as well to planar geometry as they do to solid geometry.    	
40	Christopher Clavius, Euclidis Posteriores libri sex ad XV. Accessit XVI de solidorum rgularium 
comparatione, (Rome: Vincentium Accoltum, 1574), 120r. “Parallela plana sunt, quae inter se non 
conveniunt.”  	
41	Billingsley, Elements of Geometrie, 313v.	
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As can be seen in the table, there are fewer differences between the authors on 

which definitions received diagrams in the first eleven definitions than in the 

remaining definitions. This is likely because the early definitions are the most general 

introduction to solid geometry, describing relationships of one- and two-dimensional 

figures that allow the formation of three-dimensional figures.  As such, they present 

both individual physical entities and universal claims about the nature of three-

dimensional space.  However, the diagrams themselves offer quite different visual 

presentations of each authors’ version of mathematics.  For these definitions, in order 

to give the readers three-dimensional models, Billingsley used pop-up diagrams 

exclusively.  His commentary usually only describes the diagram and how to 

manipulate the pop-up feature to create a specific instance of the definition in 

question.  Commandino’s diagrams in this section rely on perspective to convey three-

dimensions as they draw attention to the various lines and angles each definition uses 

to identify its particular relationship between a line and a plane or two planes.  In 

contrast, Clavius provided two-dimensional figures, often without perspective, to 

show how these definitions could be developed from the concepts of planar 

geometry.42  

																																																													
42 While Clavius’s lack of perspective can make it difficult to recognize their three-dimensional forms, 
there does appear to have been a method to his madness.  He only used perspective when he had two or 
more intersecting planes in a diagram, possibly suggesting that he believed that only solid bodies 
created by intersecting planes required perspective to be recognizable in a two-dimensional drawing.  
For other diagrams, he relied on his commentary to instruct the reader in how to interpret the image.  
Since a line could fairly easily be imagined to be at some angle to the plane of the page, such 
explanations were simple and allowed for the possibility of offering more than one way of seeing the 
diagram.  For example, as will be discussed shortly, in his second diagram for a plane, he asked the 
reader to imagine rotating line AB, effectively asking the reader to see multiple configurations for the 
diagram.  By forcing his reader to rely on the text to interpret the image, Clavius prevented possible 
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To explain the significance of the differences between the images, I will 

examine the definition of a line perpendicular to a plane, the first definition to receive 

a diagram in all three texts.  The definition states that a line is perpendicular to a plane 

when it is perpendicular to all of the lines it touches in the plane.  Figure 30 shows all 

three authors’ diagrams.  Each diagram shows a plane with several lines contained in it 

and another line that intersects all of those lines, but beyond that general description 

the diagrams diverge.   

The most obvious difference is that Billingsley created a three-dimensional 

model of the definition through the use of a pop-up diagram while Commandino and 

Clavius presented two-dimensional diagrams.   For Billingsley, the diagram was a 

model of the concept that the readers could use to familiarize themselves with the 

rules of three-dimensional space without the added difficulty of imagining three-

dimensions on two-dimensional paper.  To do so his diagram provided a pasted in 

piece of paper on which the required line was drawn.  The reader could manually lift a 

flap to raise it above the page until the line was perpendicular to the drawn plane.  As 

he explained, he was concerned that “these five books following are somewhat hard 

for young beginners, by reason they must in the figures described in a plaine imagine 

lines and superfieces to be elevated and erected, the one to the other, and also 

conceave solides or bodies, which, for that they have not hitherto bene acquainted 

with, will at the first light be somewhat straunge unto them.”43  This explanation 

																																																													
misinterpretations of a perspectival diagram and eliminated the temptation of treating the diagram as an 
accurate depiction of the defined concept.  
43 Billingsley, Elements of Geometrie, 322v. 
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Figure 30: Diagrams for the Definition of a Line Perpendicular to a Plane 
Top left: Billingsley’s pop-up diagram (Source: Huntington Library) 

Top right: Commandino’s diagram 

Bottom left: Clavius’s first diagram 

Bottom right: Clavius’s second diagram 
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applies equally as well to the diagrams in the definitions as it does to those in the 

propositions which it describes.  In this particular definition, he further appealed to his 

ideal merchant or artisan reader by noting that the line AB was commonly called a 

plumb line, relying on his potential reader’s past experience with plumb lines to 

recognize what the pop-up should look like when AB was perpendicular to the plane.44    

Commandino’s diagram focused on the role of the lines in the plane, 

uncovering the abstract principles that remain implicit in the definition and cannot be 

represented physically.  The principle that remains unexpressed in this definition is 

that any lines used to check the perpendicularity of a given line are simply 

representatives of an infinite set of lines that compose the plane.  His image uses 

perspective to show a plane, CDEF, and intersecting line, AB, and three lines in the 

plane drawn from one edge to the other through point B.  Commandino emphasized 

the arbitrariness of these lines by leaving one line unlabeled.  The other two lines are 

only labeled because their endpoints coincide with the labeled corners of the plane.  

As the commentary in the scholium explains, the lines in the plane represent the 

process of breaking the plane up into an infinite number of non-parallel straight lines 

to which the intersecting line must be perpendicular.45  Thus, the definition of a line 

																																																													
44 Ibid., 312v. ‘It is also called commonly a perpendicular line or a plumb line, unto or upon a 
superficies.”  The Oxford English Dictionary places the origins of “plumb line” in the mid-fifteenth 
century, and notes a 1538 dictionary in which a plumb line was defined as a carpenter’s tool.  Thus, it 
seems probable that Billingsley’s hoped-for artisan readers, who would have been familiar with trade 
tools, would have recognized the plumb line as a way to understand perpendicularity between a line and 
a plane.  Oxford English Dictionary, 3rd ed. (online version, updated 2006), s.v “plumb line.” 
http://www.oed.com/view/Entry/146079?rskey=kEPw02&result=1#eid. 
45 Commandino, Euclidis Elementorum, 189r.  “Si posset planum in rectas lineas resolui, ita dixisset.  
Quando ad omnes rectas lineas, ex quibus planum constat, rectos facit angulos, tunc & ad ipsum recta 
erit.  Sed quoniam planum etiam infinite rectis lineis sectum in ipsas non resoluitur, contentus fuit 
linearum infinitate pro toto plano. Contingentes autem addit, ut non parallelae sint.”  
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perpendicular to a plane rests on the assumption that a plane is composed of an infinite 

number of lines, something which cannot be completely represented in any physical 

model.  

Clavius used two diagrams (found in Figure 30) to make both the physical 

nature of the definition and its abstract grounding clear.  The first diagram was 

dedicated to illustrating the physical features of the definition, but Clavius made no 

attempt to present an accurate representation.  He did not even use perspective, relying 

on his commentary to make the three-dimensional shape of the diagram clear.  The 

commentary provided a concrete interpretation of the diagram by recasting the 

definition into an observation about the physical relationship of the line and the plane.  

As Clavius described it, the image was intended to show that “AB stands upon plane 

CD equally, and does not incline more to one part than the other,” 46 which is just a 

physical description of what perpendicularity means.  In order to make it easier for the 

reader to visualize this scenario, Clavius allowed only one line in the plane to pass 

through the point of intersection with the perpendicular line, focusing the reader on the 

relationship between those two lines.  Indeed, in his commentary, Clavius used the 

continued line as an example of what it means for AB to be perpendicular to one 

particular line, DH, which is that angles BAH and BAD must be equal to one another, 

																																																													
46 Clavius, Euclidis Posteriores, 118r. “Hac enim ratione fiet, ut AB, aequaliter insistat plano CD, & 
non magis in unam partem, quam in aliam inclinet.”  As noted above, the definition for a line 
perpendicular to a plane tells the reader that a line is perpendicular to a plane when it is perpendicular to 
all of the lines it intersects in that plane.  No mention is made of inclination towards one side or another 
of the plane.     

352



	

meaning that line AB does not lean more towards D or H. 47  Since the same must be 

true of any line in the plane that intersects line AB, line AB cannot incline towards one 

part of the plane more than it does towards any other.   

Clavius’s second diagram (produced again in Figure 31) returned to the more 

abstract formulation of Euclid’s definition to show that the impossibility of 

diagramming an infinite number of lines was not an issue if one wanted to check the 

perpendicularity of a line to a plane.  The diagram does this by showing that for a line 

to be perpendicular to a plane it is necessary and sufficient for it to be perpendicular to 

two lines in that plane.  His heuristic proof unites the concrete and the abstract by 

using an imaginary manipulation of diagrams to provide physical reasoning for the 

claim that two lines can represent the infinite set of the plane.  It is based on an image 

of a plane, CD, a line in that plane, EF, and a second line, AB, that is perpendicular to 

the line in the plane (EF).  This diagram does not use perspective, and it is not clear 

what direction AB should be imagined to point.  The ambiguity of AB’s orientation 

was intentional because it allowed Clavius to instruct the reader to imagine rotating 

AB around EF, keeping point B at the same distance from EF.  Through this rotation, 

AB would remain perpendicular to EF, but its relationship to the plane CD would 

change.  Thus, through the imaginary physical manipulation of a diagram Clavius led 

the reader to consent that a line can be perpendicular to one line in the plane without 

																																																													
47 In Book One, a right angle is defined as one of the two equal angles formed by two intersecting lines 
when the one line does not incline more to one side or the other of the second line. Clavius, Euclidis 
Elementorum, 5v. “Cum vero recta linea super rectam consistens lineam eos, qui sunt deinceps, angulos 
aequales inter se fecerit, rectus est uterque aequalium angulorum: Et quae insistit recta linea, 
perpendicularis vocatur, eius cui insistit.”   
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Figure 31: Clavius’s Second Diagram for the Definition of a Line Perpendicular 
to a Plane 
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being perpendicular to the plane itself.  Clavius then compared this diagram with his 

original diagram for the definition (which he had printed a second time right below the 

diagram just described) to create a challenge of a similar imaginary rotation of AB 

around either of two lines in the plane in an attempt to keep it perpendicular to both 

but not to the plane. Using the original diagram, Clavius chose the lines AD and AG 

from the plane and informed the reader that if AB formed a right angle with both of 

those lines, then it would make right angles with all of the others that it intersected. 48  

In case the reader doubted that claim, Clavius also noted that the impossibility of a 

line being perpendicular to two lines in the plane and not perpendicular to the plane is 

formally proven in the fourth proposition of the book.   

After the first eleven definitions, Euclid’s text turns to identifying the various 

kinds of solid bodies and some of their features.  Eleven kinds of solid figures are 

defined: pyramids, prisms, spheres, cones, cylinders, cubes, tetrahedrons, octahedrons, 

dodecahedrons, icosahedrons, and parallelepipeds.  A few more definitions identify 

features of some of the shapes, such as the diameter of a sphere or the base of a cone.  

Because these are the definitions that deal with physical bodies and their properties, 

they are the place in which commentators were most completely confronted with the 

physicality of mathematics.   In each of the three commentaries studied here, the 

treatment of the visualization of solid bodies more clearly reveals the author’s vision 

																																																													
48 Clavius, Euclidis Posteriores, 118v. “Quod si eadem AB, cum duabus angulum componentibus, 
quales sunt AG, AD, in priori figura, rectos constituat angulos, tunc demum cum omnibus aliis rectos 
angulos efficiet, ut diximus.”  
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of mathematics and the role he ascribed to physical bodies in its study here than any 

other part of The Elements.   

For Billingsley, mathematics was a study of concrete objects in which reason 

enabled the discovery of relationships between solid bodies. Thus, the definitions of 

the solid bodies marked the culmination of the Euclidean text.  The tremendous value 

he attached to these definitions is manifest in the number of diagrams he included.  All 

but one definition, that for the diameter of a sphere, had a diagram.  Each shape 

received illustration by at least one, often two or three, diagrams using perspective or 

shading to indicate dimensionality.  Two shapes, pyramids and prisms even received 

pop-up diagrams (Figure 32).  Concerned that the shapes defined were “not by these 

figures [the two-dimensional drawings accompanying each definition] here set, so 

fully and lively expressed, that the studious beholder can throughly [sic] according to 

their definitions concyve them,” Billingsley also included a set of templates which 

could be copied by the reader onto paper and folded into the various shapes so that his 

reader might “most plainly and manifestly see the formes and shapes of these bodies, 

even as their definition is shewn.”49  Eight of the eleven varieties of solids defined are 

represented in his templates.50  See Figure 33 for some examples.  For three shapes, a 

sphere, a cone, and a cylinder, it was not possible to provide a pop-up or a template for 

																																																													
49 Billingsley, Elements of Geometrie, 340. (N.B. The folio number on what should be 320 is printed as 
340.  The next folio shows 341; the following is numbered 327.  After that, the number is 323, which is 
what it should be.  From there the folios count up as one expects.)   
50 Billingsley’s templates are for a tetrahedron, a cube, an octahedron, a dodecahedron, an icosahedron, 
three varieties of pyramids, a prism, and a parallelepiped.  The quotation I used above in which 
Billingsley laments the inaccuracies of the two-dimensional diagrams only directly references the last 
five definitions which were for the five regular solids.  Still, since he included templates for pyramids, 
prisms, and parallelepipeds, it is reasonable to assume his lament about the shortcomings of two-
dimensional representations would still apply.  
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Figure 33: Eight of Billingsley’s Templates 

These cover the five regular solids and three kinds of pyramids. 
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the figure.51  Still, for the first of those definitions, the sphere, Billingsley offered his 

reader a two-dimensional diagram to explain how the shapes could be generated.  That 

diagram appears in his commentary on a sphere, and shows a semicircle mounted 

between two posts such that it could rotate about its diameter (Figure 34).  It 

effectively concretizes the imagined rotation of a semicircle required by the definition.   

For Commandino, mathematics was an abstract study in which logical 

reasoning about the forms of physical entities could aid the discovery of universal 

truths about the structure of the world.  Thus, the definitions of the solid bodies were 

examples of how the earlier definitions’ study of relationships between objects in 

three-dimensions could be put to use, but were not in and of themselves defining 

features of mathematical constructs.  As such, they had little need for further 

development, and, consequently, Commandino left most of the solid body definitions 

without any diagram.  He included diagrams only for cones and cylinders, and those 

were designed to illustrate concepts about the structure of the shapes, rather than 

simply illustrating the forms themselves.  Commandino’s diagram for a cylinder is the 

most focused on the physical.  In it he provided a straightforward rendering of the 

definitions of a cylinder, its base, and its axis, which together assert that a cylinder is 

generated by a rotation of a rectangle around one of its sides.  The image shows a 

rectangle at two points of its rotation as well as the circular paths of the two corners 

																																																													
51 Because they are defined by the rotation of a planar figure, providing the means to construct a three-
dimensional model of any of these shapes with two-dimensional planes would have been exceedingly 
difficult. It is impossible to construct these shapes by folding planar figures as Billingsley’s pop-ups 
and templates require.  The reader may think of round paper decorations that have been cut along their 
axis so that they can fold flat.  The paper between the two flat ends is made into a honeycomb weave to 
maintain its shape as either end is “rotated” around the axis.    
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Figure 34: Billingsley’s Image for the Generation of a Sphere 

In his commentary Billingsley observes that similar images can be found in 
Sacrobosco’s Sphere.   
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that define the cylinder. 52  However, unlike Billingsley’s diagram for the generation 

of a sphere, there are no extraneous supports for the axis, leaving the rotation itself 

somewhat abstract.  Since the cylinder is the last of the shapes generated by rotation to 

be defined, this diagram can also be seen as representative of the definitions for a cone 

and a sphere.  The reader will recall that, in the first book of The Elements, 

Commandino established a practice of grouping illustrations for similar figures into 

diagrams accompanying the definition for the last figure.  Here, he only included one 

illustration, but this diagram clearly shows the rotation process central to the definition 

for all three figures.  A simple change in the planar shape being rotated would create a 

different figure.53   

The diagrams Commandino included for cones serve as part of the 

explanations for the abstract concepts of orthogonal and scalene as they apply to cones 

(Figure 35). The first diagram is part of a demonstration that the angle at the apex, 

rather than the angle between the base and the axis (the line from the center of the 

circle to the vertex), is right angle for which a cone generated by the rotation of an 

																																																													
52 Commandino, Euclidis Elementorum, 192r. “Sit parallelogrammum rectangulum ABCD, & latere AB 
manente intelligatur latus CD convertum, quousque ad eum locum redeat, a quo capit moveri.  Erit ita 
descripta fiugra, cuius axis est AB recta linea manens, & basis circuli ipsi a punctis CD circa contra BA 
descripti.” N.B.  The page number was misprinted as 129. 
53 The definitions for the axis of each shape are all completely analogous, as well.  The axis is the line 
held fixed in the rotation – in the sphere it is the diameter, and in the cone it is one leg of a right 
triangle.  The base of the cylinder and the base of the cone are analogous, too.  Thus, the diagram for 
the cylinder can represent eight definitions (a sphere, axis of a sphere, a cone, axis of a cone, a base of a 
cone, a cylinder, axis of a cylinder, and base of a cylinder). While all of these analogies hold, I did not 
count Commandino’s diagram of a cylinder for more than one definition in the table because he never 
explicitly refers his reader to it in other definitions.  Also, while Billingsley’s diagram for the rotation of 
a semi-circle to form a sphere could also be said to represent the rotations of the other three shapes, that 
representation is less clear because the sphere is the first of the shapes generated by rotation to be 
defined. The reader would have to refer back to the image as he worked through the later definitions.  
Billingsley provided no such references. 
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Figure 35: Commandino’s Diagrams for the Definitions of a Cone and a Cylinder  

Commandino’s diagram for a cylinder (top) includes a line drawn at the back of the 
solid body that makes the rotation of the rectangle ABCD clear.   

Commandino’s image for the definition (bottom left) of a cone shows (from top to 
bottom) an acute, orthogonal, and obtuse cone.  All three of these cones are right cones 
because the axis and the base are perpendicular to one another (i.e. the cones are 
generated by the rotation of a right triangle).  However, only the middle cone, that 
generated by the rotation of an isosceles right triangle, has a right angle at the apex.   

Commandino’s image for his discussion of scalene cones (bottom right) shows two 
cones, one right (top) and one scalene (bottom).  The image and discussion are both 
drawn from Apollonius’s work.  In the case of a scalene cone, the rotation that generates 
the cone is that of the line AD, not a triangle. Triangles ADC and BCD are distinct 
scalene triangles. 
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isosceles right triangle about one of its legs is classified orthogonal.54  This distinction 

illustrates that Euclid’s definition leaves room for multiple kinds of structures.  All 

Euclidean cones are right cones generated by the rotation of a right triangle about one 

of its legs, and, therefore, all cones have a right angle between the base and the axis, 

but only those generated by an isosceles right triangle will also have a right angle at 

the apex.55  The second diagram accompanies an addition that expands the definition 

of cones to include scalene cones by generalizing the procedure of creating a cone.  

Instead of rotating a right triangle, scalene cones are created by rotating a line that 

connects a circle to a point outside of its plane. These cones are called scalene because 

the triangles made by the lines that define the surface of the cone, the axis of the cone, 

and a radius of the circle is a scalene triangle.   

 For Clavius, the definitions of solid bodies were neither the climax nor the 

dénouement of Euclid’s work.  Because Clavius treated mathematics as both a study 

of physical bodies and a path to universal truths, these definitions were much like the 

definitions in the first book in that they provided the physical entities necessary to 

either study, both as individual bodies and as universal categories.  In one sense, 

Clavius’s diagrams in this section are simply physical renditions of the solid bodies 

defined.  The diagrams he provided, which accompany the ten definitions for which 

																																																													
54 Commandino, Euclidis Elementorum, 191r. “Ostendendum quomodo conus orthogonius sit, vel 
angulum rectum ad verticem habeat.”   
55 The right angle at the apex arises from the rotation of the isosceles right triangle about one of its legs 
(i.e. one of the two shorter sides).  Taking the original triangle and its counterpart at 180 degrees, a 
larger triangle can be seen to be contained by the diameter of the base of the cylinder and two lines on 
the surface of the cylinder from the apex to the base (i.e. the hypotenuse of the original triangle at two 
points of its rotation).  Since the angle at the top of the original triangle was 45 degrees, and the larger 
triangle is formed by joining two of the original triangles along the leg running from the apex to the 
base of the cone, the angle at apex is the sum of two 45 degree angles, a right angle. 
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there are multiple possible physical cases, showed examples of those cases.56  For 

example, pyramids and prisms can both be formed using different polygons.  Clavius’s 

diagrams show those shapes formed on triangles, rectangles, and pentagons (Figure 

36).  However, unlike the multiple cases for the pyramid and the prism, not all the 

cases Clavius depicted are actually covered by the definitions Euclid provided.  Like 

Commandino, Clavius included a discussion and diagrams of scalene cones, even 

though such cones are not included in Euclid’s definition.  He also included a similar 

discussion with diagrams of scalene cylinders (Figure 37).  Thus, Clavius’s diagrams 

go beyond the Euclidean definitions to create more universal categories of these 

physical bodies.  Even in the instances for which all the cases are encompassed by 

Euclid’s definition, the inclusion of diagrams of the multiple cases served to show the 

reader the breadth of these definitions, rather than simply focusing on the physicality 

of the bodies.    

 Within the definitions of the solid bodies, the five regular solids (the cube, 

tetrahedron, octahedron, icosahedron, and dodecahedron) are the most revealing of all 

three authors’ approaches to the role of physical bodies within mathematics.  

According to Billingsley, the five regular solids “are as it were the ende and perfection 

of all Geometry, for whose sake is written whatsoever is written in Geometry.”57  In 

order to ensure that the reader could fully grasp the physical forms of the bodies, 

																																																													
56 A sphere and the five regular solids did not receive diagrams because they do not have multiple 
physical representations.   
57 Billingsley, Elements of Geometrie, 319v-320r. (N.B. The folio number on what should be 320 is 
printed as 340.  The next folio shows 341; the following is numbered 327.  After that, the number is 
323, which is what it should be.  From there the folios count up as one expects.)   
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Figure 36: Clavius’s Diagrams for the Definitions of a Pyramid and a Prism 

For both shapes, Clavius shows examples generated on triangular, rectangular, and 
pentagonal bases.  
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Figure 37: Clavius’s Diagrams for Right and Scalene Cones and Cylinders 

Note how he uses his labels to indicate what goes through a rotation to generate the 
shape.  The diagrams for cones are nearly identical to those found in Commandino’s 
text.  Both credit the discussion of scalene cones to Apollonius.  It is possible that the 
diagrams are also based on a Greek text.   
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Billingsley provided three images for each definition: a template from which the 

reader could create the physical body and two diagrams – one that showed all of the 

faces of a figure drawn in the plane and one that offered a perspectival artistic 

rendition of the figure.  (See Figure 38).  In his commentary he described how to see 

the first of the figures as a solid body (a feat that requires some imagination for the last 

three bodies).  He contended that, even though, of the two diagrams he provided, the 

artistic rendering looked more like a body, the planar figure was necessary because 

without it, “ye can not conceave the draught of lines and sections in any one of the … 

sides which are sometimes in the descriptions of some of those Propositions 

required.”58  After the definition for the last of the regular solids, Billingsley included 

a brief discussion of these bodies’ history and role in philosophy.  Even here, his 

emphasis was on the physical.  As he described the association of each of the solids 

with an element (or the heavens in the case of the dodecahedron – the sphere was not a 

regular solid), he explained how the physical attributes of each body merited its 

assignment to a particular element.  

 Commandino gave no diagrams and no commentary for the five regular solids.  

He did not even acknowledge that they were the only solids that could be composed of 

equal regular polygons.  In this case, silence speaks volumes.  Without a connection to 

some more universal truth, even the significance of these solids to ancient 

																																																													
58 Ibid., 319r. I have taken his description of the utility for the first diagram of the octahedron.  I elided 
the word “eight” because he gives similar justifications for the planar diagram of each of the five solids.   
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Figure 38: Billingsley’s Diagrams for a Tetrahedron and an Octahedron 

In the first diagram of each shape, all of the edges are drawn as complete lines.  In the 
artistic rendering, some edges cannot be seen completely, but the forms of the bodies 
are visible.  Billingsley noted that the line diagrams were how the figures were 
“commonly described” in a plane.  The same linear schematics can be found in 
Candalla’s commentary as diagrams for these solids.   
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mathematics and philosophy was not enough for Commandino to offer an analysis of 

the solid bodies, let alone to provide images.   

 For Clavius, it was the importance of the regular solids to philosophy as the 

only solids composed of equal regular polygons that earned these definitions their 

commentary.  Following the last definition, he included a brief paragraph in which he 

observed that these solids, known as the Platonic solids, were identified by Plato in the 

Timaeus as the bodies that “the five forms of the world, which are called simple by 

philosophers, namely the heavens, fire, air, water, and earth,” imitate.59  While he did 

not go into the details of these imitations, he noted that he offered an extensive 

explanation of them in his commentary on Sacrobosco’s Sphere.  Nevertheless, by 

devoting his commentary on the five regular solids to their philosophical value as the 

forms of the elements of the world instead of their own physical properties, he showed 

his reader that mathematics was essential to the study of philosophy.  However, by 

avoiding the specifics, Clavius kept the emphasis on the category of regular solids 

rather than on the individual bodies.  In fact, Clavius did not even provide diagrams to 

accompany the definitions of the regular solids, thereby maintaining his emphasis on 

their philosophical status as Platonic forms.  Nevertheless, in a nod to the physical 

reality of these solids, he promised further elaboration, noting that these definitions 

“will be more plainly and perfectly understood” in the thirteenth book where he 

provided “exceedingly simple practices according to which anyone could construct the 

																																																													
59 Clavius, Euclidis Posteriores, 128v. “A nonnullis corpora Platonica dicuntur, propterea quod Plato in 
Tymaeo quinque mundi corpora, quae simplicia a philosophis nuncupantur, nempe Caelum, Ignem, 
Aerem, Aquam, atque, Terram, quinque dictis corporibus assimilet, ut in Sphaera Ioannis a Sacrobosco 
latius explicavimus.”   
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solids.”60 Clavius followed through on his promise by including templates for each of 

the five solids in scholia to the propositions in the thirteenth book which required their 

construction.  Thus, Clavius ensured that the reader would be able to build the regular 

solids when the manipulation of their physical forms could be used to uncover their 

properties.  See Figure 39 for an example.  He credited the templates to Albert Dürer, 

who had provided them in his 1525 book Underweysung der Messung mit dem Zirckel 

und Richtscheyt in Linien ebnen unnd gantzen Corporen.61 Still, Clavius reduced the 

importance of the physical bodies by making his templates quite small.  Both Dürer 

and Billingsley included full-page or near full-page templates as stand-alone images, 

but Clavius’s each took up less than a quarter of a page and were embedded in his 

commentary on the relevant propositions.  Thus, the physical diagrams became little 

more than tools for the completion of the propositions. 

The definitions of the eleventh book lay the foundations for the propositions in 

the last five (or six, if Candalla’s book was included) books of The Elements.  Like 

their counterparts in the plane geometry books, the diagrams in the propositions of the 

solid geometry books were restricted in form by the necessity of illustrating the 

demonstration as it was described in the texts.  However, as was the case in the plane 

geometry books, small differences between the diagrams for the proposition and 

																																																													
60 Ibid., p. 128v. “Ubi planius perfectiusque definitiones horum corporum intelligentur. In plano enim 
difficillimum est, ea ita depingere, ut veram eorum effigiem, atque formam quis intueatur.  Trademus 
tamen propriis in locis praxes admodum faciles, quibus ea quilibet secundum eorum soliditatem possit 
conficere.”  
61 Ibid., 209v -219v. On the tetrahedron (p. 209v): “Hanc vero praxim, & sequentes quatuor, quibus 
reliqua quatuor solida regularia in materia quavis sensibili conficiuntur, desumpsimus ex Alberto 
Durero non ignobili scriptore.”  See Albrecht Dürer, Underweysung der Messung mit dem Zirckel und 
Richtscheyt in Linien ebnen unnd gantzen Corporen, (Nuremberg, 1525), NRiiiv – NRv-v.   
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Figure 39: Clavius’s Template for an Icosahedron 

Compare this image to Billingsley’s template shown in Figure 33 to see how much less 
of the page Clavius devoted to his templates.   
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additional diagrams in the commentary could illustrate the authors’ varied views on 

mathematics. In one particularly notable example, the complexity of the proof makes 

the diagram the central focus of all three authors’ demonstrations.  However, an 

examination of the proposition shows that where Billingsley focused on providing an 

accurate physical representation of the problem and Commandino sought to reveal the 

universal truths used in the demonstration, Clavius helped his readers understand the 

physical form of the construction through universal principles by ensuring that every 

step of the demonstration received a formal, theoretical proof based on universal 

principles.  

The proposition requires the reader to inscribe a polyhedron into a sphere such 

that it never touches a smaller sphere concentric with the first sphere (Figure 40). 

There are a few differences between the diagrams.  The most noticeable of those is 

Commandino’s choice not to represent any of the shapes completely, illustrating his 

disinterest in representing the physical situation described by the diagram.  Even 

though all three authors only include a few faces of the polyhedron in the upper 

hemisphere of the spheres, Clavius and Billingsley still included great circles 

representing the complete spheres, but Commandino showed only the upper 

hemisphere of either sphere because that was sufficient to the demonstration.  While 

there are a few other differences between the diagrams, the authors’ approaches to 

mathematics are most evident in their use of diagrams in the commentary.   

Billingsley’s commentary ignores any abstract or universal claims in order to 

focus on the concrete representation of the proposition.  It is devoted entirely to the 
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Figure 40: Diagrams for Book Twelve, Proposition 17 

Billingsley’s (top left), Commandino’s (top right), and Clavius’s (bottom) images for 
Book Twelve, Proposition 17.  Clavius’s diagram does not have the front on view of the 
face of the polyhedron inscribed in a circle because he simplified the section of the 
demonstration that relied on that diagram.  Because it is such a complex figure that 
accompanies a lengthy demonstration, all three authors printed the diagram multiple 
times such that the reader could see the diagram as he read through the entire 
demonstration.  For a translation of the demonstration, see Appendix C.  
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diagram as its own object. Indeed, most of the commentary is simply the presentation 

of a template from which the reader could create a three-dimensional version of the 

diagram. (Figure 41) The template comes complete with instructions on which lines to 

cut and fold and how to paste the various pieces together.  The only other points 

Billingsley makes are corrections of two errors found in earlier authors’ diagrams, 

even though neither error has any bearing on the completion of the proof.  By 

identifying these errors, despite their irrelevance to the proof itself, Billingsley showed 

his dedication to providing accurate physical models. One is the identification of two 

pairs of lines (GL and AG, and KZ and AB) that are perpendicular to one another, but 

are not always drawn as such.  The other is the identification of a point (point Z) that 

usually received two labels because it comes up in two separate parts of the proof.  

Billingsley’s commentary included a demonstration that the points described in the 

two parts of the proof are necessarily one and the same in order to make it possible for 

him to label the point only once.  

In contrast, Commandino, who made both of the errors Billingsley corrected, 

used his commentary only to clarify points made in the text of the proof.  While most 

of the clarifications were simple references to past propositions, three could be 

expressed as general claims of their own and required diagrams to accompany their 

demonstrations.  Instead of reproducing the relevant segments of the diagram from the 

proposition, Commandino created new diagrams, thereby showing the universality of 

these claims.  For example, one of the claims in his commentary is that in the original 

diagram, lines OV and SQ are equal and lines BV is equal to KQ.  In order to show 
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Figure 41: Billingsley’s Template for Book Twelve, Proposition 17 

A template created by John Dee for Book Twelve, Proposition Seventeen in 
Billingsley’s Euclid.  The accompanying commentary provides instructions for its 
assembly into a three-dimensional form. (Source: Huntington Library.) 
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those equalities to be true, Commandino recast the proof as a planar demonstration for 

the relevant lines in two semicircles.  His diagram (Figure 42) and proof show that 

lines BG and EH and lines AG and DH are equal if AB and DE are equal arcs on equal 

semicircles.  The lines from the original diagram have the same relationships to one 

another as the lines in the commentary, but by providing a new diagram complete with 

new labels, Commandino generalized the named equality into a universal principle.   

Clavius’s commentary and accompanying diagrams united the physical 

diagram of the original proof with the universal truths of mathematics by formalizing 

three seemingly obvious claims that had appeared in the original demonstration 

without proof.  While these formalizations eliminated the need for the reader to rely on 

physical intuition, Clavius maintained the links to the bodies represented in the 

original diagram by reproducing relevant portions of that diagram complete with its 

labels.  The only changes he made were the eliminations of unnecessary lines to make 

the images easier to read.  For example, Figure 43 shows the diagram accompanying 

the last of Clavius’s additions, in which he sought to show the reader that line βP is 

shorter than ZC as part of the proof that the second face of the polyhedron Clavius 

drew, PTSQ, does not touch the surface of the smaller sphere.  The reader could easily 

assume that βP is shorter than ZC because the polygon PTSQ had already been shown 

to be smaller than the polygon CKSP, and it seems obvious that the lines connecting 

the centers and corners of the polygons, βP and ZC respectively, would reflect that 

relationship.  Thus, Clavius was able to eliminate physical intuition from the proof 

without generalizing his claims into their own universal truths.   
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Figure 42: One of Commandino’s Diagrams for his Commentary on 
Book Twelve, Proposition 17 

This diagram accompanies the section of his commentary explaining why lines OV and 
SQ and line BV and KQ must be equal to one another.  Any reference to the original 
diagram is gone. 

 

 

 

 

 

	

	

Figure 43: Clavius’s Diagrams for Part of his Commentary on 
Book Twelve, Proposition 17 

These two diagrams accompany Clavius’s proof that βP is shorter than ZC.  The diagram 
on the left is clearly a segment of the original image.  The diagram on the right focuses 
on the two faces of the polyhedron separately from one another in order to make the 
necessary relationships visible, but the labels remain those found in the original 
diagram.   
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As this example has shown, the visual arguments created by diagrams in the 

definitions for the solid geometry book also appear in the authors’ propositions.  

Billingsley embraced the challenges of representing three-dimensional objects, 

showing the high value he placed on the physical components of mathematics.  

Commandino was satisfied to offer a few images to aid his reader in recognizing the 

abstract principles that allowed for the creation of solid bodies, rather than providing 

images of the forms of the bodies themselves.  Clavius sought to show both the forms 

of the bodies and the abstract principles embedded in them, allowing the physical 

bodies and the abstract principles to inform each other.  

 

Conclusion 

The challenges of representing three-dimensional objects on a two-dimensional 

page forced the authors to decide how much effort accurate physical representations 

were worth, but, as I have shown in this chapter, the diagrams in the planar geometry 

books were also able to provide arguments about the value of mathematics.  

Throughout the entire text of The Elements, commentators used images to present their 

own visions of the discipline of mathematics.  Despite the necessary similarities of 

diagrams in The Elements, variations in the presentation of the images and their 

relationships to the prose reveal the authors’ individual conceptions of the value of 

mathematics.  Through his emphasis on his diagrams as particular instances of the 

objects described, Billingsley showed mathematics to be a physical discipline valuable 

for its ability to describe and model concrete objects.  Commandino treated his images 
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as representative of broader categories, using them to aid the reader in uncovering the 

certain and universal truths of mathematics.  Clavius consistently balanced the roles of 

diagrams as physical instances and as representations of universal concepts, making 

his version of mathematics a bridge between the disciplines depicted by his 

contemporaries. 

In Painting and Experience Baxandall argued that the style of art is a subject 

for study in social history because the social position and setting of the artists shaped 

their artistic choices.  Likewise, the versions of mathematics revealed in each text’s 

images show the influence of the social positions and corresponding goals of each 

author that were discussed in earlier chapters.  Billingsley’s focus on the physical 

aspects of mathematics can be explained by his express desire that his version of The 

Elements aid English inventors, a wish consistent with his own role as a merchant.62  

Commandino’s interest in the universal principles of mathematics fits with his 

background as a humanist and his commitment to restoring the ancient dignity of 

mathematics based on its certainty.  His position at the court at Urbino provided him 

with the opportunity to study mathematics as a branch of philosophy rather than a tool 

with which to manipulate the physical world.  Clavius’s diagramming practices are the 

result of his position as an educator.  He used his images to help his reader grasp the 

universal truths found in geometry while providing a physical object that could be 

translated into practical knowledge.  By offering different versions of mathematics to 

appeal to the varied Jesuit student body, Clavius’s diagrams served as part of his 

																																																													
62 Billingsley, ijr; Chapter 3 of this dissertation. 
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efforts to establish mathematics within the curriculum.  In his view, students who 

would go on to become philosophers or mathematicians, especially those in his 

academy, could appreciate the diagrams as representatives of universal truths, and 

students who would pursue more mundane activities could understand them as 

examples of physical bodies. Where his contemporaries’ each consistently emphasized 

either the physical instances of the diagrams or the universal nature of mathematics, 

Clavius used his visualizations for both purposes such that the physical and conceptual 

clearly informed each other.  He thereby gave mathematics a place in the curriculum 

as the bridge from the study of the physical world – necessary to missionaries – to the 

study of universal truths – necessary to theologians.  Future research into the readers 

of these texts could perhaps show that how students learned mathematics influenced 

their own later work.63 

																																																													
63 Such a study would be an interesting development of Baxandall’s argument that the mathematics 
people knew had a profound influence on the visual cultures reflected in the paintings of the fifteenth 
century.  See Baxandall, Painting and Experience, 86-108. 
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Conclusion 
	

In 1611 Clavius used the Prolegomena that he had written for his 1574 

commentary on The Elements as the preface to his collected works.  In it, he had 

outlined the bipartite vision of mathematics that defined his pedagogical project from 

the beginning of his writing career to the final compilation of his life’s efforts in 1611.  

For Clavius, mathematics was both a study of perfect abstract entities through which 

“the mind’s eyes” could come to understand the “great work of God and nature,” and 

an “abundant fountain” of practical uses.1  Both parts of mathematics appear 

throughout Clavius’s extensive body of work, most of which was the development of a 

mathematics curriculum, complete with textbooks, for the Jesuit schools.   

As is evident from the frontispiece to his Opera Mathematica (Figure 44), in 

Clavius’s estimation, his was a divinely blessed project, and, thus, mathematics was a 

means through which Jesuit schools could promote the true faith.2  In it, at top of the 

page, there are images of angels and saints looking down benevolently at Clavius’s 

																																																													
1	Christopher Clavius, Euclidis Elementorum Libri XV Accessit XVI de solidorum Regularium 
comparatione (Rome: Vincentium Accoltum, 1574), b4v, “Hoc denique ingens Dei, & naturae opus, 
mundum, inquam, totum, mentis nostrae oculis munere, ac beneficio Geometriae subiectum 
conspicimus.” And “Ex his etenim elementis, veluti fonte uberrimo, omnis latitudinum, longitudinum, 
altitudinum, profunditatum, omnis agrorum, monitum, insularum dimensio, atque divisio; omnis in 
caelo per instrumentae syderum observatio, omnis horologiorum sciotericorum composito, omnis 
machinarum vis, & ponderum ratio, omnis apparentiarum variorum, quails cernitur in speculis, in 
picturis, in aquis, & in aere varie illuminato, diversitas manat.”  	
2 Although Clavius’s collected works were published in Mainz rather than Rome, he does still seem to 
have had some say in the design of the frontispiece.  In a 1611 letter to Johann Gottfried von 
Aschhausen, who is named in thanks for assisting with the publication of the Opera Mathematica, 
Clavius requested that St. Henry (Henry II of the Holy Roman Empire in the eleventh century) be 
commemorated on the frontispiece of his work.  The saints shown are Henry and his wife Cunigunde.  
Christoph Clavius a Johann Gottfried von Aschhausen [in Bamberg] Roma 1611, in Chirstoph Clavius: 
Corrispondenza Vol. VI ed. Ugo Baldini, P.D. Napolitani, (Pisa: Università di Pisa Dipartimento di 
Matematica, 1992), 183. 
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Figure 44: The Frontispiece to Clavius’s Opera Mathematica 
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project.  Along the sides of the title section are female figures representing astronomy 

and geometry.  Each one holds the tools of her discipline.  Below that, a portrait of 

Clavius is centered between four biblical scenes with ties to astronomy.3  The allegory 

created on this frontispiece is an illustration of the key point in Clavius’s arguments 

for the nobility of mathematics: through the study of geometry and astronomy he and 

his readers could illuminate the works of God.   

As discussed in Chapter One, Clavius made the arguments for the nobility of 

mathematics explicit both in the prefaces to his texts and in his treatises on the 

elevation of the status of mathematics within the Jesuit schools.  In these arguments he 

defended his discipline as a source of universal and certain truths that could bridge the 

studies of physics and metaphysics and insisted that without knowledge of 

mathematics the Jesuits would be embarrassed by other scholars, a fate which would 

thwart the Order’s efforts to gain influence as educators to the elite.4  Students could 

learn how to discover mathematical truths in Clavius’s commentaries and textbooks on 

geometry, including his commentaries on The Elements and Theodosius’s Sphere.  

These could then be applied to the mixed study of astronomy, which led to 

																																																													
3 The scenes, clockwise from the upper left, are Hezekiah receiving the sign of the shadow on the 
sundial moving backwards ten degrees (2 Kings: 20:8-11), the sun standing still for Joshua during a 
battle (Joshua 10:13), Noah’s ark with the rainbow (Genesis 9:14-15), and the magi looking at the star 
of Bethlehem (Matthew 2:2), and.  While the rainbow may seem out of place with the other images 
since it was not astronomical in nature, all four images show signs from God that could be studied 
mathematically.  Optics, like astronomy, was a branch of mixed mathematics.  For a discussion of the 
mathematical treatment of the rainbow in the sixteenth century see Carl B. Boyer, The Rainbow: From 
Myth to Mathematics (Princeton: Princeton University Press, 1987 [Sagamore Press, 1957]), 151-177. 
4	Christopher Clavius, “Modus quo disciplinae mathematicae in scholis Societatis possent promoveri 
(1582),” in ed. Ladislaus Lukacs, Monumenta Paedagogica Societatis Iesu Vol. VII,: Collectanea de 
Ratione Studiorum Societatis Iesu (Rome: Institutum Historicum Societatis Iesu, 1992), 116.  “Pari 
ratione oporteret praeceptores philosophiae callere disciplinas mathematicas, saltem mediocriter, ne in 
similes scopulos magna famae, quam Societas in litteris habet, iactua et dedecore incurrerent.” 
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mathematical descriptions of the structure of the universe that Clavius included in his 

commentary on Sacrobosco’s Sphere.5 

However, as discussed in Chapter Two, the arguments for the nobility of 

mathematics did not persuade everyone, and the Jesuits ultimately gave mathematics a 

place amongst the higher faculties in their curriculum because they perceived the 

practical value of the discipline to mundane tasks as a means to gain patronage from 

ruling classes.  In order to secure such patronage and to create skilled missionaries 

who could carry out necessary tasks from timekeeping to irrigation, Clavius provided 

textbooks on various topics in practical mathematics, implicitly promising that 

students of the Order would be able to apply their mathematical knowledge to 

whatever task was most necessary.  Concern for the practical use of mathematics even 

appeared in his texts on abstract topics, including his commentary on The Elements.  

Indeed, Clavius had that commentary printed in two volumes, so that the itinerant 

missionaries could carry it with them as a handbook.6   

Clavius’s combination of the nobility of mathematics as a contemplative study 

and the utility of mathematics as a practical means to describe and manipulate the 

physical world was not simply rhetoric.  The idea that mathematics was the language 

																																																													
5 Clavius, Euclidis Elementorum, b4v, “Ex his, inquam, elementis machinae totius huius mundanae est 
inventum medium, atque centrum, inventi cardines, circa quos perpetuo convertitur, orbis denique totius 
explorata figura acquantitas.”  
6 Ibid.,  a5v,  “Nam cum Euclides, propter singularem utilitatem, instar enchiridii, manibus semper 
debeat circumgestari, neque unquam deponi ab his, qui fructum aliquem serium ex hoc suavi Matheseos 
studio capere volunt, in eoque progredi, id vero in hunc diem exemplaribus omnibus maiore forma 
impressis, necdum factum videamus; hoc nostra editio certe, si nihil aliud, attulerit commodi, atque 
emolumenti.  Sunt enim hi nostri commentarii in universum Euclidem conscripti commodiore nunc 
forma, quam vulgo caeteri, (id quod magnopere a nobis, qui nos audierunt, efflagitabant,) volumineque 
editi, ut facile iam queant, nulloque negotio, e loco in locum, cum restulerit, ferri atque portari.”   
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of the universe, which Galileo famously asserted in The Assayer, underpins all of 

Clavius’s work and can be seen in his union of pure mathematics with its myriad 

potential applications in the bodies of his textbooks, including the first edition of his 

commentary on The Elements (1574).  That text has particular significance because it 

was the first book presented in the mathematics portion of the Jesuit curriculum.  

Thus, the vision of mathematics that Clavius outlined in its preface, the same vision 

that guided his entire pedagogical project, was the means through which the discipline 

was defined for Jesuit students.   In the last three chapters of this dissertation, I have 

examined the 1574 commentary on The Elements as a means to understand how 

Clavius made the versatility of his discipline apparent in a textbook.   

Through a comparison of Clavius’s commentary to two other significant 

sixteenth-century commentaries on The Elements, those of Federico Commandino and 

Sir Henry Billingsley (1572 and 1570, respectively), I have shown that Clavius’s 

commentary, while part of a widespread sixteenth-century effort to revitalize the study 

of mathematics, was so rich that it transcended its genre and became a resource book 

for students and teachers in which the current state and scope of the discipline of 

mathematics was illustrated.  James Lattis described Clavius’s Euclid as “a paraphrase 

and a commentary,” as opposed to a translation of The Elements.7  While accurate, this 

characterization understates the significance of Clavius’s work, which approaches a 

modern textbook because the paraphrasing and commentary were used systematically 

																																																													
7 James Lattis, Between Copernicus and Galileo: Christoph Clavius and the Collapse of Ptolemaic 
Cosmology (Chicago: University of Chicago Press, 1994),, 16.   
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to describe and teach his particular vision of mathematics.  Indeed, Ugo Baldini has 

credited Clavius with taking the first steps towards the development of the “modern 

scientific textbook.” 8  Instead of providing readers with a translation of a classical text 

with clarifying glosses, as Commandino did, or an anthology of demonstrations for 

Euclid’s propositions, as Billingsley did, Clavius presented a textbook with detailed 

analyses of classical, medieval, and renaissance contributions to the Euclidean corpus.  

Through these analyses he created a clear picture of geometry as the foundation of a 

mathematical description of the structure of the universe with the ability to effectively 

guide manipulations of the physical world.   

 Clavius’s approach to mathematics in The Elements was driven by what he 

believed the Jesuit Order required in its mathematics education.  The result was a 

combination of nobility and utility of mathematics within its foundational text not seen 

as sharply in other versions of the text.  Although Commandino translated a great 

variety of treatises on mathematics, including some of Archimedes’ practical works, 

his commentary on Euclid set the tone for treating mathematics primarily as an 

abstract study of universal truths.  Even when he translated his commentary on Euclid 

into Italian, ostensibly for its applicability to various crafts, he did not suppress his 

disparaging opinion of the use of mathematics as a path to material profit as vulgar.9 

																																																													
8 Ugo Baldini, “The Academy of Mathematics of the Collegio Romano from 1553 to 1612” in Jesuit 
Science and the Republic of Letters ed. Mordechai Feingold, (Cambridge MA: The MIT Press, 2003), 
67.   
9 Federico Commandino, De gli Elementi d’Euclide Libri Quindici con gli Scholii Antichi, (Urbino: 
Domenico Frisolino, 1575), **3r-v.  “Hora, perche la maggior parte de gli huomini, & massimamente à 
questi tempi per l’utile solo aprono gli occhi à gli studi dell’arti nobilissime, & solo con questo disegno 
danno opera alle liberali discipline, vediamo di gratia se e vero, che le matematiche non vagliono punto, 
ne arrechino, aiuto alcuno all’ uso del viver humano; come il cieco & vergognoso desiderio del 
guadagno fece già dire falsamente a certi: i quali hanno fatto, che gli studiosi di questa facoltà siano da 
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His vision of mathematics was one of a noble discipline: a science, rather than an art.  

Indeed, historians have found that the Urbino school, of which Commandino was the 

head, primarily worked on recovery of ancient mathematical works and the invention 

of instruments that could improve mathematical precision, advancing mathematics as a 

noble discipline.10  For example, Commandino’s most famous student, Guidobaldo del 

Monte, author of Mechanicorum Liber, seems to have remained uninterested in the 

actual operation of the machines whose principles he described.11  In contrast, while 

Billingsley and John Dee acknowledged that mathematics was an abstract source of 

universal truths in the prefatory material they provided for the first English version of 

The Elements, the content of the text itself, written by Billingsley, emphasized 

mathematics’ physicality, thereby preparing readers for the practical study of 

mathematics that the English merchant hoped to inspire.  For Billingsley, mathematics 

was of interest as an art.  Even John Dee, who was well aware of the Aristotelian 

distinction between demonstrative sciences, which could explain causes, and 

descriptive studies, which could only describe facts, wrote the “Mathematicall 

Preface” for Billinglsey’s text primarily as a description of the mathematical arts.12  

																																																													
ignoranti, & da quelli, che hanno altro studio alle mani publicamente beaffti, come genti, che in cosa 
uana & di niun momento perdano il tempo, & la fatica.”  This comment appears in the preface to the 
text, as it had in the Latin version.  In the letter to Duke Francesco Maria II of Urbino, written by after 
Commandino’s by his son-in-law, the younger author claimed that the translation was done to enable 
non-Latinate Italians to benefit from the utility of The Elements.  
10	Alexander Marr, Between Raphael and Galileo: Mutio Oddi and the Mathematical Culture of Late 
Renaissance Italy, (Chicago: University of Chicago Press, 2011), 221-224.  	
11	M. Henninger-Voss, “Working Machines and Noble Mechanics: Guidobaldo del Monte and the 
Translation of Knowledge.” Isis, Vol. 91, No. 2 (June, 2000), pp. 233-259.	
12 John Dee, “Mathematicall Preface,” second page “Wherefore, seying I find great occasion (for the 
causes alleged, and farder, in respect of my Art Mathematike generall) to use a certaine forewarnying 
Preface, whose content shalbe, that mighty, most pleasunt, and frutefull Mathematicalll Tree, with his 
chief armes and second (grifted) braunches: Both, what every one is, and also, what commodity, in 
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Clavius’s efforts to prepare Jesuit students both for future scholarly endeavors in 

philosophy and theology and for practical mathematical tasks for which they might be 

called upon, united the two visions of mathematics found in his contemporaries’ works 

by emphasizing pure mathematics as the foundation of both mathematical sciences and 

mathematical arts.13  His commentary on The Elements thereby paved the way for the 

development of a realist-mathematical science, which Floris Cohen has identified as 

the first revolutionary transformation of the Scientific Revolution.14   Such a science 

required pure mathematics as a driving force.  

In fact, Cohen treated Clavius’s work as a necessary precursor to the Scientific 

Revolution, though he is careful to note that the Jesuit’s promotion of mixed 

mathematics did not fundamentally break with an Aristotelian natural-philosophical 

analysis.15  What this dissertation has shown is that Clavius’s contributions to the early 

stages of the Scientific Revolution can only be understood as the result of his 

pedagogical goals and their influence on his presentation of pure mathematics as a 

versatile means to engage with the world. His combination of the contemplative and 

the practical visions of his discipline within his commentary on Euclid was driven by 

his efforts to position mathematics within the Jesuit’s philosophy curriculum.  It is 

																																																													
genereall, is to be looked for, aswell of griff as stocke.”;  For a discussion of the Aristotelian separation 
of knowledge based on the ability to explain causes see Robert Westman, The Copernican Question, 
32-33.   
13 Clavius was familiar with the request of superiors to apply mathematics to practical problems.  In the 
early 1580s his efforts were focused on the development of a new calendar at the request of Gregory 
XIII.  The calendar he created, the Gregorian calendar, is still in use today.     
14 The emergence of a realist-mathematical science is the first of the six revolutionary transformations 
outlined by Cohen.  H. Floris Cohen, How Modern Science Came Into the World: Four Civilizations, 
One 17th-Century Breakthrough, (Amsterdam: Amsterdam Unisversity Press, 2010), xvi and 159-220.     
15 Ibid., 146-147.  

389



through his pedagogy that Clavius clearly belongs in a discussion of the renaissance of 

mathematics in the sixteenth century and is necessarily part of that “indispensable 

prelude to the scientific revolution” in which mathematical humanists, such as 

Federico Commandino, successfully argued to raise the status of their discipline for its 

contemplative value.16  Like Commandino, Clavius was devoted to the restoration of 

ancient mathematics and believed that his discipline could lead to discoveries about 

the fundamental nature of Creation.  Through looking up to the heavens, 

mathematicians could elevate their discipline to the status of natural philosophy.  Yet, 

Clavius would also not be out of place in a discussion of mathematical practitioners, 

such as Henry Billingsley, who hoped for concrete benefits from the study of mixed 

branches of mathematics.  Like Billingsley, Clavius was eager to explore the benefits 

of mathematics that came from looking down towards the earth.  As it was presented 

in Clavius’s commentary on The Elements, mathematics was both a science and an art, 

and pure mathematics, especially geometry, was the source of both knowledge and 

skill. 

By providing a close comparison of three significant commentaries on The 

Elements, this dissertation provides insight into the ways in which Euclid, and thus the 

subsequent study of mathematics, was understood in the sixteenth century.  Each of 

the three commentaries studied here contains a unique understanding of mathematics 

as a science, an art, or as a combination of these two approaches to the world.  This 

																																																													
16 Paul Rose, The Italian Renaissance of Mathematics: Studies on Humanists and Mathematicians from 
Petrarch to Galileo (Geneva: Librairie Droz, 1975), 2.   
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dissertation thus offers a necessary starting point to further examinations of how 

sixteenth-century mathematicians learned their subject. Antonella Romano has already 

called attention to the need for such work, and contributed some of her own.  

However, she has focused on the branches of mathematics, usually some form of 

mixed mathematics, taught after Euclid.17  A study of readers of various versions of 

Euclid and the influence of early mathematics education on later mathematical 

practice is much to be desired as The Elements was almost always the first 

mathematical text from which a student would learn.  Annotated copies of The 

Elements would provide a valuable resource to understand how such elementary texts 

were read.18  Another approach would be to compare works written by various 

scholars in the seventeenth century to determine how the available versions of The 

Elements were used and incorporated into advanced mathematical scholarship.  Within 

the Jesuit context, a study of readers could be done as part of an examination of 

educational practice and the classroom content of Jesuit schools, where Clavius’s texts 

were part of the curriculum.  Otto Cattenius’s lectures in Mainz (1610/1611) could 

offer a valuable starting point for such research.  A preliminary reading of these 

																																																													
17 Antonella Romano, “Teaching Mathematics in Jesuit Schools: Programs, Course Content, and 
Classroom Practices,” in The Jesuits II: Cultures, Sciences, and the Arts: 1540-1773, ed. John 
O’Malley, Gauvin Alexander Bailey, Steven J Harris, T. Frank Kennedy.  (Toronto: University of 
Toronto Press, 2006), 355-370. 
18 Renée Raphael has studied the readers of Galileo’s Two New Sciences.  Her approach could be an 
example for studies on readers of Euclid.  She used marginal annotations as well as course materials 
from Pisa and Jesuit colleges to understand how Galileo’s contemporaries read his work.  Similar 
methods could prove fruitful for various editions of The Elements.  Renée Raphael, Reading Galileo: 
Scribal Technologies and the Two New Sciences, (Baltimore: Johns Hopkins University Press, 2017).  
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lectures suggests that Cattenius relied heavily on Clavius’s commentaries on The 

Elements and Sacrobosco’s Sphere.19   

Although the commentaries on The Elements and Sacrobosco’s Sphere were 

Clavius’s largest works, he wrote over a dozen textbooks on mathematical topics to 

accompany his ideal curriculum.  Lattis has done an excellent study of Clavius’s 

commentary on Sacrobosco’s Sphere in which he traced the content of the text through 

all of the editions published during Clavius’s life, but most of Clavius’s other 

textbooks remain little examined.  This dissertation only examined the first edition of 

Clavius’s commentary on The Elements.  It remains necessary to compare the first 

edition to the later versions.   Such comparisons could shed light on the evolution of 

Clavius’s methods for presenting his vision of mathematics within his commentary 

and, possibly, discover areas he found to be difficult for his students.  In order to 

create a complete picture of Clavius’s union of theory and practice in mathematics, it 

would be especially valuable to know how Clavius presented practical arithmetic in 

his Epitome arithmeticae practicae and practical geometry in his Geometria practica  

and how those textbooks were used by their readers both within and outside of Jesuit 

schools.  Comparative studies between Clavius’s work and similar books by other 

authors would further clarify his position in the intellectual discourse of sixteenth-

																																																													
19 Otto Cattenius, “Edition” in Albert Krayer, Mathematik im Studienplan der Jesuiten: Die Vorlesung 
von Otto Cattenius an Der Universität Mainz (1610/1611), (Stuttgart: Franz Steiner Verlag, 1991), 181-
360.  The beginning portion of the lectures defining mathematics and introducing Euclid’s Elements 
follows the same outline as Clavius’s prolog to The Elements (181-184).  The diagram included for the 
first proposition (p. 188) follows Clavius’s labelling scheme.  For the Pythagorean Theorem (pp. 197-
198), Cattenius differed from Clavius in that he only fully developed the first half of the proof, but he 
did outline the second half more completely than Commandino or Billingsley did in their texts.   
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century mathematicians.  Such a study could also be extended into an examination of 

the later editions of his works.  Some of his texts, including his commentary on 

Euclid, were republished long after his death.20  Some were translated into various 

vernaculars.  For example, Clavius’s commentary on Theodosius’s Sphere was 

published in English as late as 1721, and his practical arithmetic appeared in Italian in 

1738.  Those late editions could provide insight into how readers continued to use 

Clavius’s texts after his death.  This dissertation has laid the groundwork for further 

studies into readers in this Jesuit tradition of elementary mathematics texts. 

Studies of Clavius’s texts and their readers could shed light on the early 

development of the mathematical ideas that characterized the Scientific Revolution.  

Because of his position at the Collegio Romano, Clavius played a significant role in 

the education of those who lived at the start of the Scientific Revolution.  His 

treatment of mathematics likely influenced early pioneers of the Scientific Revolution.  

One of his students, Gregory of St. Vincent (1584-1687) has been credited with 

developing mathematical techniques necessary to analytic geometry and, later, 

calculus.21  Such luminaries as Descartes and Galileo can be found among Clavius’s 

readers and correspondents.22  And, the fact that some of his texts were translated and 

																																																													
20 For example, the commentary on Euclid was published in Frankfurt by Ionas Rosa in 1654.  It is a 
reprint of Clavius’s 1607 edition. 
21	Margaret Baron, The Origins of Infinitesimal Calculus, (Oxford: Pergamon Press, 1969), 134.	
22 Descartes studied at the Jesuit college of La Flèche in the second decade of the seventeenth century.  
Galileo corresponded with Clavius and met him in Rome in the late 1580s, when Clavius was working 
on his 1589 edition of The Elements.  Wallace has posited that Clavius was the source through which 
Galileo obtained lecture notes from the Jesuit philosophy professors, and it stands to reason that the 
Jesuit mathematician would have shared his own work with Galileo as well.  See William Wallace, 
“Galileo’s Jesuit Connections and Their Influence on His Science,” ed. by Mordechai Feingold, 
(Cambridge, MA: The MIT Press, 2003), 103-104.  The list of members of Clavius’s academy in Rome 
constructed by Ugo Baldini includes John Hay, James Bosgrave, Matteo Ricci, Christoph Grienberger, 
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republished in the eighteenth century suggests that his works remained valuable to 

students throughout the Scientific Revolution.  Much remains to be done in order to 

understand what exactly gave Clavius’s textbooks their longevity. 

Clavius’s contemporaries would not have been surprised by the argument that 

his significance to the development of mathematics and science lay in his teaching.  In 

fact, they knew him as the “Euclid of our times.” The one portrait made of Clavius in 

his lifetime was created in 1606 by the Italian engraver Francesco Villamena, and it 

shows Clavius as a Jesuit teacher.23  In it, the priest is seen seated at his desk 

surrounded by the various tools of his trade (Figure 45).24  On the wall behind him 

hang an astrolabe and a quadrant.  On his desk lie an armillary sphere, a straightedge, 

a pen, a penknife, a book and a sheet of paper with geometrical figure on it.  In front 

of Clavius are stacks of books, on the pages of one of which the viewer can make out 

what appears to be Clavius’s pair of diagrams for the Pythagorean Theorem.  Clavius 

himself is holding a compass and seems to be deep in thought.  While the three 

astronomical tools suggest Clavius’s role as an astronomer and his own interest in that 

field, the image primarily depicts a teacher.  Indeed, the astrolabe and the quadrant are 

subjects of Clavius’s practical astronomy textbooks, and the armillary sphere was a 

teaching tool.  The double diagram for the Pythagorean Theorem suggests that the 

																																																													
Giuseppe Biancani, Otto van Malecote and Paul Guldin, among others.  See Baldini, “The Academy of 
Mathematics,” 72-74.  
23 The portrait the appears on the frontispiece of Clavius’s Opera  Mathematica is clearly based on 
Villamena’s 1606 engraving.  
24 Villamena was known for portraits in unromanticized settings that depicted tools of the subjects’ 
trade.  See Lattis, Between Copernicus and Galileo, 24-25. 
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Figure 45: Francesco Villamena’s Portrait of Christopher Clavius (1606) 

N.B.  If for some reason the writing on the pages is not visible, please consult the 
Metropolitan Museum of Art’s copy online. 

Source: The Metropolitan Museum of Art, 
http://www.metmuseum.org/art/collection/search/342372 
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open book is meant to be Clavius’s commentary on Euclid’s Elements.  It is easy to 

imagine the man in the picture contemplating how best to teach mathematics.   

And yet, in Villamena’s portrait, the true significance of Clavius’s efforts to 

combine mathematical sciences and mathematical arts is not visible.  While the image 

captures that Clavius dedicated most of his life to developing the mathematics 

curriculum of the Jesuit schools, and accurately depicts the commentary on Euclid’s 

Elements and various works on astronomy as the most significant results of the priest’s 

efforts, it did not show that Clavius in any way advanced mathematics education.  A 

curriculum composed of Euclid and astronomy could hardly distinguish Clavius from 

other mathematics teachers, before or during the sixteenth century.  In medieval 

universities, geometry and astronomy were taught as part of the quadrivium, and both 

Euclid and Sacrobosco’s Sphere, Clavius’s choice for astronomy instruction, were 

commonly used texts, and several scholars wrote commentaries on both of those 

works.25  And while the Jesuit curriculum required only Euclid and one other branch 

of mathematics (for which Clavius suggested astronomy), it was a far cry from 

Clavius’s ideal program of mathematics study, and even though Euclid and 

Sacrobosco were not new, Clavius’s commentaries were so substantial that they are 

more properly considered as independent texts based on the older works than as 

versions of those works.  A close examination of Clavius’s pedagogical project shows 

that, through a consistent combination of mathematics as a theoretical study and 

mathematics as a practical study, the Jesuit mathematics professor fulfilled the 

																																																													
25 Lynn Thorndike, The Sphere of Sacrobosco and its Commentators, 42-43.   
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promise of Neoplatonist rhetoric about mathematics’ intermediate role between 

physics and metaphysics. 
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Appendix	A		
Clavius’s	Three	Curricula	
	

Translated from Christopher Clavius, “Ordo servandus in addiscendis disciplinis 
mathematicis (1581).” In Monumenta Paedagogica Societatis Iesu Vol. VII,: 
Collectanea de Ratione Studiorum Societatis Iesu, edited by Ladislaus Lukacs. Rome: 
Institutum Historicum Societatis Iesu, 1992. 
 

 

The order to be kept in learning the mathematical disciplines (In the year 1581) 

 

1.  The first four books of Euclid. 

After our interpretation, with the superfluous scholia omitted.  

 
2.  The precepts of practical arithmetic are necessary to learned men.  Those are 

addition, subtraction, multiplication and division of numbers as integers and as 

fractions.  And also a very brief treatment of proportion, proportionality, and 

progressions, and one of the golden rule of proportion, which is called the Rule of 

Three, and the extraction of roots. 

 Of these things we will write a brief compendium.  In the interim the practical 

arithmetic of Gemma Frisius can be read, or the more useful precepts of this here 

enumerated can be selected from the first book of Michael Stiefelius’s 

Arithmetic, which treats a great abundance of them with brevity.  
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3.  The Sphere as briefly as possible or any other preferable introduction to astronomy.  

To which can be added the rules for looking at ecclesiastical computation which are 

necessary to learned men.  

On this also we are putting forth a compendium.  In the interim however, our 

commentary on the Sphere of Sacrobosco is sufficient, with the operations of 

sines, the treatment of isoperimetry, etc. omitted since they are added to this 

below.  

 
4.  The fifth and sixth books of Euclid. 

 From our interpretation, as above. 

 
5.  The use of the geometrical quadrant and the astronomical quadrant, and if it seems 

good, also of other instruments, which are managed around measurements, which is 

things like Jacob’s staff, a torquetum, etc. 

Of these we will compose a short work.  In the interim, truly the use of these 

things can be selected from Orontius, or from any other who is pleasing, as from 

Gemma Frisius in the universal astrolabe, or Peurbach etc.    

 
6.  The next four books of Euclid, clearly the seventh, eighth, ninth and tenth.  Or 

preferably in their place, the first three books of Jordanus’s Arithmetic, or that of 

Gaspar Lax, where there is more contained, than in the arithmetic written by Euclid; to 

which could be added the Arithmetic of Maurolico.  

On account of speculative music, from all of these I would choose the arithmetic 

of Jordanus.  Moreover, if the meanness of time bears down, all of these things 
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can be omitted, or put off to the end with the art of algebra. Especially if we only 

want to investigate that which are looking at astronomy and geography and those 

that can be reduced to them, as are the description of horology, perspective, etc.  

 
7.  The art of algebra, along with those things which are required for its use; which is 

the algorithms of numbers proportionality of denominators, roots, binomials etc.  

Whereby, indeed the algorithoms of roots and binomials cannot be understood and 

demonstrated before the tenth book of Euclid. 

This we will treat.  In the interim, however, the Algebra of Stiefelus, Johannes 

Seubel, or Peletier can be taken up.  Others of these arts, because they are not 

necessary to all things, can be put off, as was said of the preceding four books 

of Euclid. 

 
8.  The last of books of Euclid; which are of course the eleventh, the twelfth, the 

thirteenth, and the fifteenth, together with the sixteenth which we have added from 

Candalla. 

Form our edition, as prior.  However, on account of shortness of time, books 

eleven and twelve can be read, and the rest can be put off to a more convenient 

time for the reason produced in number six.  However, it does not seem good 

to omit the tenth proposition of the thirteenth book and the converse of the 

ninth proposition of the same book and the scholion of the tenth proposition.  

For these are necessary to understanding the study of the science of sines.  

Moreover, we have divided all the of the books of Euclid into the four above 
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mentioned classes, not because not all of them can be learned at once from the 

beginning, but lest so many geometrical demonstrations cause difficulty for the 

studious, if they should be learned all at once and continually.  

  
9. The treatment of sines, together with the use of tables of sines, and also the use of 

sines without tables, but only for straight lines.  

We will elaborate on this, accepting as well the table of Peter Apianus or 

Johannes Regiomontanus, which are extended to the single minute of a degree.   

  
10. The elements of the Sphere of Theodosius. 

 From the tradition of Maurolico. 

  
11.  A compendium of spherical triangles.  For Menelaus, Johannes Regiomontanus 

and Maurolico have written very broadly on these.  This pertains some to the elements 

of conics of Apollonius, which kind of study are the first fourteen propositions, which 

do the most to make understanding those things which are said of the construction of 

the astrolabe and of the shadows of the gnomon in horology.  Indeed the rest seems to 

be as good as it is necessary for learned men; granted that they give the most pleasant 

and acute speculations.  

This we will compose and provide for, as it will be printed in one volume 

with the elements of the sphere of Theodoisus.  And this compendium will be 

together with the early propositions of Apollonius. 
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12.  The structure of astrolabes demonstrated, together with its use.  Leaving out 

however, the last part of the altimetry scale, since that is already explained in the use 

of the geometric quadrant etc.  This ought to be related together with the use of the 

material sphere or globe. 

We will treat this, in a certain compendium encouraged by Maurolico and will 

will put in the use of the globe or material sphere. 

 
13. Description of solar horology of all kinds.  Where even the reason for describing 

horology can be explained from the Analemmate of Ptolemy, if time allows. 

This we will briefly sum up, together with a description of horology from 

Ptolemy’s diagrams of sundials, in a compendium describing horology. 

 
14. Geography. 

We will compose this.  In the interim, however Gemma Frisius can be read, 

De orbis divisione et alii. 

 
15.  Precepts for measuring the areas of all figures, both of planes and of solids.  To 

which can be added a treatment of the isoperimetry of figures, if it was earlier 

surpassed the little book of Archimedes on the dimensions of circles, and the divisions 

of surfaces from Machometo or Federico Commandino.    

These we will also treat.  In the interim, however, Orontius can be read.  

Isoperimetry of figures is contained in our commentary on the Sphere.  A 

truly impressive treatment of the division of surfaces is the work of Federico 

of Pisa [ i.e. Commandino].   
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16.  Perspective together with burning mirrors. 

This we will write.  Orontius has published a treatment of burning mirrors.  

They even say that Archimedes or Ptolemy published on this, but I have not 

seen it. 

 
17.  Various phenomena and problems of astronomy for the comprehension of the 

whole doctrine of the prime mover.  To which can be added the little work of Peter 

Nunez on twilights. 

We will also briefly investigate twilights.  Truly we will report on the 

problem in another way than is contained in the little work of Peter Nunez.   

 
18.  A treatment of the motion of the planets and eight spheres, together with the use 

of the Alphonsine tables, or others.  Also, if was earlier surpassed, a short treatment of 

algorithms of fractions of astronomy. 

This we will publish.  It will answer, moreover, to the treatment of the 

remaining eleven books of the Almagest of Ptolemy. We will also write the 

models briefly and clearly in in tables.  But perhaps it will be a greater 

influence if we write commentaries on the Epitome of Johannes 

Regiomontanus. 

 
19. The speculative music of Lefeve d’Etaples, which precedes the Arithmetic of 

Jordanus, if it was not previously taught.  

This is related by Lefevre d’Etaples.   
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20.  A few works of Archimedes, together with the discovery the mean proportions of 

two lines, and the doubling of the cube, and also, last, the squaring of the circle. 

We will illustrate some commentaries on these. 

 
21.  Questions of mechanics from Hero, Pappus, and Aristotle, etc. 

Perhaps we will write some compendium on these. 

 
22.  They will also add a few a few propositions from Serenus on cylindrical sections, 

in which the second proposition ought to be demonstrated, likewise the same for 

cylindrical portions evidently having elliptical bases.  
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A second order, shorter than those, to be followed, which does not provide for a 

most perfect understanding of mathematical things 

 

1.  The first four books of Euclid 

From our account.   

2.  The precepts of practical arithmetic of addition, subtraction, etc, of both integer 

numbers and fractions, together with a short treatment of proportions, proportionality, 

and progressions; which should immediately be followed by the golden rule of 

proportions and the extraction of roots. 

Ours or Michael Stifelius.  

3.  Most briefly, the sphere and ecclesiastical computation. 

 Johannes de Sacrobosco with our commentary. 

4.  Books five and six of Euclid. 

 From our account. 

5.  The use of the geometrical quadrant and the astronomical quadrant. 

 Ours or from Orontius, Gemma Frisius, etc.  

6.  Books 11 and 12 of Euclid together with the tenth proposition of the thirteenth 

book with its scholion, and also the converse of the ninth proposition of the same 

book.  For these all are necessary to understanding the science of sines. 

 From our account. 
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7.  The treatment of sines, as above. 

 From our account. 

8.  Theodosius’s elements of the sphere. 

9. A compendium on spherical triangles together with the first fourteen propositions of 

Apollonius on the elements of conics.   

10.  The structure and use of astrolabes, leaving out the last part of the measurement, 

since that was related in the use of the geometrical quadrant. 

 Ours. 

11.  A demonstrative description of horology. 

 Ours. 

12. Geography. 

 Ours or Gemma Frisius’s De orbis divisione. 

13.  The precepts of measuring figures either plane or solid.  Together with our 

treatment of isoperimetric figures and the division of surfaces from Federico 

Commandino. 

 Ours or Orontius.  

14.  Perspective, together with Orontius’s burning mirrors. 

 Ours or that which is common. 

15.  Phenomena and problems of astronomy regarding the prime mover necessary to 

learned men, together with computations of twilights. 

 Ours. 
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16.  A treatment of the motions of the planets and eight spheres, together with the use 

of the Alphonsine tables, etc.  Still, these tables should precede the algorithm of 

fractions of astronomy. 

Ours or the Epitome of Johannes Regiomontanus on Ptolemy’s Almagest.  

17.  The dimension of the circle from Archimedes together with the discovery of the 

place of mean proportions between two lines, and the doubling of the cube, and also, 

last, the squaring of the circle. 

 From our account. 

18.  The speculative arithmetic of Jordanus and music from Lefevre d’Etaples.  

 From the account of Lefevre d’Etaples. 

19.  The rule of algebra, together with the practice of those things which are required 

for that, without the demonstrations which depend on the tenth book of Euclid.  Truly, 

those which are deduced from the second book can be brought in.  

 Ours, or Peletier, or Johannes Seubel. 
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A third most concise order adapted to a course of mathematics which should be 

summed up in two years. 

 

The First Year 

1. The first four books of Euclid. 

These two can be read from the beginning of studies just to the end of 

January.1  

2.  Practical arithmetic as prior. 

3.  The sphere and most briefly ecclesiastical computation. 

This can be summed up just to Easter. 

4.   Books five and six of Euclid. 

5.  The use of the geometrical quadrant and the astronomical quadrant.   

These two are treated up to Pentecost. 

6. Perspective. 

7. A compendium of horology without demonstrations. 

These two are read up to the end of the year. 

  

																																																													
1 It seems that the “duo” refers to the first four books of Euclid and practical arithmetic.   
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The Second Year 

8.  Books eleven and twleve of Euclid together with the tenth proposition of the 

thirteenth book and its scholion, and also the converse of the ninth proposition of the 

same book.  

This can be done from the renewal of studies to the Nativity of the Lord.  

9.  A treatment of sines together with their uses for various phenomena and problems 

for studying the prime mover, without demonstrations.  There can be a few 

demonstrations from the sixth of Euclid about straight lines, in order that the quantity 

of daylight and hours may be found from the altitude of the sun and vice versa, etc.  

10.  Geography 

These two are read just to Lent. 

11.  The structure and use of the astrolabe, leaving off the last part, as prior.  They 

should precede, however, Apollonius’s first fifteen propositions of conic elements.   

12.  The theory of the planets bringing in a few demonstrations, together, most briefly, 

with the use of the Alphonsine tables.  

These two can be quickly done up to the feast of John the Baptist. 

13.  The dimension of the circle from Archimedes, and its quadrature, which 

approaches the next truth, together with the discovery of the mean proportions of two 

lines from Eratosthenes, Diocles, and Nicomedes, and the doubling of the cube.  

 

410



	

	

14. The standard of algebra, together with the practice of those things which are 

required for it, adding only those demonstrations which depend on the second book of 

Euclid.    

15.  The precepts for the measuring of figures as above.   

These three are executed just to the end of the year.   

 

 

 

 

Students are to be encouraged after the eleventh and twelfth books of Euclid to read 

over Theodosius’s elements of the sphere and something from speculative arithmetic 

by themselves.  

 

However, I recommend the second order, rather than this one, if it can be summed up 

in two years.  Moreover, it can, if the students are capable and desire to be taught.  

The first however, is the most complete of all.  
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Appendix	B		
The	Postulates	and	Axioms,	
untranslated	
 
The postulates and axioms found in The Elements are listed in full in Table 1 in 
Chapter 3 and Table 4 in Chapter 4.  In order to allow the reader to see the small 
differences between Commandino’s and Clavius’s Latin versions of these postulates 
and axioms, I have reproduced those tables here with those two authors’ enunciations 
in their original Latin.  I have also added brief lists of the equivalences between the 
authors’ enunciations.  
 

Table 7: The Postulates and Axioms of Book One (Latin) 
	

Commandino’s Postulates 
1.Postuletur a quovis puncto 
ad quodvis punctum rectam 
lineam ducere. 
 
 
2.Rectam lineam terminatam 
in continuum, & directum 
producere. 
 
3.Quovis centro, & interuallo 
circulum describere. 
 
 
4. Omnes angulos rectos inter 
se aequales esse. 
 
5.Et si in duas  lineas recta 
linea incidens interiores & ex 
eadem parte angulos duobus 
rectis minores fecerit, rectas 
lineas illas in infinitum 
productas, inter se convenire 
ex ea parte in qua sunt anguli 
duobus rectis minores. 
 
 
 
 
 
 

Billingsley’s Postulates 
1. From any point to any point, 
to draw a right line. 
 
 
 
2. To produce a right line finite, 
straight forth continually. 
 
 
3. Upon any centre and at any 
distance, to describe a circle. 
 
 
4. All right angles are equall the 
one to the other. 
 
5. When a right line falling 
upon two right lines, doth make 
on one and the selfe same syde, 
the two inwarde angles less 
then two right angles, then shall 
the two right lines beying 
produced in length concurre on 
that part, in which are the two 
angles lesse then two right 
angles. 
 
6. That two right lines include 
not a superficies. 

Clavius’s Postulates 
1. Postuletur, ut a quovis 
puncto in quodvis punctum, 
rectam lineam ducere 
concedatur. 
 
2. Et rectam lienam 
terminatam in continuum 
recta producere. 
 
3. Item quovis centro, & 
interuallo circulum 
describere. 
 
4. Item quacunque 
magnitudine data, sumi posse 
aliam magnitudinem vel 
maiorem, vel minorem. 
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Table 7: The Postulates and Axioms of Book One (Latin), continued 

Commandino’s Axioms 
 
1. Quae eidem aeqaulia, et 
inter se sunt aequalia. 
 
 
2.Et si aequalibus aequalia 
adijciantur tota  sunt 
aequalia. 
 
3. Et si ab aequalibus aequlia 
auferantur, reliqua sunt 
aequlia. 
 
 
4. Et si inaequalibus aequalia 
adijciantur, tota sunt 
inaequlia. 
 
 
5. Et si ab inaequalibus 
aequalia auferantur, reliqua 
sunt inaequalia. 
 
6. Et quae eiusdem dupla, 
inter se sunt aequalia. 
 
 
7. Et quae eiusdem dimidia 
inter se sunt aequalia. 
 
 
8. Et quae sibi ipsis 
congruint, inter se sunt 
aequlia. 
 
 
9. Totum est sua parte maius. 
 
10. Duae rectae lineae 
spacium non comprehendunt.	

Billingsley’s Axioms 
 
1. Thinges equall to one and 
the selfe same thyng: are equal 
also the one to the other.  
 
2. And if ye adde equall 
thinges to equall things: the 
whole shalbe equall. 
 
3. And if from equall thinges, 
ye take away equall thinges: 
the things remayning shall be 
equall. 
 
4. And if from unequall 
thinges ye take away equall 
thinges: the thynges which 
remayne shall be unequall. 
 
5. And if to unequall thinges 
ye adde equall thinges: the 
whole shall be unequal. 
 
6. Thinges which are double to 
one and the selfe same thing: 
are equall the one to the other. 
 
7. Thinges which are the halfe 
of one and the selfe same 
thing are equal the one to the 
other. 
 
8. Thinges which agree 
together; are equall the one to 
the other. 
 
9.Every whole is greater then 
his part.	

Clavius’s Axioms  
 

1.  Quae eidem aequalia, & 
inter se sunt aequalia. 
 
 
2. Et si aequalibus aequalia 
adiecta sint, tota sunt aequalia. 
 
 
3. Et si ab aequalibus abalata 
sint, quae reliquuntur, sunt 
aequalia. 
 
 
4. Et si inaequalibus aequalia 
adiecta sint, tota sunt 
inaequalia. 
 
 
5. Et si ab inaequalibus 
aequalia ablta, reliqua sunt 
inaequalia. 
 
 
6. Et quae eiusdem duplicia 
sunt, inter se sunt aequalia. 
 
 
7. Et quae eiusdem sunt 
dimidia, inter se aequalia sunt. 
 
 
8. Et quae sibi mutuo 
congruunt, ea inter se sunt 
aequalia. 
 
9. Et totum sua parte maius 
est. 
 
10. Item, omnes angule recti 
sunt inter se aequales. 
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Table 7: The Postulates and Axioms of Book One (Latin), continued 

	 	 Clavius’s Axioms, Cont.  
 
11. Et si in duas rectas lineas altera 
recta incidens, internos ad 
easdemque partes angulos duobus 
rectis minores faciat, duae illae 
rectae lineae in infinitum productae 
sibi mutuo incident ad eas partes, 
ubi sunt anguli duobus rectis 
minores. 
 
12. Duae rectae lineae spatium non 
comprehendunt. 
 
13. Duae lineae rectae non habent 
unum & idem segmentum 
commune. 
 
14. Si aequalibus inaequalia 
adijciantur, erit totorum excessus, 
adiunctorum excessui aequalis. 
 
15. Si inaequlibus aequalia 
adiungantur, erit totorum excessus, 
excessus eorum, quae a principio 
errant, aequalis. 
 
16. Si ab aequalibus inaequalia 
demantur, erit residuorum 
excessus, excessui ablatorum 
aequalis. 
 
17. Si ab inaequalibus aequalia 
demantur, erit residuorum 
excessus, exessui totorum aequalis. 
 
18.  Omne totum aequale est 
omnibus suis partibus simul 
sumptis. 
 
19. Si totum totius est duplum, & 
ablatum ablati; erit & reliquum 
reliqui duplum.	
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Equivalencies between postulates and axioms in Book One:  

• Postulates 1, 2, and 3 are the same in all three texts.   

• Commandino and Billingsley also share postulates 4 and 5.  These are, 

respectively, the tenth and eleventh axioms in Clavius’s text.   

• Clavius’s fourth postulate is unique to his text. 

• The first nine axioms in all three texts are equivalent.  

• Commandino’s tenth axiom can be found in Billingsley’s sixth postulate and 

Clavius’s twelfth axiom. 

• The remaining axioms found in Clavius included are unique to his text.  
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Table 8: The Postulates and Axioms of Book Seven (Latin) 

 Billingsley Clavius Commandino 
Postulate 1  Postuletur, cuilibet 

numero quotlibet posse 
sumi aequlaes ,vel 
multiplices.  

Cuilibet numero quotlibet 
sumi posse aequales, vel 
multiplices. 

Postulate 2  Quolibet numero sumi 
posse maiorem.  

Quolibet numero sumi 
posse maiorem.  

Postulate 3   Numerus infinite augetur, 
sed non infinite diminuitur.  

Axiom 1 The lesse part is that 
which hath the greater 
denomination: and the 
greater part is that, 
which hath the lesse 
denomination. 

Qui numeri aequalium 
numerorum, vel eiusdem 
aeque multiplices sunt, 
inter se sunt aequales.   

Quicumque eiusdem, vel 
aequalium 
aequemultiplices fuerint, & 
ipsi inter se sunt aequales.  

Axiom 2 Whatsoever numbers 
are equemultiplices to 
one & the selfe same 
number, or to equall 
numbers, are also 
equall the one to the 
other.  

Quorum idem numerus 
aeque multiplex est, vel 
aeque multiplices sunt 
aequales, inter se 
aequales sunt.   

Quorum idem numerus 
aeque multiplex fuerit, vel 
quorum aeque multiplices 
fuerint aequales, & ipsi 
inter se aequales sunt.  

Axiom 3 Those numbers to 
whome one and the 
selfe same number is 
equimultiplex, or 
whose euqemultiplices 
are equall: are also 
equall the on to the 
other.  

Qui numeri aequalium 
numerorum, vel 
eiusdem, eadem pars, vel 
eaedem partes fuerint, 
aequales inter se sunt.  

Quicumque eiusdem 
numeri, vel aequalium 
eadem pars, vel eadem 
partes fuerint, & ipsi inter 
se sunt aequales. 

Axiom 4 If a number measure 
the whole, and a part 
taken away: it shall 
also measure the 
residue. 

Quorum idem numerus, 
vel aequales eadem pars, 
vel eaedem partes 
fuerint, aequales inter se 
sunt.  

Quorum idem, vel aequales 
numeri eadem pars, vel 
aedem partes fuerint, inter 
se sunt aequales.  

Axiom 5 If a number measure 
any number: it also 
measureth every 
number that the sayd 
number measureth. 

Unitas omnem numerum 
per unitates quae in ipso 
sunt hoc est, per 
ipsummet numerum 
metitur.    

Omnis numeri pars est 
unitas ab eo denominata, 
binarii enim numeri unitas 
pars est ab ipso binario 
denominata, quae dimidia 
dicitur, ternarii vero unitas 
est pars, quae a ternario 
denominata tertia dicitur, 
quaternarii quarta, & ita in 
aliis. 

Axiom 6 If a number measure 
two numbers, it shall 
also measure any 
number composed of 
them. 

Omnis numerus se ipsum 
metitur per unitatem.   

Unitas omnem numerum 
metitur per unitates, quae 
in ipso sunt.   
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Table 8: The Postulates and Axioms of Book Seven (Latin), continued 

 Billingsley Clavius Commandino 
Axiom 7 - If in numbers there 

be proportions how 
manysoever equall 
or the selfe same to 
one proportion: they 
shall also be equall 
or the selfe same the 
one to the other. 

Si numerus numerum 
multiplicans, aliquem 
produxerit, metietur 
multiplicans productum 
per multipicatum, 
multiplcatus autem 
eundem per 
multiplicantem. 

Omnis numerus se 
ipsum metitur. 

Axiom 8  Si numerus numerum 
metiatur, & ille, per 
quem metitur, eundem 
metietur per eas, quae 
in metiente sunt, 
unitates, hoc est, per 
ipsum numerum 
metientem.  

Si numerus metiatur 
numerum, & ille, per 
quem metitur, 
eundem metietur per 
eas, quae sunt in 
metiente unitates.   

Axiom 9  Si numerus numerum 
metiens, multiplicet 
eum per quem metitur, 
vel ab eo multiplicetur, 
illum quem metitur, 
producet.  

Quicumque numerus 
alium metitur, 
multiplicans eum, vel 
multiplicatus ab eo, 
per quem metitur, 
illum ipsum producit.  

Axiom 10  Numerus quotcunque 
numeros metiens, 
compositum quoque ex 
ipsis metitur.   

Si numerus numerum 
alium multiplicans 
aliquem produxerit, 
multiplicans quidem 
productum metitur 
per unitates, quae 
sunt in multiplicato; 
multiplicatus vero 
metitur eundem per 
unitates, quae sunt in 
multiplicante.  

Axiom 11  Numerus quemcunque 
numerum metiens, 
metitur quoque omnem 
numerum, quem ille 
metitur.   

Quicumque numerus 
metitur duos, vel 
plures, metietur 
quoque eum, qui ex 
illis componitur.  

Axiom 12  Numerus metiens totum 
& ablatum, metitur & 
reliquum.  

Quicumque numerus 
metitur aliquem, 
metietur quoque eum, 
quem mille ipse 
metitur.  

Axiom 13   Quicumque numerus 
metitur totum & 
ablatum etiam 
reliquum metietur.  
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Equivalencies between postulates and axioms in Book Seven:  

• Clavius and Commandino share the first two postulates.  The third is unique to 

Commandino’s text. 

• Clavius and Commandino’s first four axioms are equivalent to each other.  Of 

those, the first axiom in Clavius’s and Commandino’s texts are the same as the 

second in Billingsley’s.  

• Likewise, the second axiom in the Latin texts is Billingsley’s third axiom.   

• Billingsley does not include the third and fourth axioms from the Latin texts.  

• Commandino’s fifth axiom is related to Billingsley’s first.   Both are 

explanations of denomination, but they are not quite the same in that 

Commandino focuses on creating the denominations by dividing unity, and 

Billingsley merely establishes the relative sizes between denominative 

numbers (i.e. His axiom spells out that larger denominators create smaller 

numbers, e.g.  a third is less than a half because three is greater than two.)  

Clavius included no such axiom. 

• Clavius’s fifth axiom is equivalent to Commandino’s sixth.  Their respective 

sixth and seventh axioms likewise cover the same principle, although only 

Clavius stated that it is by unity that each number measures itself.   Billingsley 

included no such axioms. 
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• Billingsley does not include equivalents for the next three axioms in the Latin 

texts either.  Of those axioms, Clavius’s seventh is equivalent to 

Commandino’s tenth.  The eighth and ninth axioms in each text are equivalent.  

• Clavius’s tenth, eleventh, and twelfth axiom are equivalent to Commandino’s 

eleventh, twelfth, and thirteenth, respectively.  And they are equivalent to 

Billingsley’s sixth, fifth and seventh, respectively.  
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Appendix	C		
Clavius’s	Demonstrations	for	the	
Propositions	Discussed	
 
 
Book One, Problem 1/Proposition 1 
	

On a given bounded straight line to 

create an equilateral triangle. 

Let there be, then, a straight 

line bounded by AB on which we are 

instructed to create an equilateral 

triangle.  On center A and with an 

interval of the straight line AB, let 

there be drawn circle CBD.  Likewise, 

on center B and with an interval of the 

same line BA, let there be described 

another circle, CAD (Postulate 3), 

cutting the first in points C and D.  

From either of these points, for 

example from C, let there be drawn 

two straight lines, CA and CB, to 

points A and B (Postulate 1).  

Super data recta linea terminata 

triangulum Aequilaterum 

constituere.   

Sit igitur proposita recta linea 

terminata AB, super quam constituere 

iubemur triangulum aequilaterum.  

Centro A, & intervallo rectae AB, 

describatur circulus CBD: Item centro 

B, & intervallo eiusdem rectae BA, 

alius circulus describatur CAD (3. 

pet.), secans priorem in punctis C, & 

D.  Ex quorum utrovis, nempe ex C, 

ducantur duae rectae lineae CA, CB, ad 

puncta A, & B (1. pet.);  
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And there will be constructed on the 

straight line AB the triangle ABC, that 

is a straight-lined figure contained in 

three straight lines (Definition 20). I 

say that this triangle so constructed is 

necessarily equilateral.  Since the 

straight lines AB and AC are drawn 

from the center A to the circumference 

of circle CBD, the straight line AC will 

be equal to the straight line AB.  In 

turn, because the straight lines BC and 

BA are drawn from the center B to the 

circumference of circle CAD, straight 

line BC will be equal to straight line 

BA (Definition 15).  So, therefore, AC, 

like BC is equal to the straight line AB 

(Axiom 1).  Therefore, AC and BC are 

equal to each other, and, thus, triangle 

ABC will be equilateral.  Therefore, on 

the given bounded straight line, etc.  

Which was required to be done.   

Eritque super rectam AB, constitutum 

triangulum ABC, hoc est, figura 

rectilinear contenta tribus rectis lineis 

(20. def.).  Dico, hoc triangulum ita 

constructum necessario esse 

aequilaterum.  Quoniam rectae AB, 

AC, ducuntur ex centro A, ad 

circumferentiam circuli CBD, erit reca 

AC, rectae AB, aequalis: Rursus quia 

rectae BC, BA, ducuntur ex centro B, 

ad circunferentiam circuli CAD, erit 

recta BC, rectae BA, aequalis (15. 

def.).  Tam igitur AC, quam BC, 

aequalis est rectae AB.  Quare & AC, 

BC, inter se aequales erunt (1. pron.), 

atque idcirco triangulum ABC, erit 

aequilaterum.  Super data ergo recta 

linea terminate, etc.  Quod faciendum 

erat.   
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Figure 46: Book One, Problem 1/Proposition 1
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Figure 46: Book One, Problem 1/Proposition 1 (continued) 
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Book One, Problem 2/Proposition 2 
 
Note in my discussion of this proof (Chapter 5) I used Billingsley’s diagram as the 
foundation for my discussion because he included a diagram for all four cases.  
Clavius’s labels are a little different and the order of the proof is also changed.  His 
changes ensure that the desired line, in his text, AG, is the last line drawn.   
 

On a given point, to draw a straight 

line equal to a given straight line.   

Let there be a given point A 

and a given straight line BC, equal to 

which another straight line is required 

on be drawn on point A. With either 

extreme of line BC, for example C, 

made the center, describe a circle BC 

on the interval of straight line BC 

(Postulate 3.).  And from A to the 

center C draw the straight line AC 

(Postulate 1), (unless the point A was 

on the straight line BC: indeed, then 

from the drawn line AC is selected, as 

the second figure indicates.). 

Ad datum punctum, datae rectae 

lineae aequalem rectam lineam 

ponere.  

 

Sit punctum datum A, & data recta 

linea BC; cui aliam rectam aequalem 

ponere oportet ad punctum A.  Facto 

alterutro extremo lineae BC, nempe C, 

centro describatur circulus BE, 

intervallo rectae BC (3 pet.).  Et ex A, 

ad centrum C, recta ducatur AC (1 

pet.); nisi punctum A, intra rectam BC, 

fuerit: Tunc enim pro linea ducta 

sumetur AC, ut secunda figura indicat.)  
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On the straight line AC, the equilateral 

triangle ACD is constructed, turned 

either above or below,   as is pleasing 

(I.1).  The two sides of the triangle 

which were just created, DA and DC, 

are extended in the directions of AC.  

DC, which is opposite the given point 

A is extended to the circumference in 

E.  DA, which is opposite the center C, 

is extended however far to point F 

(Postulate 2).  Then with center D and 

an interval of the straight line DE, 

crossing over the center C, describe 

another circle EG, cutting straight line 

DF in G (Postulate 3).  I say that 

straight line AG, which is set on the 

given point A, is equal to the given line 

BC.  Since DE, DG are led from the 

center D to the circumference EG, they 

are equal to each other (Definition 15).

Super recta vero AC, construatur 

triangulum aequilaterum ACD (1 

primi.), sursum, aut deorsum versus, ut 

libuerit; cuius duo latera modo 

consituta DA, DC, versus rectam AC, 

extendantur; DC, quidem opposita 

puncto dato A, usque ad 

circunferentiam in E; DA, vero 

opposita centro C, quantumlibet in F (2 

pet.). Deinde e centro D, intervallo 

vero rectae DE, per C, centrum 

transeuntis, alter circulus describatur 

EG, secans rectam DF in G (3 pet.).  

Dico rectam AG, quae posita est ad 

punctum datum A, aequalem esse datae 

rectae BC.  Quoniam DE, DG, ductae 

sunt ex centro D, ad circunferentiam 

EG, ipsae inter se aequales erunt (15 

def.).
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Therefore, taking away DA and DC, as 

equal sides of the equilateral triangle 

ACD, there will remain AG equal to 

the straight line CE (Axiom 3).  But, 

the same CE is equal to straight line 

BC (since both straight lines CB and 

CE fall from the center C to the 

circumference BE (Definition 15).)  

Therefore, since the straight lines AG 

and BC are each shown to be equal to 

CE, they are equal to each other 

(Axiom 1).  Thus, on a given point, etc. 

which was required to be done. 

But if the given point was on 

the extreme of the given line, if it is C, 

it is easy to sum up the problem.  If 

then on center C and interval CB, a 

circle is described (Postulate 3) to 

whose circumference any straight line 

whatever, like CE, is drawn

Ablatis igitur DA, DC, aequalibus 

lateribus trianguli aequilateri ACD, 

remanebit AG, aequalis rectae CE (3 

pron.).  Sed eidem CE, aequalis est 

recta BC.  (cum ambae rectae CB, CE, 

cadant e centro C, ad circunferentiam 

BE (15 def.).)  Igitur rectae AG, & BC, 

quandoquidem utraque aequalis est 

ostensa rectae CE (1 pron.), inter se 

aequales erunt.  Ad datum igitur 

punctum, etc.  Quod erat faciendum.  

 

  

 Quod, si punctum datum fuerit 

in extremo date lineae, quale est C, 

facile absoluetur problema.  Si enim 

centro C, et intervallo CB, describatur 

circulus (3 pet.), ad cuius 

circunferentiam recta ducatur 

utcumque CE (1 pet.),
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(Postulate 1), this is a line placed on 

the given point C equal to the given 

line BC, since both BC and CE from 

the same center are led out to the 

circumference BE (Definition 15). 

erit haec posita ad punctum datum C, 

aequalis datae rectae BC, cum utraque 

& BC, & CE ex eodem centro 

egrediatur ad circunferentiam BE (15 

def.).   
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Figure 47: Book One Problem 2/Proposition 2 
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Figure 47: Book One Problem 2/Proposition 2 (continued) 
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Book One, Theorem 33/Proposition 47:  
The Pythagorean Theorem 
 
 

In a right triangle, the square which 

is described on the side that subtends 

the right angle, is equal to those 

described on the sides which contain 

the right angle.   

In triangle ABC, let angle BAC 

be right, and let the squares ABFG, 

ACHI, and BCDE, be described on 

AB, AC, and BC (I.46).  I say that the 

square BCDE described on side BC, 

which opposes the right angle, is equal 

to the two squares ABFG and ACHI 

which are described on the other two 

sides, whether those two sides are 

equal or unequal.  Then draw straight 

line AK parallel to BE or CD, cutting 

BC in I (I.11).  And let AD, AE, CF, 

and BH be joined by straight lines.

In rectangulis triangulis, quadratum, 

quod a latere rectum angulum 

subtendente describitur, aequale est 

eis, quae a lateribus rectum angulum 

contientibus.   

In triangulo ABC, angulus 

BAC, sit rectus, describanturque super 

AB, AC, BC, quadrata ABFG, ACHI, 

BCDE (46 primi): Dico quadratum 

BCDE, descriptum super latus BC, quo 

angulo recto opponit, aequale esse 

duobus quadratis ABFG, ACHI, quae 

super alia duo latera sunt descripta, 

sive haec duo latera aequalia sint, sive 

inaequalia. Ducatur enim recta AK, 

parallela ipsi BE, vel ipsi CD, secans 

BC in L (11 primi).  & iungantur rectae 

AD, AE, CF, BH.
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 And since the two angles BAC and 

BAG are right, the straight lines GA 

and AC are one straight line.  And in 

the same way, IA and AB are one 

straight line (I.4).  In turn because 

angles ABF and CBE are equal, 

because they are right.  If the common 

angle ABC is added to them, the total 

angle CBF is equal to the total angle 

ABE; and similarly the total angle 

BCH is equal to the total angle ACD 

(Axiom 2).  Therefore the sides AB 

and BE, of triangle ABE, are equal to 

the respective sides of FBC, as comes 

about from the definition of a square.  

Moreover, the angles ABE and FBC 

are contained by the equal sides, so, as 

we have shown, the triangles ABE and 

FBC are equal (I.4).  Furthermore, the 

square, or parallelogram, ABFG is 

double to the triangle FBC because

Et quia du angulis BAC & BAG, sunt 

recti, erunt rectae GA, AC, una linea 

recta; eodemque modo IA, AB, una 

recta linea erunt (4 primi).  Rursus quia 

anguli ABF, CBE, sunt aequales, cum 

sint recti, si addatur communis angulus 

ABC, fiet totus angulus CBF, toti 

angulo ABE, aequalis; similterque 

totus angulus BCH, toti angulo ACD (2 

pron.).   Quoniam igitur latera AB, BE, 

trianguli ABE, aequalia sunt lateribus 

FB, BC, triangul FBC, utrumque 

utrique, ut confiat ex definitione 

quadrati.  Sunt autem & anguli ABE, 

FBC, contenti hisce lateribus aequales, 

ut ostendimus (4 primi); Eurnt 

triangula ABE, FBC aequalia.  Est 

autem quadratum, seu parallelogramum 

ABFG duplum trianguli FBC, 
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 they are between parallels BF and CG 

and built on the same base BF (I.41).  

And parallelogram BEKL is double to 

triangle ABE, because they are 

between parallel lines BE and AK and 

on the same base, BE.  Therefore the 

square ABFG and the parallelogram 

BEKL are equal (Axiom 6).  By the 

same reason it can be shown that 

square ACHI and parallelogram CDKL 

are equal to each other.  They are so 

because triangle ACD and HCB are 

equal.  By that reason, one may see that 

the parallelogram CDKL and the 

square ACHI are double those 

triangles.  Therefore, the total square 

BCDE, which is composed of the two 

parallelograms BEKL, CDKL, is equal 

to the two squares ABFG and ACHI.  

Thus, in a right triangle, the square etc.  

Which was to be demonstrated. 

cum sint inter parallelas BF, CG & 

super eandem basin BF(41 primi) ; Et 

parallelogrammum BEKL, duplum 

trianguli ABE, quod sint inter 

parallelas BE, AK, & super eandem 

basin BE.  Quare aequalia erunt 

quadratum ABFG, & 

parallelogrammum BEKL (6 pron.), 

Eadem ratione ostendetur, aequalia 

esse quadratum ACHI, & 

parallelogrammum CDKL.  Erunt enim 

rursus triangula ACD, HCB, aequalia, 

ideoque eorum dupla, 

parallelogrammum videlicet CDKL, & 

quadratum ACHI.  Quamobrem totum 

quadratum BCDE, quod componitur ex 

duobus parallelogrammis BEKL, 

CDKL, aequale est duobus quadratis 

ABFG, ACHI.  In rectangulis ero 

triangulis, quadratum &c. Quod 

demonstrandum erat. 
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Figure 48: Book One Theorem 33/Propostion 47: The Pythagorean Theorem 
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Figure 48: Book One Theorem 33/Propostion 47 (continued) 
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Book Two, Theorem 1/Proposition 1  

	

If there are two straight lines, either 

of which is cut into however so many 

segments: The rectangle included by 

the two straight lines is equal to 

those rectangles which are included 

by the uncut line and every one of 

the segments. 

 

Let there be two straight lines, A and 

BC, of which BC is cut into however 

so many pieces BD, DE, EC: I say that 

the rectangle contained under A and 

BC is equal to all of the rectangles 

which are contained under the uncut 

line A and all of the segments, in this 

example, the rectangles contained 

under A and BD, A and DE, and A and 

EC.

Si fuerint duae rectae lineae, 

seceturque ipsarum altera in 

quotcunque segmenta: Rectangulum 

coprehensum sub illis duabus rectis 

lineis, aequale est eis, quae sub 

insecta, & quolibet segmentorum 

comprehenduntur, rectangulis.  

 

Sint duae rectae A, & BC quarum BC, 

sectetur quomodocunque in quotlibet 

segmenta BD, DE, EC: Dico 

rectangulum sub A, & BC, 

comprehensum aequale esse omnibus 

rectangulis simul sumptis quae sub 

linea indivisa A, & quolibet segment 

comprenduntur, nempe rectangulo sub 

A, & BD; Item sub A, & DE; Item sub 

A, & EC comprehnso. 
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For the rectangle BF is contained under 

lines A and BC, that is since the 

straight line GB is equal to the straight 

line A; for let two perpendiculars, BG 

and CF, equal to the straight line A be 

drawn to FG (I.23).  Then from D and 

E let straight lines DH, EI be drawn 

parallel to the same BG or CF.  Then 

DH and EI because they are parallel to 

BG are parallel to each other.  In turn, 

the same lines, because by construction 

they made parallelograms BH and BI, 

are equal to the line BG, and thus to the 

line A (I.34).  Therefore, seeing that 

the straight line BG is equal to the 

straight line A, the rectangle BH is 

contained under the uncut line A and 

the segment BD.  

Rectangulum enim BF, 

comprehendatur sub A, & BC, hoc est, 

recta GB, aequalis sit rectae A; Quod 

quidem fiet, si erigantur ad BC, duae 

perpendiculares BG, CF, aequales 

rectae A, ducatrque recta FG (23 

primi).  Deinde ex D, & E, ducantur 

rectae DH, EI, parallelae ipsi BG, vel 

CF.  Itaque DH, EI, cum parallelae sint 

ipsi BG inter se quoque parallelae 

erunt: Rursus eaedem, cum ex 

constructione parallelogramma sint 

BH, BI, aequales erunt rectae BG, ac 

propterea rectae A (34 primi).  

Quoniam igitur recta BG, aequalis est 

rectae A, erit rectangulum BH, 

comprehensum sub insecta linea A, & 

segmento BD; 
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By the same reason the rectangle DI is 

contained under A and the segment 

DE.  Likewise, the rectangle EF under 

A and the segment EC.  Thus, because 

the rectangles BH, DI, EF, are equal to 

the total rectangle BF, it is obvious that 

the rectangle contained under A and 

BC is equal to all of the rectangles 

which are contained under A and the 

segments BD, DE, and EC.  Therefore, 

if there are two lines, either one of 

which is cut etc.  Which was to be 

shown. 

Eadem ratione erit rectangulum DI, 

comprehensum sub A, & segmento 

DE; Item rectangulum EF sub A, & 

segmento EC.  Quare cum rectangula 

BH, DI, EF, aequalia sint toti 

rectangulo BF; perspicuum est 

rectangulum comprehensum sub A et 

BC, aequale esse rectangulis omnibus, 

quae sub A, et segmentis BD, DE, EC 

comprehenduntur.  Si ergo fuerint duae 

rectae lineae, seceturque ipsarum 

altera, &c.  Quod erat ostendendum.   
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Figure 49: Book Two Theorem 1/Proposition 1	
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Figure 49: Book Two Theorem 1/Proposition 1 (continued) 
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Barlaam’s Version of Book Two, Proposition 1  

(Found in Book Nine) 

 
	

If there are two numbers, and one or 

the other is cut into however so 

many parts, the plane number 

contained by those two numbers is 

equal to the numbers which are 

contained under the undivided 

number and however many parts of 

the divided number. 

 

Let there be two numbers, AB and C, 

of which AB is divided into AD, DE, 

and EB.  And make F from C in AB.   

Likewise make GH from C in AD, and 

HI from C in DE and IK from C in EB.  

I say that F is equal to the numbers 

GH, HI, IK, that is the total number 

GK composed from GH, HI, IK.  

Si fuerint duo numeri, seceturque 

ipsorum alter in quotcunque partes: 

Numerus planus comprehensus sub 

illis duobus numeris aequalis est 

numeris, qui sub numero indiviso, & 

qualibet parte numeri divisi 

continentur. 

 

Sint duo numeri AB, & C, 

quorum AB, dividatur in AD, DE, EB; 

Fiatque F, ex C, in AB: Item GH, ex C 

in AD; & HI, ex C, in DE; & IK, ex C, 

in EB.  Dico F aequalem esse numerus 

GH, HI, IK, hoc est, toti numero GK, 

ex GH, HI, IK, composito. 
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Since C multiplied by AB makes F, 

that same F is measured by AB by C.  

That is, AB is a factor of F by the 

denomination of C.  By the same 

reason AD, is the likewise a factor of 

GH by the denomination of C, and DE 

likewise of HI, and EB likewise of IK, 

truly like AB is of F (Axiom 7 – Book 

7).  And hence,from this, as we 

demonstrated in the poporition 5 of 

book 7, the whole of AB is in the same 

way a factor of the whole of GK, as 

AD is of GH.   And AB is a factor of 

GK by the same number which AB is 

of F.  And, thus, F and GK are equal to 

one another (Axiom 4 – Book 7).  

Which was proposed.

Quoniam C, multipilcans AB, fecit F; 

metietur AB ipsum F, per C, hoc est, 

AB, pars erit ipsius F, denominata a C.  

Eadem ratione AD, ipsius GH; nec non 

DE ipsius HIl & EB ipsius IK, pars erit 

a C, denominata, nempe eadem quae 

AB, ipsius F (pron. 7).  Quia vero, per 

ea quae ad propos. 5. lib: 7. 

demonstravimus, totus AB, totius GK, 

eadem pars est, quae Ad, ipsius GH, 

erit quoque AB totus totius GK< pars 

eadem, quae AB ipsius F; Ac proinde 

inter se aequales erunt F, & GK (4 

pron.).  Quod est propositum. 
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Figure 50: Barlaam’s Version of Book Two Proposition 1 (Found in Book Nine)
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Figure 50: Barlaam’s Version of Book Two Proposition 1 (continued)	
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Book Nine, Proposition 15 

 

If there are three numbers in 

continuous proportion, and they are 

the smallest numbers which have the 

same ratio between them, the 

number composed of any two, will be 

prime to the remaining number. 

 

Let there be three numbers - A, B, C – 

which are the smallest numbers that 

have the same proportion between 

them.  I say that the combination of 

any two numbers is prime to the 

remaining number, indeed A and B 

together are prime to C, and B and C 

together to A, and A and C together to 

B.  For having taken D and E be the 

smallest number in the same 

proportion, from the scholion to 

proposition 35 in book 7 

Si tres numeri deinceps 

proportionales, fuerint minimi 

omnium eandem cum ipsis rationem 

habentium; Duo quilibet compositi, 

ad reliquum primi erunt. 

 

 

Sint tres numeri A, B, C, minimi 

omnium eandem cum illis 

proportionem habentium.  Dico 

quoslibet duos compositos, ad 

reliquum primos esse nimirum AB, 

simul ad C, & BC, simul ad A, et AC, 

simul ad B. Sumptis enim dubus D, E, 

in eadem cum illis proportione 

minimis, ex scholio propos. 35. lib. 7.  
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it is manifest from the demonstration of 

proposition two in book 8, D 

multiplied by itself produces A, D 

multiplied with E produces B, and E 

multiplied with itself produces C.  And 

since D and E are the smallest numbers 

in that proportion they are prime to 

each other (VII.24), and D and E 

together is prime to either of them 

(VII.30).   Wherefore, because the 

number composed of D and E is prime 

to D and E themselves, together with 

the number made of D itself is prime to 

the number made from E itself 

(VII.26),.  Moreover, that which is 

made from D and E, together with the 

one from D is – by the third theorem of 

the preceding scholion – the number A, 

made from D into self, and the number 

B made from D into E.

manifestum est ex demonstration 

propos. 2 lib. 8.  D, seipusm 

multiplicantem facere A; 

multiplcantem vero ipsum E, facere B; 

atque E, se ipsum multiplicantem 

facere C.  Quia igitur D, E, minimi in 

sua proportione inter se primi sunt (24 

septimi), erit & uterque D, E, simul ad 

quemlibet illorum primus (30 septimi).  

Itaque cum tam compositus ex D, E, 

quam ipse D, ad E, primus sit; erit 

quoque numerus factus ex D, E (26 

septimi), tanquam uno in D; ad eundem 

E, primus: Qui autem fit ex D, E, 

tanquam uno in D, aequalis est per 3 

theorema scholii praecedentis, & 

numero A, facto ex D, in se, & numero 

B facto ex D, in E.   

445



Therefore, A and B composed together 

are prime to E; and thus, A and B taken 

together are prime to C which is made 

from E into itself (VII.27).   

Next, since, as above, the 

number composed from D and E is 

prime to either of D or E (VII.30) 

(because that which is composed of D 

and E, like that which is composed of 

E itself, is prime to D) the number 

made from D and E, is likewise to the 

number made from D and E together 

with the number made from E itself is 

prime to D (VII.26).  Moreover, the 

number made from D and E together 

with the number made from E is equal, 

by the third theorem of the preceding 

scholion, the number C made from E 

into itself and the number B made from 

D into E.  

Igitur & A, B, compositi primi sunt ad 

E; Ac proinde & ad C, qui factus est ex 

E in se, primi sunt A, B, simul 

compositi.   

Deinde quia, ut prius, uterque 

D, E, simul primus est ad quemlibet 

ipsorum D, E; efficitur  (30 septimi) 

(cum tam compositus ex D, E, quam 

ipse E, primus sit ad D,) numerum 

factum ex D, E, tanquam uno in E, 

primum esse ad D (26 septimi): Qui 

autem fit ex D, E; tanquam uno in E, 

aequalis est per 3. theorema scholii 

antecedentis, & numero C, facto ex E, 

in se, & numero B, facto ex D, in E.   
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Therefore, B and C composed together, 

are prime to D, and thus B and C 

composed together are prime to A, 

which is made from D into itself 

(VII.27). 

Finally, because, as before, the number 

composed from D and E is prime to 

either of D or E (VII.30); and indeed 

from the opposite which is that either 

of D or E is prime to the number 

composed of D and E (VII.26), the 

number made from D into E will be 

prime to the number composed of D 

and E(VII.27).  And, then likewise, that 

which is made from D into E will be 

prime to that which is made from D 

and E, as one number, into itself.  

Igitur & B, C, simul compositi, ad D, 

primi sunt; atque adeo ad ipsum A, qui 

factus est ex D, in se primi sunt B, &  

C, simul compositi (27 septimi). 

Postremo quia, ut prius, uterque 

D, & E, simul ad quemlibet ipsorum 

primus est (30 septimi); atque adeo e 

contrario, quilibet ipsorum D, E, 

primus est ad compositum ex D, E (26 

septimi); erit quoque qui fit ex D, in E, 

ad compositum ex D, E, primus (27 

septimi); Ac proinde & idem qui fit ex 

D, in E, ad eum qui fit ex D, E, 

tanquam uno, in se, primus erit.   
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Moreover, that number which is made 

from D and E, as one number, into 

itself is equal, by the fourth theorem of 

the preceding scholion, to those which 

are made from D and E into themselves 

and that which is made from D into E 

twice.  Therefore, that which is made 

from D into E is prime to those which 

are made from D and E into themselves 

and D into E twice.  Since when two 

numbers taken together, truly 

composed of those, one of which is 

made from D and E into themselves 

and from that which is made from D 

into E and the other of which is made 

from D into E, are prime to either of 

those numbers, as to that which is 

made from D into E, as has been 

shown. 

Qui autem fit ex D, E, tanquam uno, in 

se, aequalis est per 4. theorema 

antecedentis scholii, eis qui fiunt ex D, 

& E in se ipsos, una cum eo qui ex D, 

in E, bis: Igitur & factus ex D, in E, 

primus erit ad eos, qui fiunt ex D, & E, 

in se ipsos & ex D in E bis.  Quoniam 

ergo duo numeri simul, nempe 

compositus ex iis, qui fiunt ex D, & E 

in se ipsos, & ex eo, qui fit ex D, in E, 

atque is qui fit ex D in E primi sunt ad 

aliquem ipsorum ut ad eum, qui fit ex 

D, in E, ut ostensum est; 
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Therefore there are those two numbers, 

evidently those which are composed of 

D and E into themselves and that 

composed of D into E, each of which is 

prime to that which is composed of D 

into E (VII. 30).  Again, there are two 

numbers together, that is  numbers 

composed from those which are made 

from D and E into themselves and D 

into E, which are each prime to each 

other and to that which is made from D 

into E, as has been shown.  Therefore, 

evidently the two numbers composed 

from those made from D and E into 

themselves and that made from D into 

E, are prime to each other.  Because D 

and E into themselves make A and C, 

and likewise D into E makes B, A and 

C taken together are prime to B.  By 

which, if three numbers in continual 

proportion, etc. Which was to be 

shown.  

Erunt etiam duo illi, nimirum 

compositus ex iis, qui fiunt ex D, & E, 

in se ipsos, & ex eo, qui fit ex D, in E; 

atque is, qui fit ex D, in E, inter se 

primi (30 septimi).  Rursus quia duo 

numeri simul, videlicet compositus ex 

iis, qui fiunt ex D, & E, in se ipsos, 

atque is qui fit ex D, in E, ad aliquem 

ipsorum, ut ad eum, qui fit ex D in E, 

primi sunt, ut ostensum est; erunt etiam 

duo illi nimirum compositus ex iis qui 

fiunt ex D, & E, in se ipsos atque is, 

qui fit ex D, in E, inter se primi.  Cum 

igitur ex D & E in se ipsos fiant A & C.  

Item ex D, in E, fiat B; erunt A, & C, 

simul compositi, primi ad B.  Quam ob 

rem, sit res numeri deiceps 

poropotionales, &c. Quod erat 

ostendendum.   
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Figure 51: Book Nine, Proposition 15 
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Figure 51: Book Nine, Proposition 15 (continued) 
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Figure 51: Book Nine, Proposition 15 (continued) 
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Book Ten, Theorem 93/Proposition 117 

 

It is proposed that we show the 

diameter of a square figure to be 

incommensurable with the length of 

its side.   

 

Let there be square ABCD, in which 

the diameter is AC.  I declare the 

diameter AC to be incommensurable to 

the length of the side AB.  For if it is 

not incommensurable, it will be 

commensurable to the length, and thus, 

AC and AB would have a proportion 

between them which is that of a 

number to a number (X.5).  Let AC 

have to AC the proportion like that of 

number EF to number G, and numbers 

EF and G are the least of all numbers 

which have that proportion (VI.20 and 

VIII. 11).  

Propositum sit nobis ostendere, in 

quadritis figuris diametrum lateri 

incommensurabilem esse 

longitudine. 

 

Sit quadratum ABCD, in quo 

diameter AC.  Dico diamterum AC, 

longitudine incommensurabilem esse 

lateri AB.  Si enim non est 

incommensruabilis, commensurabilis 

erit longitudine; ac propterea AC, AB, 

proportionem habebunt, quam numerus 

ad numerum (5 decimi).  Habeat AC, 

ad AB, proportionem, quam numerus 

EF, ad numerum G; sintque numeri EF, 

& G, minimi omnium eandem 

proportionem habentium. (20 sexti & 

11 octavi). 
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Therefore because AC is to AB as the 

number EF is to the number G, it will 

be that the square of AC is to the 

square of AB as the square of the 

number EF is to the square of the 

number G (VI.20 and VIII.8).  (For the 

squares have a proportion between 

them double that of their sides; 

moreover if the sides have equal 

proportions, the proportions of the 

squares are equal since they are the 

doubles of equals.)  But the square on 

AC is double to the square of AB, by 

that which we showed in the scholion 

to proposition 47 in Book 1.  

Therefore, the square of the number 

EF, will be double to the square of the 

number G.  And thus, because the 

square of the number EF has a half, 

and thus can be divided into two parts, 

it is even from the definition.  

Quoniam ergo est ut AC, ad AB, ita 

numerus EF, ad numerum G.  Erit 

quoque ut quadratum ex AC, ad 

quadratum ex AB, ita quadratus 

numerus ex EF ad quadratum numerum 

ex G.  (Cum enim quadrata habeant 

suorum laterum proportionem 

duplicatam latera autem aequales 

habeant proportiones; erunt 

proportiones quadratorum aequales 

etiam, eum sint aequalium duplicatem.)  

Sed quadratum ex AC, duplum est 

quadrati ex AB, per ea, quae in scholio 

propos. 47. lib. 1 ostendimus.  Igitur & 

quadratus numerus ex EF, duplus erit 

quadrati numeri ex G; Ac propterea 

quadratus numerus ex EF, cum 

dimidium habeat, atque adeo bisariam 

possit dividi, par erit, ex defin.   
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Therefore, EF itself and that which it 

produces are even.  (For if it were odd, 

when it multiplied itself to produce its 

square, it and the square would be odd, 

which is because an odd number 

multiplied by and odd number 

produces an odd number (IX.29)  

Which is absurd, so it is shown to be 

even.)   Indeed since EF and G are the 

smallest numbers in their proportion 

they are prime to each other, and since 

EF is shown to be even, G will be odd.  

(For if it were even, both EF and G 

would be measured by 2, and thus 

would not be prime to each other.  

Which is absurd.)  Now let E be 

divided in half at H.  Therefore the 

number EF is double of the number 

EH, and since squares have a 

proportion between them double to the 

proportion between the sides (VIII.11),

Igitur & ipse EF, illum producens par 

erit. (Si namque impar esset, cum se 

ipsum multiplicans producat suum 

quadratum, esset & quadratus ipse 

impar; eo quod impar imparem 

multiplicans imparem procreet (29 

noni).  Quod est absurdum.  Ostensus 

est enim par.)  Quia vero EF, & G in 

sua proportione minimi inter se primi 

sunt (24 septimi), & EF ostensus est 

par, erit G, impar.  (Si enim par etiam 

esset, metiretur utrunque EF, & G, 

binaries, atque adeo non essent inter se 

primi.  Quod est absurdum.)  Dividatur 

iam par numerus EF, bifariam in H.  

Quia igitur numerus EF, duplus est 

numeri EH; & quadrati haben 

proportionem laterum duplicatam (11 

octavi);

455



the square of EF is quadruple the 

square of EH. (For quadruple is the 

proportion double to the proportion 

duple, as is apparent in the number 4, 

2, 1.)  Thus since the square of EF is 

double the square of G and quadruple 

the square of EH, which condition is 

that if the area of the square of EF is 4, 

that of the square of G is 2 and that of 

the square of EH is 1.  The square of G 

is double the square of EH, as those are 

in the proportion of 2 to 1, and this, as 

we said above about the number EF, 

the square of G has a half, and thus it 

and G are even.  But G has been shown 

to be odd.  Which is absurd.  Thus, the 

diameter AC is not commensurable 

with the length of the side of the square 

AB.  Therefore, it is incommensurable 

with the length. 

 

erit quadratus ex EF, quadruplus 

quadrati ex EH. (Quadrupla enim 

proportio duplicata est proportionis 

duplae, ut in his numeris apparet, 4. 2. 

1.) Itaque cum quadratus ex EF, duplus 

sit quadrati ex G; & quadruplus 

quadrati ex EH; qualium partium 4 est 

quadratus ex EF, talium 2.  Erit 

quadratus ex G, & talium 1 quadratus 

ex EH.  Quadratus igitur ex G, duplus 

est quadrati ex EH, cum illius ad hunc 

proportion sit, quae 2 ad 1.  Ac proinde 

ut supra de numero EF, diximus, erit 

quadratus ex G, dimidium habens par, 

& ipse quoque G, par.  Sed & impar est 

ostensus.  Quod est absurdum.  Non 

ergo longitudine commensurabilis es 

diameter AC, lateri AB.  Igitur 

incommensurabilis longitudine.

456



ALTERNATIVELY.  If it can happen 

that the diameter AC is commensurable 

with the length of the side AB, and AC 

and AB have a proportion between 

them, like that between the numbers 

EF & G, which are the least numbers in 

that proportion and are, therefore, 

prime to each other.  Therefore, G is 

not unity.  (Because the square of AC 

is double to the square of AB, 

however, the square of AC is to the 

square of AB as the square of the 

number EF is the to square of the 

number G, as we said in the previous 

demonstration.  Likewise, the square of 

EF is double the square of G.  

Therefore, if G is unity, and, thus the 

square of it is unity, the square of EF 

will be 2.  Which is absurd.)  

Therefore, G is a number.   

ALITER.  Sit si potest fieri, diameter 

AC, commnsurabilis longitudine lateri 

AB, habeantque AC, AB, 

proportionem, quam numeri EF, &G, 

qui mnimi sint in sua proportione, 

atque adeo inter se primi.  Non erit 

igitur G, unitas.  (Cum enim quadratum 

ex AC, duplum sit quadrati ex AB; sit 

autem ut quadratum ex AC, ad 

quadratum ex AB, ita quadratum 

numerus ex EF, ad quadratum 

numerum ex G, ut in priori 

demonstratione diximus; erit quoque 

quadratus ex EF, duplus quadrati ex G.  

Si ergo G, est unitas, atque adeo & 

quadratus ex ea, unitas; erit quadratus 

ex EF, binarius.  Quod est absurdum.)  

ergo numerus.  
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And since, as has already been 

demonstrated, the square of EF is 

double to the square of G, the square of 

G measures the square of EF, and thus 

the side of G measures the side of EF 

(VIII.14).  And because G measures 

itself, the numbers EF and G are 

composite to one another.  But they are 

prime to one another.  Which is absurd.  

Therefore, the diameter AC is not 

commensurable to the length of the 

side AB.  Thus we have shown that in a 

square figure the diameter is 

incommensurable with the length of 

the side.  Which was to be 

demonstrated.

Et quia, ut iam est demonstratum, 

quadratus ex EF duplus est quadrati ex 

G, quadratum ex EF, ac propterea & G 

latus metietur latus EF.  Cum ergo & G 

se ipsum metiatur; erunt numeri EF, & 

G, inter se compositi, habentes 

mensuram communem, numerum G: 

Sed & inter se primi sunt. Quod est 

absurdum.  Non ergo commensurabilis 

est diameter AC, longitudine lateri AB.  

Quare ostendimus, in quadratis figuris 

diametrum lateri incommensurabilem 

esse longitudine.  Quod erat 

demonstrandum.   
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Figure 52: Book Ten, Theorem 93/Proposition 117	
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Figure 52: Book Ten, Theorem 93/Proposition 117 (continued) 
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Book Twelve, Problem 2/Proposition 17 
	

Two spheres around the same circle 

being given, to inscribe in the greater 

sphere a solid polyhedron such that 

it does not touch the surface of the 

smaller sphere.  

 

Let there be two spheres – ABCD and 

EFGH – around the same center, I, and 

it is required to inscribe in the larger 

ABCD a solid polyhedron, or multi-

sided figure, such that it does not touch 

the smaller sphere EFGH.  Let both 

spheres be cut in any plane through the 

center and the common sections of the 

plane and spheres make ABCD and 

EFGH which are circles, from the 

description of a sphere, having the 

same center as the spheres, I.  

Duabus sphaeris circa idem centrum 

existentibus, in maiori sphaera 

solidum polyedrum inscribere, quod 

non tangat minoris sphaerae 

superficiem. 

 

Sint duae sphaerae ABCD, 

EFGH, circa idem centrum I, 

oporteatque in maiori ABCD, 

inscribere solidum polyedrum, seu 

multilaterum, quod non  tangat 

minorem sphaeram EFGH.  Secentur 

ambae sphaerae plano aliquot per 

centrum, sintque communes sectiones 

factae in sphaeris plana ABCD, EFGH, 

quae circuli erunt, ex descriptione 

sphaerae, habentes idem centrum 

sphaerarum I.  
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For the semicircles, by whose circular 

revolution the spheres are described, 

when led around, fall on sections 

ABCD and EFH.  Therefore, those 

sections can be named circles.  Or 

truly, since all the straight lines falling 

from I to the edges of the sections are 

equal, because they are drawn from the 

center of a sphere to its surface, the 

same sections are circles from the 

definition of a circle.  Let there be 

drawn in these circles diameters AC 

and BD, cutting each other at right 

angles at the center I, so that there are 

quadrants, AB, BC, CD, DA, etc.  

Then in the greater circle ABCD, 

inscribe a polygon that does not touch 

the smaller circle EFGH (XII.16). 

Which indeed, so that the whole claim 

may be more easily demonstrated, is 

done in this manner.  

Nam semicirculi, ad quorum 

circumuloutionem sphaerae 

describuntur, circunducti congruent 

sectionibus ABCD, EFGH.  Quare 

dictae sectiones circuli erunt, Vel certe, 

quia omnes lineae rectae cadentes ex I, 

ad peripherias sectionum sunt aequales, 

cum ducantur ex centro sphaerarum ad 

earum superficiem, erunt ipsae 

sections, criculi, ex definitione circuli.  

Ducantur in his circulis diametri AC, 

BD, se se in centro I, secantes ad 

angulos rectos, ut sint quadrantes AB, 

BC, CD, DA etc.  Deinde in maiori 

circulo ABCD inscribatur polygonum 

non tangens minorem circulum EFGH 

(16 duodec.).   Quod quidem, ut 

facilius omnia demonstrentur in hunc 

modum efficiatur.    
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 From G to EG draw a perpendicular 

Gγ, just to the circumference of the 

circle ABCD which touches circle 

EFGH only in G, from the corollary to 

proposition sixteen in book 3.  And let 

the straight line Gγ connected to circle 

ABCD, be equal to the straight line Aε, 

and thus if the arc Cγ is understood to 

subtend the straight line that makes the 

triangle GCγ (IV.1), the side Cγ, is 

opposite the greatest angle, namely the 

right angle, and is greater than the side 

Gγ, which is opposite to a smaller 

angle (I.19), evidently an acute angle, 

and so straight line Cγ is greater than 

straight line Aε; and thus the arc Cγ 

will be greater than the arc Aε, as 

follows from the scholion to 

proposition 28 in book 3. Let there be 

introduce therefore arc Cδ, equal to arc 

Aε.  

Ex G, ad EG, ducatur perpendicularis 

Gγ, ad circunferentiam usque circuli 

ABCD, quae circulum EFGH, tanget in 

G, ex coroll. Propos. 16. Lib. 3.  Et 

rectae Gγ, applicetur in circulo ABCD, 

recta aequalis Aε.  Quia vero, si arcui 

Cγ, intelligatur subtendi recta, ut fiat 

triangulum GCγ, latus Cγ, oppositum 

maiori angulo, nempe recto, maius est 

latere Gγ, quod minori angulo 

opoonitur, nimirum acuto; erit quoque 

recta Cγ, maior recta Aε; ac proinde 

arcus Cγ, arcu Aε maior erit, ut constat 

ex scholio poropos. 28. Lib. 3.  

Ablcindatur ergo argus Cδ, arcui Aε 

aequalis.  
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If from the quadrant CD half 

DL is taken, and from the remaining 

CL half LK, and so forth, there remains 

thus the smaller arc Cδ, that is the arc 

Aε (X.1).  Therefore the arc CK is less, 

and the line CK subtending the arc is 

less than the line Aε, that is than Gγ 

from the scholion to proposition 29 in 

book 3.  I say therefore that the straight 

line CK is one side of the inscribed 

equilateral polygon.  For because the 

straight line that subtends arc Cδ which 

is smaller than the arc Cγ, it does not 

touch the circle EFGH, as is clear from 

the demonstration of the preceding 

proposition, much less could the 

straight line CK, subtending an arc 

smaller than Cδ, touch the same circle.  

Quod si ex quadrante CD, dimidium 

auferatur DL, & ex reliquo CL, 

dimidium LK, & sic deiceps; 

relinquetur tandem arcus minor arcu 

Cδ, seu Aε (1 decimi).  Sit ergo iam 

arcus CK, minor; Eritque recta CK, 

subtensa minor quam recta Aε, hoc est, 

quam Gγ, ex scholio propos. 29. Lib. 3.  

Dico igitur, rectam CK, esse unum 

latus polygoni aequilateri incribendi.  

Nam cum recta subtendens arcum Cδ, 

minorem arcu Cγ, non tangat circulum 

EFGH, ut ex demonstratione 

praecedntis propos. patet, multo minus 

recta CK, subtendens arcum minorem 

arcu Cδ, eundem circulum tanget.   
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In turn, draw the diameter KN, 

and raise up IO from the center I, 

perpendicular to the plane of the circles 

ABCD, EFGH, and meeting the 

surface of the greater sphere in O 

(XI.12). And between OI, and AC, and 

OI and KN let there be drawn planes, 

which are perpendicular to the circle 

ABCD (XI.18), and make common 

sections of circles, as has already been 

said, whose semicircles are AOC and 

NOK. Since angles OIC and OIK are 

right, from the third definition of book 

11, OC and OK are quadrants, and thus 

because the circles ABCD, AOC, and 

NOK are equal, which is because their 

diameters are all diameters of the 

greater sphere,  the quadrants CD, OC 

and OK are also equal.  

Rursus, ducta diametro KN, erigatur ex 

centro I, ad plana circulorum ABCD, 

EFGH, perpendicularis, IO, occurrens 

superficei sphaerae maioris in O (12 

undec.); Et per rectas OI, AC & OI, 

KN, plana ducantur, quae ad circulum 

ABCD, recta erunt (18 undec.), 

efficientque communes sectiones, 

circulos, ut iam dictum est, quorum 

semicirculi sint AOC, NOK.  Quia vero 

anguli OIC, OIK, recti sunt, ex defin. 

3. Lib. 11, quadrantes erunt OC, OK; 

atque adeo, cum circuli ABCD, AOC, 

NOK, aequales sint, quod eorum 

diametric sint & sphaerae maioris 

diamteri, erunt quoque quadrantes CD, 

OC, OK, aequales.   
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Let therefore the arc DL be divided 

into as many equal parts as arc CL, and 

the quadrants OC and OK are divided 

into arcs equal in number and 

magnitude to those in the quadrant CD, 

the straight lines that subtend all of the 

arcs are equal, evidently CK, KL, LM, 

MD; CP, PQ, QR, RO; KS, ST, TV, 

and VO are equal (III.29).  Morever, let 

them be joined by the straight lines PS, 

QT and RV, and let perpendiculars to 

the plane of the circle ABCD, PX and 

SY, fall from P and S, so that they fall 

on the common sections AC and NK 

and are parallel to each other (XI.38 

and XI.6).  Therefore the angle PXC 

and SYK of the triangles PCX and 

SKY are right, 

 

Si igitur arcus DL, in tot partes equales 

distribuatur, in quot divisus fuit arcus 

CL; Et quadrantes OC, OK, in arcus 

numero & magnitudine aequales 

arcubus quadrantis CD; Erunt rectae 

his omnibus arcubus aequaliubs 

subtensae, nimirum CK, KL, LM, MD; 

CP, PQ, QR, RO, KS, ST, TV, VO, 

aequales (29 tertii).  Coniunctis autem 

rectis PS, QT, RV, demittantur ex P, & 

S, ad planum circuli ABCD, 

perpendiculares PX, SY, quae in 

communes sectiones AC, NK, cadent; 

eruntque inter se parallelae (38  & 6 

undec.)  Quoniam igitur triangulorum 

PCX, SKY, anguli PXC, SYK, recti 

sunt, 
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 from the definition 3 of book 11, and 

the angles PCS and SKY are equal, 

which is because the edges AOP and 

NOS about which they stand are equal 

(III.27).  (For if from the semicircles 

AOC, and NOK equal arcs CP and KS 

are taken, the remaining arcs AOP and 

NOS are also equal.)  Because the two 

angles PCX and PXC of the triangle 

PCX are equal to the two angles SKY 

and SYK of the triangle SKY, the sides 

PC and SK opposite the right angles 

are also equal (I.26).  Therefore, the 

remaining sides PX and XC are equal 

to the remaining sides SY and YK.  

Thus because PX and SY are equal and 

parallel, if X and Y are connected by a 

straight line, the lines PS and XY are 

also equal and parallel (I.33). And 

therefore, the straight lines CK and XY 

are parallel  

ex defin. 3. Lib. 11. & anguli PCX, 

SKY, aequales, quod & aequales sint 

perphaeriae AOP, NOS, quibus 

insistunt (27 tertii); (Nam si ex 

semicirculis AOC, NOK aequalibus 

demantur arcus aequales CP, KS; 

reliqui arcus AOP, NOS, aequales 

quoque erunt.)  Erunt duo anguli PCX, 

PXC, trianguli PCX, aequales duobus 

angulis SKY, SYK, trianguli SKY:  

Sunt autem & latera PC, SK, rectis 

angulis opposita, aequalia (26 primi).  

Igitur reliqua latera PX, XC, reliquis 

lateribus SY, YK, aequalia erunt.  

Quare cum rectae PX, SY, aequales 

sint & parallelae; si connectatur recta 

XY; aequales quoque erunt & 

parallelae PS, XY (33 primi).  At quia 

rectae CK, XY, parallelae sunt,  
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because the sides IC and IK are cut 

proportionally (VI.2).  (For if from the 

semidiameters IC and IK equal lines 

CX and KY are taken, the remaining 

IX and IY will be equal.  And IX will 

be in the same proportion to XC as IY 

is to YK. (XI.9)). PS and CK are also 

parallel to each other, because both are 

parallel to XY, and therefore the 

joining lines, CP and KS, exist in the 

same plane as those lines (XI.7).  

Therefore, the whole quadrilateral 

CKSP is in a single plane.  And if from 

Q and T lines perpendicular to the 

plane of circle ABCD are dropped and 

connected to the straight line QC and 

TK, we can similarly show CK and QT 

to be parallel and, thus, PS and QT to 

be parallel to each other, which is 

because they are both parallel to the 

same line CK.  

 quo latera IC, IK, proportionaliter 

secta sint (2 sexti).  (Si enim ex 

semidiametris IC, IK, aequalibus 

demantur aequales rectae CX, KY, 

relinquentur & IX, IY, aequales; Ac 

proinde erit, ut IX, ad XC, ita IY, ad 

YK. (9 undec.))    Erunt parallelae 

quoque: PS, CK, inter se cum utraque 

parallele sit ipsi XY; ideoque eas 

coniungentes rectae CP, KS, in eodem 

cum ipsis plano existent (7 undec).  

Totum igitur quadrilaterum CKSP, in 

uno erit plano.  Quod si ex Q, & T 

demittantur ad planum circuli ABCD, 

perpendiculars, & connectantur rectae 

QC, TK, ostendemus similiter CK, QT, 

esse parallelas; atque adeo ipsas PS, 

QT, inter se parallelas esse cum eidem 

CK, sint parallelae 
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And the whole of quadrilateral PSTQ is 

in one plane.  By the same reason, the 

quadrilateral QTVR will be in one 

plane.  Moreover, the triangle RVO is 

in one plane (XI.2).  If therefore the 

same construction is produced above 

the remaining sides KL, LM, and MD, 

drawn of course in the quadrants OL, 

OM, and OD, and also in the remaining 

three quarters and the remaining 

hemisphere, so that the whole of the 

greater sphere is completely filled with 

quadrilaterals and triangles which are 

similar to the above discussed 

constructed in between OC and OK 

and above the side CK, there will have 

been inscribed in the greater sphere a 

solid polyhedron which is bounded by 

the described quadrilateral and 

triangles.  This I say does not touch the 

smaller sphere, EFGH.

totumque quadrilaterum PSTQ, in uno 

esse plano.  Eadem ratione in uno erit 

plano quadrilaterum QTVR: Est autem 

& triangulum RVO, in uno plano (2 

undec).  Si igitur eadem construction 

exhibeatur super reliqua latera KL, 

LM, MD, ductis scilicet quadrantibus 

OL, OM, OD; necnon in reliquis tribus 

quartis, ac reliquo hemisphaerio; ut tota 

sphere maior repleatur quadrilateris & 

triangulis, quae similia sint praedictis 

inter quadrantes OC, OK, super latus 

CK, constructis; inscriptum erit in 

sphaera maiori solidum polyedrum 

circunscriptum dictis quadrilateris, 

atque triangulis.  Hoc ergo dico non 

tangere sphaeram minorem EFGH. 
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  Let there be drawn from I to the 

plane CKSP, the perpendicular line IZ, 

and let Z and C and Z and K be 

connected by straight lines.  Thus, 

since from definition 3 of book 11, the 

angles IZC and IZK are right, the 

square on IC will be equal to the sum 

of the squares on IZ and ZC, and the 

square on IK will be equal to the sum 

of the squares on IZ and ZK (I.47).  

Thus, because the squares of the right 

lines IC and IK are equal, the sums of 

the squares on IZ and ZC and the 

squares on IZ and ZK are equal. And 

since the square on IZ is common to 

both, the remaining squares on the 

lines ZC and ZK are equal.  Similarly, 

we can show the straight lines which 

are drawn from Z to P and S to be 

equal to each other and to the straight 

lines ZC and ZK.  

Ducatur ex I, ad planum CKSP, 

perpendicularis IZ, connectanturque 

rectae ZC, ZK. Quoniam igitur, ex 

defin. 3 lib. 11 anguli IZC, IZK, recti 

sunt; erit quadratum rectae IC, 

quadratis rectarum IZ, ZC & 

quadraturm rectae IK quadratis 

recarum IZ, ZK, aequale (47 primi.)  

Cum ergo quadrata rectarum aequalium 

IC, IK, aequalia sint, erunt & quadrata 

rectarum IZ, ZC, quadratis rectarum 

IZ, ZK aequalia; Ac proinde dempto 

communi quadrato IZ, reliqua quadrata 

rectarum ZC, ZK aequalia erunt, 

ideoque & ipse rectae ZC, ZK 

aequlaes.  Similiter ostendemus rectas, 

quae ex Z, ad P, S, ducentur aequales 

esse & inter se, & rectis ZC, ZK;  
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Hence a circle described on Z with the 

interval ZC will pass through the four 

points C, K, S, P.  And by the same 

reasons we can deomstrate that circles 

can be described around quadrilaterals 

PSTQ, QTVR, and triangle RVO.  

Since, as we will later show, the angle 

CZK is obtuse, the square on the 

straight line CK will be greater than the 

sum of the squares on the straight lines 

ZC and ZK (II.12), and thus because 

those squares are equal, the square on 

the straight line CK is greater than 

double the square on the straight line 

ZC. 

Let there be drawn from K to the 

straight line AC the perpendicular line 

Kα.  Since AC is double to AI and Aα 

is greater than AI, AC is less than 

double of Aα.  

Quare circulus ex Z, ad intervallum 

ZC, descriptus per quatuor puncta C, 

K, S, P, transibit.  Eademque ratione 

circa reliqua quadrilatera PSTQ, 

QTVR, & triangulum RVO, circulos 

describi posse, demonstrabimus.  

Quoniam vero, ut postea ostendemus, 

angulus CZK, obtusus est erit 

quadratum rectae CK, maius quadratis 

rectarum ZC, ZK (12 secundi); ideoque 

cum haec quadrata aequalia sint, maius 

erit quadratum rectae CK, duplo 

quadrati rectae ZC.   

 Ducatur ex K, ad rectam AC, 

perpendicularis Kα.  Cum igitur AC, 

dupla sit ipsius AI, & Aα maior sit, 

quam AI, erit AC, minor duplo ipsius 

Aα.   
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Since it is the case that as AC is to Aα, 

so the rectangle contained under AC 

and αC is to the rectangle contained 

under Aα and αC, because the bases of 

those rectangles are AC and Aα and the 

altitudes are the same αC (VI.1), the 

rectangle contained under AC and αC 

will be less than double the rectangle 

under Aα and αC.  Moreover, the 

rectangle under AC and αC is equal to 

the square on the straight line CK and 

the rectangle under Aα and αC is equal 

to the square on the straight line Kα 

(VI.17) because the straight line CK is 

a mean proportional between AC and 

αC and the straight line Kα is a mean 

proportional between Aα and αC, from 

the corollary to proposition 8 in book 

6. (For if they are connected by the 

straight line AK they make the right 

triangle AKC.)  

Quam ob rem cum sit ut AC, ad Aα ita 

rectangulum sub AC, αC ad 

rectangulum sub Aα, αC, quod bases 

horum rectangulorum sint AC, Aα, & 

eadem altitudo αC (1 sexti); erit 

quoque rectangulum sub AC, αC, 

minus duplo rectanguli sub Aα, αC.  

Est autem rectangulum sub Aα, αC, 

aequale quadrato rectae CK; & 

rectangulum sub Aα αC, aequale 

quadrato rectae Kα (17 sexti); quod 

rectae CK, inter AC, αC sit media 

propotionalis; & recta Kα, inter Aα, 

αC, ex coroll. propos. 8 lib. 6.  (Si 

enim connecteretur recta AK, fieret 

triangulum rectangulum AKC.) 
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And therefore, the square on the 

straight line CK is less than double the 

square on the straight line Kα.  And 

thus, since the square on the straight 

line has been shown to be greater than 

double the square on the line ZC, the 

square on Kα is greater than the square 

on ZC.  Since, truly, the square on the 

straight line IC is equal to the sum of 

the squares on the straight lines IZ and 

ZC and the square of the straight line 

IK is equal to the sum of the squares on 

Iα and αK (I.47), and the squares on 

the straight lines IC and IK are equal, 

the squares on lines IZ and ZC are 

equal to the squares on lines Iα and αK.  

If therefore, from one of these you take 

the greater square, truly the square on 

αK, and from the other the lesser, 

which is clearly the square on AC, the 

remaining square on IZ will be greater 

than the remaining square on Iα; 

Igitur & quadraturm rectae CK, minus 

erit duplo quadrati rectae Kα.  Ac 

propterea cum quadratum rectae CK, 

ostensum sit maius esse duplo quadrati 

rectae ZC; erit quadratum rectae Kα, 

maius quadrato rectae AC.  Quoniam 

vero quadratum rectae IC aequale est 

quadratis recarum IZ, ZC, & quadrtum 

rectae IK, quadratis rectarum Iα, αK 

(47 primi): Suntque aequalia quadrata 

rectarum aequalum IC, IK; Erunt & 

quadrata rectarum IZ, ZC, aequalia 

quadratis rectarum Iα, αK.  Si ergo ex 

his dematur quadratum maius nempe 

rectae αK; & ex illis minus videlicet 

rectae ZC, erit reliquum quadratum 

rectae IZ, maius quadrato reliquo 

rectae Iα;  
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and thus the straight line IZ is greater 

than the straight line Iα.  For what 

reason, the point α does not touch the 

smaller sphere EFGH  because by the 

corollary of the preceding proposition, 

Kα is entirely outside of the same 

sphere.  Much less does point Z at a 

longer distance touch the same sphere.  

And thus, because, as we will soon 

show, all of the other points in the 

plane CKSP are farther removed from 

the sphere EFGH than point Z, the 

plane CKSP does not touch the sphere 

EFGH. 

 But we can show that the plane 

CKSP does not touch the smaller 

sphere, EFGH, more quickly almost 

from the construction of the figure 

itself, if as earlier the straight line Iγ is 

drawn, in this way.  

ideoque recta IZ, maior quam recta Iα.  

Quapropter cum punctum α, non tangat 

sphaeram minorem EFGH, quod per 

coroll. propos. Praecedentis recta Kα, 

tota sit extra dictam sphaeram; multo 

minus punctum Z, longius distans, 

eandem sphaeram contingent.  Ac 

proinde cum omnia alia puncta plani 

CKSP, longius absint a sphaera EFGH, 

quam punctum Z, ut mox ostendemus, 

non tanget planum CKSP, sphaeram 

EFGH.  

 Sed & expeditious ex ispa fere 

constructione figurae ostendemus, 

planum CKSP, non tangere sphaeram 

minorem EFGH, si prius ducatur recta 

Iγ, hoc modo.

474



Since from the construction it made 

clear that the straight line CK is less 

than the straight line Gγ, and, 

moreover, that CK is greater than AC, 

because, as will soon be demonstrated, 

the angle CZK is obtuse (I.19).  Gγ will 

then be much greater than ZC.  And 

thus, the square on the straight line Gγ 

is much greater than the square on the 

straight line ZC.  Since, truly, the 

square on the straight line Iγ is equal to 

the sum of the squares on the straight 

lines IG and Gγ, and the square on the 

straight line IC is equal to the sum of 

the squares on the straight lines IZ and 

ZC (I.47), and the squares on Iγ and IC 

are equal to equals, the sum of the 

squares on IG and Gγ are equal to the 

sum of the squares on IZ and ZC.  

Quoniam ex constructione ostensum 

fuit, rectam CK, minorem esse recta 

Gγ: Est autem CK, maior quam ZC, 

quod angulus CZK, obtusus sit (19 

primi), ut mox demonstrabitur; Multo 

maior erit Gγ quam ZC; Ac proinde 

quadratum rectae Gγ maius quadrato 

rectae ZC.  Quia vero quadratum rectae 

Iγ, aequale est quadratis rectarum IG, 

Gγ; & quadratum rectae IC, quadratis 

rectarum IZ, ZC (47 primi); sunt autem 

quadrata rectarum Iγ, IC aequalium 

aequalia; erunt & quadrata rectarum 

IG, Gγ, quadratis rectarum IZ, ZC, 

aequalia.   
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Therefore, if the square of the line Gγ 

is taken away from that pair, and the 

square of the line ZC is taken away 

from the other pair, the remaining 

square on the line IG is less than the 

square on IZ.  And thus, the line IG is 

less than IZ.  On account of which, 

because IG is the semidiameter of the 

smaller sphere EFGH, the point Z is 

outside of that same sphere.  And it 

follows, as before, that the plane CKSP 

never touches the sphere EFGH. 

 Again, let a perpendicular line 

Iβ be drawn from I to the plane PSTQ.  

And β will be the center of a circle 

described around PSTQ as has been 

demonstrated.  Moreover, having 

joined β to P and I to P with straight 

lines, in that the angle IβP is right, 

from the third definition of the eleventh 

book, the square on the straight line IP 

will be equal to the sum of the squares

 Dempto ergo illinc quadrato rectae Gγ, 

& hinc quadrato rectae ZC; relinquetur 

quadratum rectae IG, minus quadrato 

rectae IZ; Ac propterea recta IG, minor 

quam IZ.  Quam ob rem, cum IG, sit 

sphaerae minoris EFGH semidiamter; 

existet punctum Z, extra eandem 

sphaeram.  Et proinde, ut prius, planum 

CKSP, sphaeram EFGH, nequaquam 

contingent.  

 Ducatur rursus ex I, ad planum 

PSTQ, perpendicularis Iβ, eritque β, 

centrum circuli circa PSTQ, descripti, 

ut demonstratum est: Connexis autem 

rectis βP, IP, cum angulus IβP, rectus 

sit, ex 3 defin. lib. 11 erit quadratum 

rectae IP, aequale quadratis
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on Iβ and βP (I.47).  And because the 

square on the straight line IC (which is 

equal to the quare on the straight line 

IP because the straight lines IC and IP 

are equal) is equal to the sum of the 

squares of IZ and ZC, the sum of the 

squares on the straight lines Iβ and βP 

is equal to the sum of the squares on IZ 

and ZC.  Truly the square on line ZC is 

greater than the square on the line βP 

because the line ZC is greater than the 

line βP, as we will show later.  

Therefore, the remaining square on Iβ 

is greater than the remaining square on 

IZ.  And, thus, the line Iβ is greater 

than the line IZ: And therefore, the 

point β is much farther outside of the 

sphere EFGH than the point Z, and 

because of that much less than the 

plane CKSP does the plane PSTQ 

touch the smaller sphere EFGH.  

rectarum Iβ, βP (47 primi).  Quia vero 

& quadratum rectae IC, (quod aequale 

est quadrato rectae IP, ob aequalitatem 

rectarum IC, IP) aequale est quadratis 

rectarum IZ, ZC; erunt quadrata 

rectarum Iβ, βP, quadratis rectarum IZ, 

ZC, aequalia: est vero quadratum 

rectae ZC, maius quadrato rectae βP, 

quod & linea ZC, maior sit, quam linea 

βP, ut postea ostendemus.  Reliquum 

igitur quadratum rectae Iβ, reliquo 

quadrato rectae IZ, maius erit; ideoque 

& linea Iβ, maior quam linea IZ: Ac 

proinde multo magis punctum β, extra 

sphaeram EFGH, existet, quam 

punctum Z, proptereaque multo minus 

planum PSTQ quam CKSP, tanget 

sphaeram minorem EFGH.
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In the same way we can demonstrate 

that none of the remaining planes can 

touch the said sphere.  Thus, given two 

spheres around the same conter, we 

have inscribed a solid polyhedron in 

the larger sphere that does not touch 

the surface of the smaller sphere.  

Which was to be done.

 Eodem modo demonstrabimus, quod 

neque reliqua plana sphaeram dictam 

contingere possint.  Quodcirca, duabus 

sphaeris circa idem centrum 

existentibus, in maiori sphaera solidum 

polyedrum inscripsimus, quod non 

tangat minoris sphaerae spuerficiem.  

Quod erat faciendum.   
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Figure 53: Book Twelve, Proposition 17 
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Figure 53: Book Twelve, Proposition 17 (continued) 
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Figure 53: Book Twelve, Proposition 17 (continued)
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Figure 53: Book Twelve, Proposition 17 (continued) 
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Figure 53: Book Twelve, Proposition 17 (continued)
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Figure 53: Book Twelve, Proposition 17 (continued)	
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Book Twelve, Problem 2/Proposition 17, Additional Proof 

 

Note: In Chapter 5, I discuss the last of the three items that Clavius promised to 

demonstrate after the proof for this proposition (XII.17).  He followed through on that 

promise in the scholion.  The proof for the third claim, which states that ZC is greater 

than the line βP is as follows. 

	

ZC is greater than the line βP.  

Third, and the last thing that needs to 

be shown, the straight line ZC is 

greater than the straight line βP.  

Which is closely tied to the prior 

demonstration that the straight line PS 

is greater than the straight line QT.  Let 

there be described therefore the part of 

the above figure, that one may see, 

which contains the semidiamters IC 

and IO and the quadrants OC and OK, 

etc.  Then let fall from Q and T to the 

plane of the circle ABCD, in which the 

triangle ICK is, perpendiculars Qµ and 

Tξ, which fall on the common sections

 ZC maior quam βP. 

Tertio, ac ultimo probandum est, 

rectam ZC, maiorem esse recta βP.  

Quod ut aptius fiat, demonstrandum 

prius erit, rectam PS, maiorem esse 

recta QT.  Describatur igitur pars 

superioris figurae, ea videlicet, quae 

continetur semidiamteris IC, IO, & 

quadrantibus OC, OK, &c.  

Demittantur deinde ex Q, & T, ad 

planum circuli ABCD, in quo est 

triangulum ICK, perpendiculars Qµ,, 

Tξ quae in communes sectiones
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IC and IK and are parallel to each 

other, as was said for the straight lines 

PX and SY (XI.38 and XI.6).  If the 

straight line µξ is added, QT and µξ are 

parallel and equal, which can be shown 

in the same way that PS and XY were 

shown to be parallel and equal.  And µξ 

is parallel to CK itself, and because the 

sides IC and IK are cut proportionally 

in µξ, just as we said of the straight line 

XY, XY and µξ are also parallel (VI.2, 

I.30).  Hence, by the corollary to the 

fourth proposition of book 6, IY will be 

to YX as Iξ is to ξµ.  Moreover, IY is 

greater than Iξ.  Therefore, YX is 

greater than ξµ.  And, thus, PS, which 

is equal to XY, is greater than QT, 

which is equal to ξµ.   

 

IC, IK, cadent, eruntque inter sese 

parallelae, ut de rectis PX, SY, dictum 

est (38 undec. 6 undec.)  Quod si 

adiungatur recta µξ, erunt QT, µξ, 

parallela & aequales, quemadmodum 

ostensum fuit parallelas esse & 

aequales PS, XY.  Quia vero µξ, ipsi 

CK, parallela est, quod latera IC, IK 

proportionaliter sint secta in µ & ξ, 

veluti diximus de recta XY; erunt 

quoque µξ, XY, parallela (2 sexti, 30 

primi).  Quare erit, ex coroll. propos. 4 

lib. 6 ut IY, ad YX, ita Iξ ad ξµ; est 

autem IY, maior quam Iξ.  Igitur & 

YX, maior erit quam ξµ; Ac proinde & 

PS, quae aequlis est ipsi XY, maior erit 

quam QT, quae aequalis est ipsi ξµ.   
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Therefore, for this 

demonstration let there be described 

circles from centers Z and β around the 

quadrilaterals CK, SP, PSTQ, and lead 

straight lines ZC, ZK, ZX, ZP; βP, βS, 

βT, and βQ from the centers Z and β.  

If therefore ZC is not believed to be 

greater than βP, it will be either equal 

or smaller. Let it first be equal. 

Therefore, because the sides ZK and 

ZC are set to be equal to the sides βS 

and βP and the base KC is greater than 

the base PS, the angle KZC will be 

greater than the angle SβP (I.25).  By 

the same reason, angle SZP will be 

greater than angle TβQ.  And since the 

bases KS and CP are equal to the bases 

ST and PQ, the angles KZS and CZP 

are equal to the angles SβT and PβQ 

(I.8).  Therefore, the four angles on Z 

are greater than the four angles on β.

   Hoc ergo demonstrato, 

describantur ex centris Z, β, circa 

quadrilatera CKSP, PSTQ, circuli 

egredianturque e centris rectae ZC, ZK, 

ZS, ZP, βP, βS, βT, βQ.  Si igitur ZC, 

non credatur maior, quam βP, erit vel 

aequlis, vel minor.  Sit primum 

aequalis.  Quia ergo latera ZK, ZC 

aequal ponuntur lateribus βS, βP; & 

basis KC, maior est base PS; erit 

angulus KZC, maior angulo SβP (25 

primi).  Eadem ratione maior erit 

anguls SZP, angulo TβQ.  At quoniam 

bases KS, CP, basibus ST, PQ, sunt 

aequales; erunt anguli KZS, CZP, 

angulis SβT, PβQ, aeuales (8 primi).  

Igitur quatuor anguli ad Z, maiores 

erunt quatuor angulis ad β
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However they are also equal because 

these, like those, are equal to four right 

angles from corollary 2 to proposition 

15 of book 1.  Which is absurd.  

Therefore, straight line ZC is not equal 

to straight line βP.   

 Second, let ZC be smaller than 

βP.  And take βπ, βρ, βω, βφ, to be 

equal to ZC, ZK, ZS, and ZP, and draw 

let them be connected by the straight 

lines πρ, ρω, ωφ, and φπ, which are 

parallel to the straight lines PS, ST, 

TQ, and QP. This is because the 

straight lines from the center are cut 

proportionally (VI.2). And thus from 

the corollary to the fourth proposition 

in Book 6, βS will be to SP as βρ is to 

ρπ.  Because, therefore, βS is greater 

than βρ, SP is greater than ρπ (V.14).  

By the same reason ST, TQ, and QP 

are greater than ρω, ωφ, and φπ.  

Sunt autem & aequals cum tam hi 

quam illi quatuor recti sint aequales, ex 

coroll. 2. Propos. 15 lib 1.  Quod est 

absurdum.  Non igitur aequlis est recta 

ZC, recta βP.   

 Sit secundo ZC, minor quam 

βP.  Et abscindantur βπ, βρ, βω, βφ, 

ipsis ZC, ZK, ZS, ZP, aequales, 

connectanturque rectae πρ, ρω, ωφ, φπ, 

quae parallelae erunt rectis PS, ST, TQ, 

and QP, eo quod rectae ex centris 

sectae sint proportionaliter (2 sexti); 

Ac proinde, ex coroll. propos. 4 lib. 6 

erit ut βS, ad SP, ita βρ ad ρπ.  Cum 

ergo βS, maior sit, quam βρ, erit & SP, 

maior quam ρπ (14 quinti).  Eademque 

ratione maiores erunt ST, TQ, QP, 

rectis ρω, ωφ, φπ;  
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And, thus, because PS is smaller than 

CK, and ST, PQ are equal to the 

straight lines KS, CP, and TQ is 

smaller than PS, the straight lines πω, 

ρω, ωφ, and φπ are smaller than the 

straight lines CK, KS, SP, and PC.  

Hence, because the straight lines βπ, 

βρ, βω, βφ are equal to the straight 

lines ZC, ZK, ZS, and SP, the angles 

on Z are greater than the angles on β.  

However, they are also equal, because 

all of those, like all of these, are equal 

to four right angles from the second 

corollary to proposition 15 in book 1.  

Which is absurd.  Therefore, the 

straight line ZC is not smaller than the 

straight line βP.  But it was shown that 

it also was not equal.  Therefore it is 

greater.  Which was to be shown. 

Ac propterea cum PS, minor sit quam 

CK, & ST, PQ, aequles rectis KS, CP; 

& TQ, minor quam PS, erunt rectae πρ, 

ρω, ωφ, φπ, minors rectis CK, KS, SP, 

PC.  Quare cum rectae βπ, βρ, βω, βφ, 

rectis ZC, ZK, ZS, ZP, sint aequales; 

erunt anguli ad Z, maiores anguils at β: 

Sunt autem & aequales, quod tam illi, 

quam hi sint quatuor rectis aequles ex 

coroll. 2 propos. 15 lib. 1. Quod est 

absurdum.  Non igitur minor est recta 

ZC, quam βP: Sed neque aequalis est 

ostens; Maior igitur est. Quod erat 

ostendendum. 
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Figure 54: Book Twelve, Proposition 17, Additional Proof 
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Figure 54: Book Twelve, Proposition 17, Additional Proof (continued) 
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