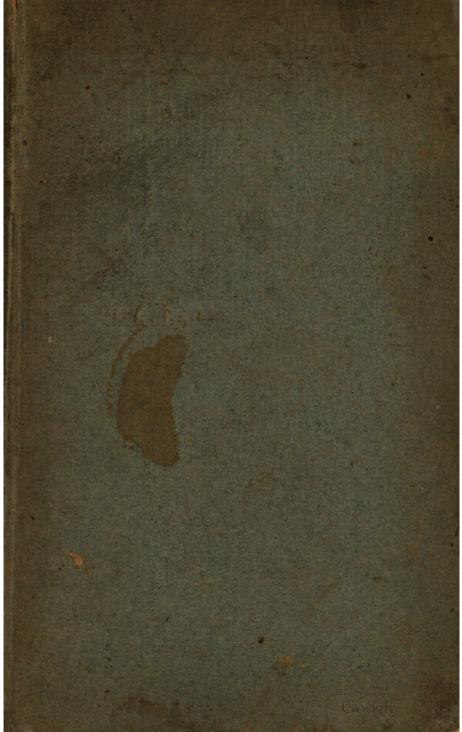


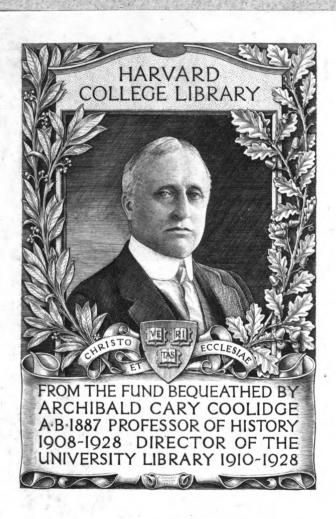
This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

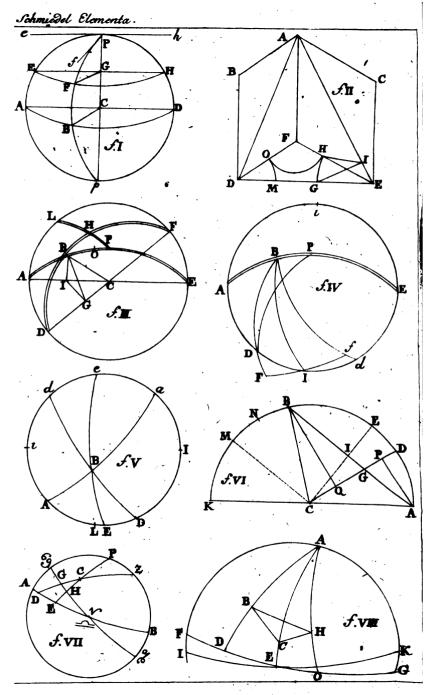
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines


Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.


We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ELEMENTA TRIGONOMETRIAE SPHAERICAE

CLAR ROGERIO BOSCOVICH

EXCERPTA.

ET PROBLEMATIS ASTRONOMICIS ÉT GEOGRAPHICIS ILLUSTRATA Mar . Ich

NEC NON

CANONES SINUUM ET TANGENTIUM PRO DECIMO QUOQUE MINUTO, CUM EORUM LOGARITHMIS UNA CUM TABULIS LOGARITHMORUM NATURALI SERIE CRESCENTIUM AB I. USOUE AD 1000.

EXERCITATIONI AUDITORUM MATHESEOS PURAE ET ADCOMMODATA

JOANNE SCHMIDEL

UNIVERSITATE LEOPOLDINA VRATISLAVIENSI RSAR MATHESEOS PROFESSORE REGIO PURLICO

Cum tahula aenea.

VRATISLAVIAE 1778. APUD JOANNEM FREDERICUM KORN SENIOREM.

Math 8017.78

HARVARD UNIVERSITY LIBF 'Y APR 5 1963

MONITUM

AD*LECTOREM.

Tria in hoc opusculo erant nobis proposita: Brevitas, facilitas, et utilitas. Brevitati consulendum suit, ut libellus a quovis facile parari, et commode circumferri posset. Facilitati, ut Adolescentium genio serviremus, qui a difficilioribus plerumque abhorrent, et ex huiusmodi disciplinis ea tantum delibare cupiunt, quae et captu faciliora sunt, et cum caeteris discipli-

Digitized by Google

MONITUM AD LECTOREM.

sciplinis arctius connexa; unde ea tantummodo selegimus, quae ad cognitionem Trigonometriae sphaericae maxime necessaria et faciliora videbantur. Utilitatem opusculi demonstrabit eius adplicatio ad varia problemata astronomica et geographica. Secuti sumus hoc in opusculo Clariss. Rogerium Boscovich, ob singularem eius et brevitatem et facilitatem praesenti instituto optime adcommodatam; caetera aliunde collegimus et exercitationi Adolescentium adcommodavimus.

TRIGO-

TRIGONOMETRIAE' SPHAERICAE

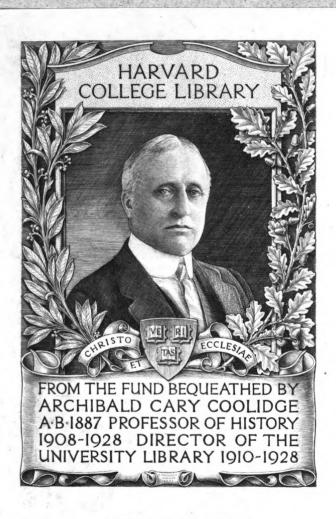
CAPVT I.

De angulorum et triangulorum sphaericorum natura et proprietatibus quibusdam.

T.

rigonometria fphaerica, est ars refolvendi triangula, quae in superficie sphaerae ab arcubus circulorum maximorum eiusdem sphaerae essormantur. Circuli maximi sunt, quorum plana per centrum sphaerae transeunt. Unde sit, ut circuli maximi omnes se mutuo bisariam secent, et communis intersectio duorum quorumvis eiusmodi circulorum sit diameter sphaerae. Cum enim intersectio duorum quorumvis planorum.

norum sit linea recta, et circuli maximi omnes per centrum transeant, etiam eorum communis intersectio per centrum transibit, adeoque diameter est, quae proinde circulos maximos bifariam secat.


- 2. Cum datis tribus punctis non in directum positis, positio plani determinetur, sequitur, quod per quaevis duo puncta in superficie sphaerae adsumpta et per centrum determinetur positio circuli maximi. Item dato puncto in superficie sphaerae, potest ex illo in datum quodvis planum circuli maximi demitti perpendiculum, et per ipsum hoc perpendiculum et centrum determinari positio alterius circuli maximi, cuius planum erit perpendiculare plano dati circuli maximi.
- 3. Axis circuli dicitur illa diameter sphaerae, quae ad planum circuli eiusdem perpendicularis est; extrema axeos puncta poli eiusdem circuli dicuntur: in fig. 1. Pp est axis circulorum EFH, ABD. Pet p sunt eorundem poli.
- 4. Axis transit per centrum circuli, cuius est axis. Demonstratio patet ex elementis geometriae P. Macko, n. 576. Ex quo etiam facile deducitur, omnia puncta peripheriae cuius-

iuscunque circuli in superficie sphaerae distare per aequales arcus circulorum maximorum ab utroque suo polo, adeoque omnia puncta peripheriae circuli maximi ab utroque suo polo distare nonaginta gradibus, seu per quadrantem circuli maximi; et vicissim circulum illum hoc ipso esse maximum, si omnia peripheriae puncta ab utroque polo suo distent per quadrantem circuli maximi.

5. Augulus fphaericus dicitur is, quem in superficie sphaerae continent bini arcus circulorum maximorum concurrentium, cuius menfura pendet a magnitudine inclinationis duorum planorum eorundem circulorum fe interfecantium. Hanc vero mutuam duorum planorum inclinationem metitur arcus, cuius centrum est in ipsa planorum intersectione communi, et cuius planum est eidem interfectioni perpendiculare: patet ex elem. geomet. n. 529. Si ergo in duobus planis ad se invicem inclinatis ex quovis mutuae interfectionis puncto erigantur duae perpendiculares, ut in fig. 1. eP, fP, aut EG, FG, aut AC, BC, angulus rectilineus e Pf, vel EGF, vel ACB, seu arcus EF vel AB erit mensura inclinationis planorum.

A 4

6. Ex

. g. Omnes circuli maximi per polos alterius circuli maximi transcuntes, eidem alteri circulo perperdiculares funt. Omnes enim circuli maximi per centrum sphaerae transcunt, ficut ipsi axes, cumque poli fint extrema axium puncta, fequitur, quod axis fit linea interfectionis omnium circulorum maximorum per eundem polum transeuntium; cumque axis sit plano circuli, cuius est axis, perpendicularis, omnes circuli maximi per polum alterius circuli transeuntes eidem perpendiculares erunt per n. 2. Vicissim si planum circuli maximi plano alterius circuli maximi perpendiculare fit, alter per alterius polos Si enim alter per alterius polos non transiret, neque transibit per axem, cum poli fint extrema axium puncta; adeoque eiusmodi circuli maximi ab axe alterius, id est, a situ perpendiculari recedent; quod est contra hypothesin.

10. Triangulum fphaericum dicitur, quod continetur in superficie sphaerae tribus arcubus circulorum maximorum, qui dicuntur eius latera.

11. Si in triangulo sphaerico bini anguli suerint recti, latera iis opposita erunt qua-

drantes. Si enim in triangulo PAB fig. 1. anguli A et B fuerint recti, plana circulorum PA et PB ad planum circuli ABD erunt perpendicularia, adeoque polus circuli ABD in utriusque circuli peripheria iacens cadet in ipfam eorum interfectionem sive in anguli verticem P, per n. g. cumque polus P undique per quadrantem circuli distet a circulo ABD erunt PA et PB quadrantes. Et viciffim fi arcus PA et BP fuerint quadrantes anguli PCA, et PCB erunt recti, ac proinde recta PC erit perpendicularis plano ACB. et idcirco plana arcuum AP, et BP perpendicularia erunt plano arcus AB, et anguli fphaerici PAB et PBA recti. utroque casu tertium latus AB erit mensura aequalis tertio angulo sibi opposito. Cum enim P sit polus circuli AB, arcus AB erit menfura aequalis angulo APB, per n. 5. unde si omnes tres anguli fuerint recti, etiam omnia latera erunt quadrantes; et vice versa. Inde patet modus resolvendi triangula, in quibus vel omnes tres, vel bini anguli funt recti. Superest resolutio triangulorum, in quibus vel unus est rectus vel nullus; illa triangula rectangula haec obliquangula adpellantur; ac

in

in illis quidem latus angulo recto oppositum basis dicitur, in his latus quodvis pro basi adfumi potest.

inclinentur, ut lineae intersectionum BD, AF, CE nuspiam concurrant, seu parallelae maneant, summa omnium trium angulorum eadem sutura est, quae in triangulo rectilineo DFE, cuius latera ad intersectiones trium planorum sunt perpendicularia. Nam per n. 5. angulum E mensurabit arcus HG radio GE ad CE perpendiculari descriptus, similiter angulum F arcus HO, et angulum D, arcus OM; quo casu summa trium angulorum erit aequalis duobus rectis.

13. Si tria plana ita se intersecent, ut lineae intersectionum alicubi in puncto A concurrant, summa trium angulorum dictorum maior est duobus rectis. Nam linea GE, quae in priore casu ad CE perpendicularis esse supponebatur, in hoc posteriore casu ad lineam intersectionis AE perpendicularis non erit, sed ad describendum arcum GH, qui sit mensura inclinationis duorum planorum, adsumi debebit linea GI, perpendicularis ad AE; est vero in triangulo rectangulo GIE GI minor quam

quam hypothenusa GE, adeoque arcus GH radio minore GF descriptus nunc iam plures gradus continebit, quam dum radio GE descriptus est. Itaque angulus HIG maior est angulo HEG. Id quoniam eodem modo de reliquis angulis F et D demonstrari potest, evidens est, summam trium angulorum in casu posteriore maiorem esse duobus rectis. Id quoniam triangulis sphaericis cumprimis convenit, patet, summam trium angulorum sphaericorum maiorem esse duobus rectis.

14. Sed quoniam duorum quorumvis planorum inclinatio excrescere potest usque ad 180°, antequam in idem planum coincidant; evidens est, summam trium angulorum sphaericorum ad sex usque rectos excrescere posse, antequam in idem planum coincidant. Eodem modo clarum est, summam trium laterum in triangulo sphaerico integro circulo minora esse debere, ne in idem planum circuli recidant. Potest tamen eorum summa in infinitum minui; at bina quaevis tertio maiora sint necesse est.

CAPVT

CAPVT II.

De resolutione triangulorum rectangulorum.

- tota fundatur in attenta consideratione proprietatum anguli solidi, constituti a tribus angulis planis. Consideratur enim in sig. 3. angulus solidus, quem continent tres anguli plani BCD, BCA, ACD, et concipiatur radio CB sphaera occurrens eorum angulorum planis in BD, AD, AB; hi tres arcus formabunt triangulum sphaericum BAD. Erit vero latus AB mensura anguli ACB; latus AD mensura anguli ACD; ac demum latus BD mensura anguli BCD. Anguli vero ad A, B, D erunt aequales inclinationibus, seu angulis, quae plana eorundem angulorum continent cum planis contiguis.
- tum ad A; et concipiatur planum circuli lateris AD congruens cum plano ipsius chartae; quodsi latus AB insistens peripheriae ADEF verticaliter, et basis DB oblique, producantur, occurrent ipsi alicubi in E et F, ita ut AE, DF sint diametri intersectionum, et arcus ABE, DBF semicirculi.

17. Sit

- pendicularis plano ADE, quae ob arcum ABE verticalem eidem plano cadet in diametrum AE alicubi in I ad angulos rectos; tum IG perpendicularis diametro DF; eritque ducta BG etiam perpendicularis diametro DF. Cum enim BG et IG fint in eodem plano trianguli BIG perpendiculari plano ADE, et IG fit perpendicularis ipfi DF, etiam BG in idem punctum G ex eodem plano concurrens ipfi DF perpendicularis erit; his ita conftitutis erit BI finus anguli BCI, feu lateris AB, et BG finus anguli BCG feu basis BD.
- 18. Demum fectis femicirculis DAF, DBF bifariam in L et H, transeat per ipfa puncta L et H arcus circuli maximi, occurrens femicirculo ABE alicubi in P; eruntque anguli DLH, DHL recti, (per n. 11.) ac proinde D polus circuli LHP, et LH mensura aequalis angulo ADB. Ob angulos vero ALP, LAP rectos erit in P polus circuli AL, PA vero, et PL quadrantes, ac AL mensura aequalis angulo HPB.
- 19. Jam vero omnis triangulorum fphaericorum refolutio profluit a confideratione pyramidis BIGC, et comparatione triangulorum

lorum rectangulorum BAD, BHP. Primum igitur defigatur mentis acies in pyramidem iacentem, cuius vertex fit in centro fphaerae C, basis triangulum BIG, a qua ad verticem tendunt tria latera BC, IC, GC, quibus concluduntur tres facies triangulorum BCI, BCG, 1CG.

20. Porro tam basis illa BIG, quam hae facies sunt triangula plana rectangula; nam anguli BIG, BIC sunt recti (per n. 17.). Similiter recti sunt anguli CGB, CGI, ob CG perpendicularem plano BGI; angulorum autem rectilineorum, quos illae tres facies continent in C, nimirum angulorum BCI, BCG, ICG mensurae ipsis aequales sunt arcus BA, AD, BD; angulus vero rectilineus BGI, pertinens ad basim illam pyramidis, est aequalis angulo sphaerico BDA (per n. 5.).

gula fphaerica BAD, BHP rectangula ad A et H, cuivis vel lateri vel angulo alterius refpondet aliquid in altero vel ipfi aequale, vel eius complementum. Sic angulo BAD recto primi, aequalis est BHP rectus secundi; angulo ABD aequalis est ad verticem oppositus HBP. Angulus ADB primi, seu eius menfura

fura arcus LH, habet pro complemento latus HP fecundi; latus AB primi habet pro complemento basim BP fecundi; latus DA primi habet pro complemento arcum AL; qui est mensura aequalis angulo BPH fecundi; des mum basis BD primi habet pro complemento latus BH fecundi.

tarum BG et BI; prima orietur ex confideratione triangulorum CIB, CGB; fumpta enim BC pro radio, erit BG finus anguli BCG feu bafis BD; et BI finus anguli BCI; feu lateris AB angulo sphaerico D oppositi. Alteram earundem linearum rationem exhibet basis pyramidis seu triangulum BIG, nam assumpta BG pro radio, erit BI sinus anguli BGI, seu sphaerici D. Unde oritur proportio. Rad: sin. ang. D = sin. BD: sin. AB ex qua formatur

Can. I. Radius ad finum anguli, ut finus basis ad finum lateris angulo oppositi.

23. Similiter reperiuntur duae rationes rectarum BG et IG. Sumpta CG pro radio, erit BG tangens anguli BCG feu basis BD; et IG pariter erit tangens anguli ICG seu lateris AD adiacentis angulo sphaerico D. Alte-

Alteram earundem linearum rationem suppeditat basis pyramidis seu triangulum BIG, in quo sumpta BG pro radio, erit IG cosinus anguli BGI, seu sphaerici D. Unde formatur proportio.

Rad: cos. ang. D = tang. B D: tang. A D. ex qua oritur

Can. II. Radius ad cosinum anguli, ut tangens basis ad tangentem lateris angulo adiacentis.

24. Simili modo reperiuntur duae rationes rectarum BI et IG. Pro prima fumatur CI pro radio, erit IG finus anguli ICG feu lateris AD angulo D adiacentis. IB vero evadet tangens anguli BCI feu lateris AB angulo D oppositi. Alteram earundem linearum rationem rursum dabit triangulum BIG, in quo sumpta IG pro radio, BI evadet tangens anguli BGI, seu sphaerici D. Eritque

Rad: tang. ang. D = fin. AD: fin. AB. ex qua oritur

Can. III. Radius ad tangentem anguli, ut finus lateris adiacentis eidem angulo, ad tangentem lateris eidem angulo oppositi.

25. Si iam iidem canones adplicentur ad triangulum BHP, ipsumque (per n. 21.) com-

3 pare-

paretur cum triangulo BAD, orientur tres alii. Erit enim per can. I.

Rad: fin. ang. BPH = fin. BP: fin. BH.

Est vero anguli BPH mensura arcus AL, qui
est cosinus lateris AD; et sinus BP cosinus lateris AB, sinus BH vero cosinus basis
BD; ergo has expressiones pro illis substituendo erit

Rad: cofin. AD = cofin. AB: cofin. BD.
Inde oritur

Can. IV. Radius ad cofinum unius lateris, ut cofinus alterius ad cofinum basis.

26. Ex eodem canone primo eruitur haec proportio.

Rad: fin. ang. PBH = fin. BP: fin. BH.

Est vero sinus anguli PBH aequalis sinui anguli ABD, et sinus BP cosinus lateris AB eidem angulo B adiacentis, ac demum sinus PH cosinus arcus HL, qui est mensura anguli sphaerici D, lateri AB oppositi; adeoque has expressiones pro illis substituendo erit

Rad: fin. ang. ABD=cos. AB: cos. ang. ADB. Unde fequitur

Can. V. Radius ad finum anguli lateri adiacentis, ut cosinus eiusdem lateris, ad cosinum anguli oppositi.

27. Si-

27. Simili modo ex canone III. formatur fequens proportio

Rad: tang. ang. B= fin. BH: tang. PH.
Sunt vero apud Banguli verticales, et finus BH
est cosinus basis BD, et tangens HP est cotangens arcus HL, qui est mensura anguli
sphaerici D; his itaque substitutis, erit

Rad: tang. ang. B=cos, BD: cotang. ang. D. Unde eruitur

- Can. VI. Radius ad tangentem unius anguli, ut cosinus basis, ad cotangentem alterius.
- 28. Possent simili modo adplicando canonem secundum tam ad angulum P, quam B, item tertium ad angulum P tres alii canones reperiri, qui tamen cum prioribus easdem solutiones praeberent. Illud tamen diligenter notandum, omnes istos canones etiam triangulo BAF adplicandos esse, quia functiones eaedem communes sunt binis arcubus semicirculum complentibus. Attamen necessariae sunt quaedam regulae, quae ostendant, utram speciem habere debeant anguli vel arcus quaessiti, scilicet an acuti, an obtusi sint.
 - 29. Has regulas suppeditabit contemplatio figur. IV., in qua manentibus punctis ABPED,

B₂ ut

tut in fig. III. per politim P et punctum D ducatur arcus circuli maximi, qui erit perpendicularis ad ADE (per n. 8.) et semicirculo ADE secto bisariam in puncto I, quod erit polus circuli ABPE (per n. 8.) ducatur arcus BI, qui erit quadrans. Ducatur porro arcus Bd per quodvis punctum semicirculi ADE, iacens ab I incipiendo ad partes oppositas puncti D; demum ex polo B describatur arcus circuli maximi FIf, occurrens arcubus BD et Bd in punctis F et f, eruntque arcus BF et Bf quadrantes.

drante AP, erit angulus ADB oppositus minor recto ADP. Si autem illud sit maius, etiam angulus D maior erit, utcunque se habuerit alterum latus AD. Quare

Regula I. Latera funt eiusdem speciei cum angulis oppositis, et vicissim.

31. Si vel utrumque latus AB et AD sit minus quadrante AP et AI, vel in triangulo BED utrumque latus BE et DE sit maius sisdem quadrantibus, erit in utroque casu angulus BIA vel BID minor recto BIF, per regulam primam; et hinc in utroque casu basis BD per eandem regulam primam erit minor

qua-

quadrante BF. At vero in triangulis BAd, et BEd, angulus BId erit maior recto BIf adeoque basis Bd erit maior quadrante Bf; et hinc in triangulis BAd, BEd, ubi duo latera sunt diversae speciei, basis semper est quadrante maior. Et quoniam per regulam primam anguli sunt eiusdem speciei cum lateribus oppositis, possunt pro illis substitui, ubi agitur de eorum specie. Unde oritur

Regula II. Si duo latera, vel duo anguli, vel latus cum angulo adiacente fuerint eiusdem speciei, basis semper erit quadrante minor; si diversae, maior: et vice versa, si basis fuerit quadrante minor, duo latera, vel duo anguli, vel latus cum angulo adiacente erunt eiusdem speciei; si maior, eadem erunt diversae speciei.

refolvi dicitur, cum ope superiorum canonum ex datis aliis binis praeter angulum rectum reliqua inveniuntur. Porro in triangulo rectangulo praeter angulum rectum sunt basis, bina latera, et bini anguli; ea quinque sex tantum combinationes diversas habent, quarum singulis terna contineantur; nam combinari poterit.

Í. Ba-

- I. Basis cum utroque latere, quo casu, si quodvis horum trium quaeritur, adhibendus erit canon IV, et pro cognoscenda specie, regulae secundae pars prima: si duo latera &c.
 - II. Basis cum utroque angulo, quo casu adhibeatur canon VI, et regulae II. pars altera: si duo anguli &c.
 - III. Basis' cum uno latere et angulo adiacente; resolvitur per canonem II, et regulae II. partem tertiam: si latus cum angulo adiacente &c.
 - IV. Basis cum latere et angulo opposito, quo casu adhibeatur canon I. et regula prima, vel nulla in casu ambiguo, ubi species aliunde cognosci non potest.
 - V. Utrumque latus cum altero angulo, quo cafu ferviet canon III. et regula prima vel nulla in cafu ambiguo.
 - VI. Uterque angulus cum altero latere. Refolutio obtinebitur ex can. V. et regula prima vel nulla in cafu ambiguo.

Datis proinde in triangulo rectangulo praeter angulum rectum binis aliis, si quaeratur terminus quivis alius, videatur in quanam combinatione duo illi termini dati, cum termino quaesito contineantur; tum adhibito canone ibidem citato

citato terminus quaesitus vel erit inter medios vel extremos terminos proportionis. Si fuerit inter medios, addantur logarithmi terminorum extremorum, et ab hac summa auferatur logarithmus alterius termini medii dati, habebitur logarithmus termini quaesiti. Si vero fuerit inter extremos, addantur logarithmi terminorum mediorum, et ab hac summa auferatur alter extremus datus.

Exemplum. Sit in fig. III. basis BD = 57°. 20′. latus AD = 41°. 10′. et quaeratur angulus D adiacens lateri AD. Haec tria in combinatione tertia continentur, adeoque ex canone secundo formatur proportio.

Rad: cos. ang. D=tang. basis BD: tang. AD lateris adiacentis.

In qua proportione terminus quaesitus est secundus. Addantur igitur logarithmi primi et ultimi termini, et auseratur logarithmus tertii, eritque

cui

cui logarithmo in tabulis quam proxime refpondent 34°. 10′, quod est complementum anguli D, eritque ipse angulus D=55°. 50′.

Quoniam autem eidem combinationi respondet regulae secundae pars tertia: si latus cum angulo adiacente &c. et vice versa; nimirum cum hic basis sit 57°. 20′ minor quadrante, latus cum angulo adiacente erunt eiusdem speciei, est autem latus 41°. 10′ minus quadrante, adeoque etiam angulus D quaesitus est ille ipse 55°. 50′. non vero eius supplementum ad 180°.

posito, nisi aliunde ex determinatis problematis conditionibus cognoscatur species, casus semper erit ambiguus. Nam in triangulis BAD, BAF. (sig. III.) rectangulis ad A etiam anguli D et F sunt aequales, latus vero AB est utrique commune, adeoque his datis reliqua tria ambigua erunt; nimirum an AD vel AF, BD vel BF, ac demum ABD, vel ABF reperiatur. At in determinatis casibus problematum astronomicorum et geographicorum illa ambiguitas plerumque evanescit; aut per regulam primam species determinari poterit.

CAPVT

CAPVT III.

De resolutione triangulorum obliquangulorum.

34. Triangula obliquangula reducuntur ad rectangula ope perpendiculi demissi ex angulo aliquo in latus oppositum habitum pro basi, et fi opus fit productum. Eiusmodi triangula exhibet fig. V. Sit enim primo triangulum ABD vel aBd eiusmodiant anguli apud basim A et D vel a et d sint eiusdem speciei, seu illic uterque acutus hic uterque obtufus; evidens est, quod perpendiculum BE vel Be ex angulo opposito B demissum utrobique intra basim AD vel a d cadat. At vero in triangulo d BA, ubi angulus d acutus, et A obtufus est, perpendiculum BE in basim dA productam demissum, cadet extra basim ultra angulum obtufum A. Similiter in triangulo aBD, habente ad a angulum acutum, et ad D obtusum, perpendiculum BE ad basim aD demissium cadet extra basim a D, in partem anguli obtusi D. Inde habetur

Regula III. Si anguli ad basim suérint eiusdem speciei, perpendiculum intra basim cadet, si diversae, extra.

B 5 35. Trian-

- 35. Triangulum ABD ope perpendiculi BE reducitur ad bina triangula rectangula ABE, DBE, ubi sive perpendiculum BE cadat intra basim, sive extra, ut in triangulis ABd vel aBD, dicimus AE, ED, vel AE, Ed, vel aE, ED segmenta basis eorum triangulorum. Segmenta verticis autem dicuntur ABE et DBE; aut ABE, et dBE, vel aBE et DBE, et quidem segmenta AE et ABE dicuntur adacentia lateri AB et angulo A; et opposita lateri DB et angulo D; contra vero DE, et DBE illis dicuntur opposita et his adiacentia.
 - 36. Porro ope fuperiorum fex canonum eruentur alii feptem pertinentes ad haec fegmenta, latera et angulos, ubi, quidquid dicetur de triangulo ABD, id totum de reliquis tribus triangulis ABd, aBD, aBd erit intelligendum, dummodo litteris maioribus apte fubfituantur minores.

37. Itaque canonem primum applicando ad triangula AEB, DEB ad E rectangula, erit primo

Rad: fin. ang. A= fin. AB: fin. BE. et in fecundo triangulo ex eodem canone alternando obtinetur.

fin. ang.D: Rad. = fin. BE: fin. BD.

adeo-

adeoque ex aequo perturbato ex duabus ori-

fin. ang. D: fin. ang. A = fin. AB: fin. BD.

Quare Can. VII. Sinus angulorum funt ut sinus laterum oppositorum.

38. Eodem modo ex Canone fecundo eruitur primo

Rad: cos. ang. ABE = tang. AB: tang. BE.

cofin. DBE: Rad. = tang. BE: tang. DB, igitur ex aequo perturb.

cofin. DBE: cos. ABE = tang. AB: tang. DB.

Quare Can. VIII. Cosinus segmentorum verticis sunt ut tangentes laterum oppositorum.

39. Ex Canone tertio.

Rad: tang. A = fin. AE: fin. BE.

ex eodem alternando

tang. D: Rad. = fin. BE: fin. DE.

unde ex aequo perturb.

tang. D: tang. A = fin. AE: fin. DE.

Quare Can. IX. Sinus fegmentorum bafis funt ut tangentes angulorum oppo-fitorum.

40. Ex

40. Ex Canone quarto.

Rad: $\cos BE = \cos AE : \cos AB$. ex eodem

Rad: cos. BE = cos. DE: cos. DB. unde ex aequo ordin.

Cos. AE: cos. DE = cos. AB: cos. DB. Quare Can. X. Cofinus fegmentorum basis sunt ut cosinus laterum adiacentium.

41. Ex Canone quinto altern.

Rad: cos. BE = fin. ABE: cos.,A. ex eodem alternando

Rad. cos. BE = fin. DBE; cos. D. unde ex aequo ordinat.

fin. ABE: fin. DBE=cos. A: cos. D.

Quare Can. XI. Sinus fegmentorum verticis funt ut cofinus angulorum adiacentium.

42. Ex his quinque canonibus facile perspicitur, quaenam res inter se combinentur; possetque ex canone tertio alius canon formari, in quo ipsa segmenta verticis et basis inter se combinantur: erit enim exCan. III.Rad: sin. BE=tang. ABE: sin. AE.

it. ex eod. Rad: sin. BE = tang. DBE: sin. DE, et ex aequo ordinat.

tang. ABE: tang. DBE = fin, AE: fin. DE. unde

unde oriretur Canon: tangentes segmentorum verticis funt ut finus fegmentorum basis adiacentium. Qui canon tunc folum usum habere posset, si tria ex dictis quatuor iam inventa supponantur; id quod raro locum habet. Possent etiam ex superioribus proportionibus in certis casibus ipsa segmenta verticis aut bafeos reperiri. Sic in n. 37. ex prima proportione ex datis angulo A et latere AB reperitur BE. Idem reperitur ex fecunda proportione ex datis angulo Dematere DB. Porro ex n. 38. ex dato AB et invento BE reperitur in prima proportione fegmentum verticis ABE. vel ex altera proportione ex dato DB et invento BE, reperiretur segmentum DBE. Idem eodem modo de caeteris est intelligena dum, quia tamen pro omnibus casibus triangulorum resolvendis non sufficiunt, aut plures operationes exigunt, duo alii canones constituendi sunt, ex quibus dicta segmenta verticis et baseos erui possint. Unde

· 43. Canon duodecimus formabitur ex canone decimo, fumendo fummas et differentias. Pro quo notandum, quod in binis quibusvis arcubus sit summa sinuum ad differentiam, ut

Digitized by Google

tan-

tangens femifummae eorundem arcuum ad tangentem femidifferentiae eorundem.

Demonstrat. Sint enim in fig. VI. bini arcus AD, DB, et secetur arcus AB bifariam in E. erit AB summa eorum arcuum, AE semifumma, et DE semidifferentia. Ductis autem CD. et CE radiis occurrat chorda AB in punctis G et I, ac secetur bifariam et ad angulos rectos in I, erit A I femifumma. G I femidifferentia binarum rectarum AG et GB. Tandem ducantur Gerpendiculares AP, BO ad CD, quae erunt finus arcuum AD, et DB. His ita constitutis triangula AGP, BGQ erunt fimilia, ob angulos apud P et Q rectos, et apud G verticales aequales, eruntque ii sinus ut AG et GB; adeoque erit etiam eorum semisumma ad eorum semidisserentiam, ut AI harum femifumma, ad IG harum femidifferentiam. At habendo CI pro radio in triangulis CIG, CIA rectangulis funt IG et IA tangentes angulorum ICG, ICA. Sunt igitur etiam tangentes arcuum, qui eos angulos metiuntur, ut eaedem rectae IG et IA. Quare semisumma finuum arcuum AD et DB, est ad eorum semidifferentiam, adeoque-et eorum fumma ad differentiam, ut tangens arcus AE semisummae ipsorum arcuum, ad tangentem ED eorum semidisserentiae Q. E. D. Porro completa diametro ACK, secetur bisariam etiam KB in M, et capiatur MN=DE versus eandem plagam; eritEM dimidium totius semicirculi cum MK sit complementum de EA; adeoque tam ME, quam ND erit quadrans, et DB erit complementum arcus BN; relinquenturque AD et NK simul aequales alteri quadranti; et AD erit complementum ad NK; ipsorum vero arcuum BN et NK semisumma erit BM, BE vero seu AE erit complementum semisummae; MN seu ED semidisserentia.

Cum igitur per demonstrata sit summa sinuum arcuum AD et DB ad eorum disserentiam, ut tangens eorum semisummae AE ad tangentem eorum semidisserentiae ED, erit etiam per hucusque dicta summa cosinuum binonum arcuum KN et NB ad eorum disserentiam, ut cotangens eorum semisummae BM ad tangentem eorum semidisserentiae MN seu ED.

Sumptis proinde ex canone X. fummis et differentiis terminorum, et pro ratione fummae cofinuum fegmentorum basis ad differen-

ferentiam, fubstituendo per hucusque dicta rationem cotangentis semisummae segmentorum basis, ad tangentem semidisferentiae; item pro ratione summae cosinuum laterum ad disferentiam, substituendo rationem cotangentis semisummae laterum ad tangentem semidisferentiae, obtinebitur

- , Canon XII. Cotangens femisummae segmentorum basis, sive cotangens dimidiae basis, ad tangentem semidisferentiae, ut cotangens semisummae laterum ad tangentem semidisferentiae eorundem.
- 44. Simili modo ex canone XI. pro rationibus fummae finuum vel cofinuum ad diffetias, fubstituendo rationes tangentis vel cotangentis semisummae ad tangentem semidifferentiae, eruitur

Canon XIII. Tangens femifummae fegmentorum verticis, five tangens dimidii anguli verticalis ad tangentem femidifferentiae, ut cotangens femifummae reliquorum angulorum, ad tangentem femidifferentiae eorundem.

45. Possent simili modo ex canone VIII, et reliquis, sumendo summas et differentias terminorum, complures canones formari, ex qui-

quibus folutiones variorum problematum obtineri possent, quia tamen positi hucusque canones refolvendis quibusvis problematis fufficiunt, eos confulto omittimus. Sic Neperus et alii pro canone XII. proponunt hunc: tangens semisummae segmentorum basis, sive tangens dimidiae basis, ad tangentem semifummae laterum, ut tangens semidifferentiae ipforum, ad tangentem semidifferentiae segmentorum basis; ipsumque demonstrant ex principiis conicis. Nos eum ex can. XII. deducimus. Nam pro ratione cotangentis dimidiae basis, ad cotangentem semisummae laterum fumendo (per elem. geom. 456) rationem inversam tangentis huius ad tangentem illius habetur alternando: tangens semisummae laterum. ad tangentem dimidiae basis, ut tangens semidifferentiae segmentorum ipsius basis, ad tangentem semidifferentiae laterum. Demum invertendo obtinetur canon Neperianus.

46. Superest, ut in sequentibus ostendamus, quomodo ope superiorum canonum in quovis triangulo sphaerico obliquangulo ex datis quibusvis tribus reliqua sigillatim pro quovis casu reperientur; pro qua re sig. V. semper ob oculos habenda, et quidquid de

Digitized by Google

trian-

triangulo ABD dictum fuerit, id reliquis triangulis ABd, aBD, aBd, convenienter adplicandum erit; poteritque ex figurarum harum contemplatione tyro facile discernere, an pro varia horum triangulorum constitutione segmenta verticis vel basis sibi invicem addenda, an et quae a se invicem subtrahenda sint, ipsaque quaesitorum terminorum species, item an perpendiculum BE vel Be intra vel extra basim cadat diiudicari.

47. Problema. In triangulo fphaerico obliquangulo tribus datis reliqua invenire.

Refol. Sex casus complectitur hoc problema: I. in quo dentur bina latera cum angulo intercepto; estque problema determinatum, unicam solutionem admittens. II. bina latera cum angulo alteri eorum opposito; estque casus ambiguus ex certis conditionibus problematis determinandus. III. bini anguli cum latere intercepto; quod unam solutionem admittit. IV. bini anguli cum latere alteri eorum opposito; qui casus rursum ambiguus est. V. tria latera. VI. tres anguli, quod utrumque determinatum est unicam solutionem admittens. Unde

48. Pro:

- 48. Pro casu I. quaeri potest I. tertium latus. Sume pro A angulum datum, eruntque data latera AB et AD, et quaeretur BD. Ex datis in triangulo rectangulo AEB bast AB et angulo A, quaere segmentum basis AE, per can. II. et regulae II. partem tertiam. Invento AE habebis ED, ob datum AD. Demum ex segmentis baseos AE, ED et latere AB, invenies cosinum BD (per can. X. n. 40.). Ex dato angulo A cognoscitur species BE (per reg. I.). Ex specie BE et specie ED eruitur species BD (per reg. II.).
- 49. Quaeri potest II. angulus utervis. Sume pro AB latus quaesito angulo oppositum, pro AD alterum latus datum, eritque A datus, D angulus quaesitus. Quaere primo segmenta AE et ED, eodem modo ut n. praecedente. Ex iis et angulo A (per can. IX. n. 39.) invenies tangentem anguli D quaesiti. Species pro varia horum triangulorum constitutione facile determinabitur per dicta n. 46.
- opposito alteri ex iis. Quaeri poterit I. tertium latus. Sume pro A angulum datum, pro AB latus ipsi adiacens, BD oppositum angulo A, et quaeretur AD tertium latus.

C₂ In

In triangulo rectangulo A E B quaere per can. II. et regulae II. partem tertiam segmentum basis A E. Deinde ob data latera A B et BD et inventum AE, (per can. X. n. 40.) invenies cosinum segmenti E D. Porro ex specie BE, quae est eadem ac anguli dati A, et specie BD invenies speciem E D (per reg. II.), nempe si BD sit minor quadrante, erunt BE et E D eiusdem speciei, si maior, diversae. Pro varia horum triangulorum constitutione debebit ED yel addi ad AE yel subtrahi.

ABD interceptus. Ex datis AB et A, quaere fegmentum verticis ABE (per can. VI.n. 27.); ipecies innotefcet ex reg. II. Ex lateribus AB et BD, et fegmento verticis ABE invento (per can. VIII. n. 38.) invenies cofinum fegmenti EBD. Ex BD dato et specie BE, quae quidem ex specie anguli A dati innotuit, invenies speciem DBE (per reg. II.). Horum fegmentorum summa vel differentia dabit angulum ABD quaesitum.

52. Quaeratur III. angulus D oppositus lateri AB dato. Casus hic omnium facillimus resolvitur ope solius canonis VII. n. 37.

53. Casus

re intercepto. Quaeritur I. tertius angulus. Sume pro AB latus datum; eruntque dati anguli A et B, et quaeretur D. Itaque ex datis AB et A quaere fegmentum verticis AB E (per can. VI. n. 27.); speciem dabit regulae II. pars altera. Quod fegmentum si fuerit minus angulo ABD, perpendiculum intra basim cadet. Ex invento ABE innotescit alterum fegmentum EBD ob datum B. E fegmentis ABE, EBD et angulo A invenitur cosinus angus D (per can. XI. n. 41.); species eadem erit cum angulo A, si ABE suerit minor quam ABD; diversa, si maior.

pro A angulum ipsi oppositum, eritque alter angulus ABD datus, et BD latus quaesitum. Quaere segmenta ABE, DBE ut prius. Ex iis et latere AB (per can. VIII. n. 38.) invenies tangentem BD. Eius speciem invenies (per reg. II.) ex specie DBE et specie BE, quae est eadem ac anguli A dati.

re alteri ex iis opposito. Quaeritur I. tertius angulus. Sume pro AB latus datum, pro A angulum datum dato lateri adiacentem, erit-

C 3

que

que etiam datus angulus D, et quaeretur angulus ABD. Segmentum ABE invenies (per can. VI. 11.27.), speciem per reg. II. partem alteram. Porro ex datis angulis A et D, et segmento ABE invento, reperitur (per can. XI. 11.41.) sinus DBE; species de se indeterminata ex conditionibus certi problematis determinanda erit.

- 56. Quaeratur II. latus AD interceptum. Ex datis AB et A, quaere fegmentum AE (per can. II. n. 23.); species determinatur per reg. II. partem tertiam. Porro ex angulis A et D, et segmento AE reperto, invenies sinum ED (per can. IX. n. 39.); species ipsius de se indeterminata pariter ex conditionibus problematis determinanda erit.
- 57. Quaeratur III. latus BD oppositum angulo A. Ex datis angulis A et D, et latere AB (per can. VII. n. 37.) invenitur sinus lateris BD.
- 58. Cafus V. Dentur tria latera, potest quaeri quivis angulus. Sume pro A angulum quaesitum. Ex datis AB, et BD et dimidia basi AD invenies (per can. XII. n. 43.) semi-differentiam segmentorum AE ED, quam semidifferentiam sumes quadrante minorem,

eam-

eamque addendo dimidiae basi habebis segmentum maius, fubtrahendo ab ea, minus. pro AE illud fegmentum fumes, quod magis vel minus distat a quadrante, prout latus adiacens AB distabit pariter magis vel minus a quadrante, cum (per can. X.) cosinus segmentorum basis, sint ut cosinus laterum adiacentium, et arcus propioris quadranti cosinus sit minor. Jam in triangulo AEB, ex dato AB et invento AE invenies angulum A (per can. II. n. 23.); fpeciem dabit regulae II. pars tertia. Sed fi AE habitum fuerit per subtractionem, et obvenerit negativum perpendiculo BE citra A cadente, angulus quaesitus BAD non erit item cum BAE, fed eius complementum ad duos rectos; id quod ex fig. V. facile perfpicitur.

oquaeri quodlibet latus. Sume pro AB latus quaefitum. Ex datis angulis A, D, et dimidio verticali ABD invenies (per can. XIII. n. 44.) tangentem femidifferentiae fegmentorum ABE, EBD, quam femidifferentiam fumes quadrante minorem eamque addendo dimidio angulo verticali habebis fegmentum maius, et fubtrahendo minus. Sed pro ABE

affumes fegmentum illud, quod magis vel minus distet ab angulo recto, prout e contrario angulus adiacens A distabit minus vel magis a recto; cum nimirum (per can XI.) sint sinus fegmentorum verticis ut cosinus angulorum adiacentium; et arcus propioris quadranti cosinus sit minor, sinus maior. Porro in triangulo rectangulo AEB, ex angulo A dato, et angulo ABE invento invenies latus quaesitum AB (per can. VI. n. 27.); speciem definiet regulae secundaes pars altera.

aliquod e. g. AB quadranti aequale, admodum facile dato triangulo fubstituitur aliud, quod rectangulum sit, et quo resoluto illud etiam resolvitur. Capiatur enim quadrans AE, et per puncta B et E ducto circulo maximo erunt anguli B et E quadrantibus AB et AE oppositi recti; et latus BE mensura aequalis angulo A. Porro arcus ED erit complementum arcus AD, et angulus EBD, erit complementum anguli ABD. Datis proinde quibusvis tribus in triangulo ABD, dantur etiam ea, quae pertinent ad triangulum BED ad E rectangulum, et consequenter hoc resoluto illud etiam resolvitur.

CAPVT

CAPVT IV:

Adplicatio trigonometriae sphaericae ad nonnulla problemata astronomica et geographica.

61. Problema I. Datis obliquitate maxima eclipticae, et distantia solis a proximo aequinoctio, invenire eius declinationem.

Refolutio. Sit in fig. III. ADEF aequator DBF ecliptica, AB arcus declinationis folis in B existentis. Erit angulus A rectus, D angulus obliquitatis datae, et BD arcus distantiae folis a proximo aequinoctio. Ex quibus datis quaeretur arcus AB declinationis quaesitae. Itaque ex can. I. n. 22.

Rad: fin. D = fin. BD: fin. AB.

Exemplum. Sit maxima obliquitas eclipticae 23°. 30′. distantia solis a proximo 'aequinoctio autumnali 45°. 50′.

Cui in tabulis respondent quam proxime 16°. 40' pro arcu AB quaesito.

Hac

Hac methodo construuntur tabulae declinationum solis pro singulis 90° distantiae solis a proximo aequinoctio; in caeteris quadrantibus eaedem declinationes recurrunt.

Ex iisdem datis inveniri potest angulus eclipticae cum circulo declinationis, seu angulus ABD (per can. VI. n. 27.).

Demum ex iisdem datis si in triangulo ABD (per canonem II.) eruatur latus AD angulo dato D adiacens, obtineri poterit ascensio solis recta, ac exinde tabulae ascensionum rectarum solis construi.

62. Problema II. Datis maxima obliquitate, eclipticae, et folis declinatione, invenire eius ascensionem rectam.

Refol. Manentibus omnibus ut in praecedente problemate fig. III. dantur in triangulo ABD vel ABF, angulus Arectus, et angulus D vel F obliquitatis eclipticae, nec non AB arcus declinationis, quaereturque arcus AD vel AF aequatoris. Ideoque (per can. III. n. 24.)

tang. D: Rad. = tang. AB: fin. AD feu AF quaesitum.

Exempl. Sit maxima obliquitas eclipticae = 23°. 30'. arcus declinationis AB = 16°. 40'. quaequaeraturque ascensio recta AD vel AF puncto aequinoctii verni in D vel F constituto:

Cui in tabulis respondent quam proxime 43°. 30' pro arcu AD, vel pro arcu AF, eius complementum ad duos rectos, id est 136°. 30'. Ab aequinoctio verno usque ad solstitium aestivum sumendus est arcus AD quadrante minor. Post solstitium aestivum usque ad aequinoctium autumnale sumendus est arcus AF quadrante maior; ab aequinoctio autumnali usque ad solstitium hyemale arcui AD invento addendi sunt 180°, et post illud usque ad aequinoctium vernum iidem 180° arcui AF addendi erunt.

63. Ex iisdem datis (per can. I. n. 22.) inveniri potest arcus DB vel BF, adeoque locus solis in ecliptica, seu distantia eiusdem ab aequinoctio verno vel autumnali; inferendo

fin. D: Rad. = fin. AB: fin. BD. vel BF.

64. Ex iisdem datis reperitur angulus B feu angulus eclipticae cum arcu declinationis nis vel etiam meridiani (per can. V. n. 26.); inferendo

cosin: AB: cosin: D = Rad: sin. B.

65. Probl. III. Data elevatione poli, una cum declinatione folis, invenire I. differentiam afcensionalem, II. amplitudinem ortivam ac III. Azimuthum.

Resolutio. Cogitetur in fig. III. circulus ADEFL repraesentare horizontem, DBF aequatorem, P polum aequatoris, ABP circulum declinationis per punctum folis in A orientis, et, ut figura exhibet, in fignis australibus commorantis, LHP meridianum loci, cuius altitudo poli data est. Erit his itadispositis arcus AD amplitudo ortiva, arcus AL azimuth, arcus DB differentia ascensionalis aut etiam descensionalis, si sermo sit de fole in Aoccidente; angulus ADB erit aequalis altitudini aequatoris cognitae ex data poli elevatione, cuius illa complementum est. Demum angulus DBA, quem arcus declinationis folis AB cum arcu aequatoris constituit, rectus Itaque in triangulo ABD praeter angulum rectum B, datur angulus D aequalis altitudini aequatoris, et latus AB declinationi folis aequale. Unde

I. Dif-

I. Differentia ascensionalis DB reperietur (per can. III. n. 24.) inferendo

tang. D: Rad. = tang. AB: fin. DB.

Exemplum. Sit altitudo poli = 51°. 10', erit altitudo aequatoris = 38°. 50' = ang. D. declinatio folis australis = 16°. 40′ = lateri AB.

+ log. Rad. = 10.0000000

+ log.tang.AB= 9.4762233

19.4762233

 $- \log \tan B = 9.9057845$

log. fin. DB = 9.5704388

Cui in tabulis respondent 21°. 50'.

66. II. Pro amplitudine ortiva vel etiam occidua AD, quae est basis trianguli rectanguli ABD, adhibeatur can. I. n. 22. inferendo

fin. D: Rad. = fin. AB: fin. AD.

Exemp. + log. Rad. = 10.0000000 + log. fin. AB. 16°. 40'= 9.4575840

19.4575840

- log. fin. D. 38°. 50′ = 9.7973°71

log. fin. A D = 9.6602769Cui quam proxime respondent 27°. 20'.= AD. Demum habita amplitudine ortiva vel occidua AD, reperitur arcus azimuthalis AL, si a quadrante

drante LD auferatur AD. Si fol extiterit in fignis borealibus, amplitudo ortiva AD quadranti DL addenda erit; quo cafu triangulum ABD cadit infra horizontem AD. Caetera eodem modo fe habent, ut ante.

titudine construuntur tabulae differentiarum ascensionalium. Ex his vero facile concinnantur tabulae ascensionis obliquae solis. Nam in signis borealibus ad habendam ascensionem obliquam, differentia ascensionalis ab ascensione recta (per n. 62.) inventa subtrahenda est. At vero in signis australibus eadem differentia ascensioni rectae addenda erit; quae omnia in globo coelesti facile demonstrantur. Serviant vero haec problemata ad determinanda puncta cardinalia orientis et occidentis, ex observato puncto solis orientis vel occidentis, et ad determinendam lineam meridianam.

68. Probl. IV. Datis ascensione obliqua, amplitudine ortiva, et angulo, quem facit ecliptica cum aequatore, invenire angulum, quem facit punctum orientis solis, vel eclipticae cum horizonte.

Refolutio. Repraesentet in fig. III. A D arcum horizontis ipsamque datam amplitudinem ortivam

ortivam, sitque punctum D punctum orientis folis vel eclipticae DBF. Demum ABE aequator, et arcus AB ascensio obliqua data, eritque angulus B inclinatio eclipticae ad aequatorem. Quare in triangulo obliquangulo ABD dantur bina latera AB, AD. cum angulo B lateri AD opposito; quaereturque angulus D dato lateri AB oppositus; unde ex can. VII. n. 27.

fin. AD: fin. B = fin. AB: fin. D.

Exemplum. Existat sol in signis borealibus sitque ascensio eius recta 43°. 30'. differentia ascensionalis, 21°. 50', erit ascensio obliqua 21° . 40' = AB, amplitudo ortiva $AD = 27^{\circ}$. 20'. angulus eclipticae cum aequatore 23°. 30'. = ang. B. Unde

 $+ \log$. fin. B. 23°. 30′ = 9.6006997

 $+ \log$. fin. AB. 21°. 40′ = 9.5672689

19.1679686

- log. fin. AD. 27° 20' = 9.6619701

log. fin. D. 9.5059985

Cui in tabulis respondent quamproxime 18°. 40' = ang. D.

68. Ex iisdem datis reperitur longitudo folis feu arcus DB per methodum n. 50. declaratam.

ratam. Sed quia in triangulo ABD etiam cognitus est angulus A, seu eiusdem complementum ad duos rectos BAL, utpote altitudo aequatoris ex data poli elevatione cognita per eundem canonem VII. reperitur arcus DB; inferendo

fin. B: fin. AD = fin. A: fin. DB.

Exemplum detur

+ log. fin. AD. 27°. 20' = 9.6619701

+ log. fin. BAL. 38°. 50'= 9.7973071

19.4592772

- log. fin. B. 23° . 30' = 9.6006997

log. fin. DB = 9.8585775 Cui respondent quam proxime 46°. 10' pro loco solis in ecliptica.

69. Problem. V. Determinare tempus primi mobilis; item tempus folare, quo datus arcus aequatoris meridianum transit; et vicissim arcum aequatoris invenire, qui intra datum tempus, tam primi mobilis, quam solare per meridianum transit.

Refolut. Formetur haec proportio: 360°: 24 horas temporis primi mobilis, ita datus arcus aequatoris e. g. 90°: 6 horas. Ex hac proportione reperitur, quod i arcus aequatoris

toris intra 4" temporis primi mobilis per meridianum transeat, 1' aequatoris intra 4" temporis, 1° aequatoris intra 4' temporis, 5° aequatoris intra 20' temporis, 10° aequatoris intra 40' temporis, 15° aequatoris intra 1 horam, 30° aequatoris intra 2 horas &c. Etvicissim invertendo proportionem ex dato quovis tempore arcus aequatoris meridianum interea pertransiens reperiri potest.

Quia vero fol intra 24 horas primi mobilis afcensionem rectam mutat 59. 8". 20", eamque ob causam tardius quam stella sixa ad meridianum pertingit, hinc ad reperiendum tempus solare dato arcui aequatoris respondens sequens proportio formanda est:

ut 360°. 59′. 8″. 20″ se habent ad 24 horas temporis solaris, ita datus arcus e. g. 90° ad 5 hor. 59′. 0″. 36‴.

Ex hac proportione reperitur, uni gradui aequatoris refpondere 3'. 59". 20" temporis folaris. Et uni minuto primo aequatoris: 3". 59". 20"" temporis. Et vicissim ex inversa proportione dato tempore solari arcus aequatoris meridianum interea pertransiens reperiri potest. Sic 1 horae temporis solaris respondent 15°. 2'. 28" arcus aequatoris. Et uni minu-

minuto temporis folaris respondent 15'. 2". 28" arcus aequatoris. Demum uni minuto secundo temporis respondent 15". 2". 28" arcus aequatoris &c. Usus huius problematis in sequentibus erit necessarius.

70. Probl. VI. Dato loco folis in ecliptica et elevatione poli, invenire longitudinem diei et noctis.

Refol. Quaeratur I. declinatio folis (per n. 61.). Exinde II. differentia afcensionalis (per n. 65.). III. Inventa differentia ascensionalis convertatur in tempus folare (per n. 69.). IV. Si fol fuerit in fignis borealibus, inventum hoc tempus addatur tempori folari, quo quadrans aequatoris per meridianum transit; fi vero idem in fignis auftralibus extiterit, ab eodem auferatur, ita obtinebitur tempus femidiurnum, cuius duplum erit ipfa longitudo diei. V. Inventa longitudo diei auferatur a 24 horis, relinquetur longitudo noctis; cuius dimidium erit tempus feminocturnum. Ex quo facile intelligitur, per resolutionem huius problematis etiam determinari tempus ortus et occasus folis; nam ortum folis indicabit tempus feminocturnum a media nocte com-

puta-

putatum, occasum vero tempus semidiurnum a meridie computari solitum.

71. Probl. VII. Data elevatione poli, et declinatione folis, invenire eius altitudinem ad datum quodvis momentum.

Resolut. I. Si sol sit in aequatore. Repraesentet in fig. III. arcus LHP meridianum, P zenith, DBF aequatorem, AB arcum verticalem, seu altitudinem solis in B exi-His ita dispositis in triangulo BHP stentis. erit arcus HP aequalis latitudini loci, feu elevationi poli datae; item angulus H rectus, quia meridianus LHP per polum aequatoris transit. Demum ex data diei hora inveniatur tempus ad meridiem refiduum, quod a meridie erit ipsa data hora pomeridiana, hoc (per probl. n. 69.) in arcum aequatoris conversum dabit arcum BH. Quibus datis reperitur arcus BP, qui est complementum altitudinis AB quaesitae, (per can. IV. n. 25.) inferendo

Rad: $\cos HP = \cos BH$: $\cos BP$.

Exemplum. Detur tempus ad meridiem refiduum vel a meridie praeterlapfum aequale 3 horis. Hae in arcum aequatoris conversae dabunt pro arcu BH 45°. 7′, sitque latitudo

titudo loci seu elevatio poli seu arcus HP = 51°. 6′, reperietur

log. cosin. B P = 9.6465330 adeoque ipse arcus AB erit = 22°. i8' quam proxime.

72. II. Existat fol in fignis borealibus, repraesentetque in fig. III. circulus LADE aequatorem, Hzenith, P polum aequatoris, DBH circulum verticalem, sitque BH complementum altitudinis folis in B existentis, AB declinatio solis data, eritque BP complementum declinationis. Demum arcus HP erit complementum datae elevationis poli.

Ac fi tempus ad meridiem refiduum vel a meridie praeterlapfum in arcum aequatoris (per n. 69.) convertatur, obtinetur arcus AL, qui est mensura aequalis angulo P. Datis proinde in triangulo obliquangulo duobus lateribus HP et BP cum angulo intercepto P, inveniendum est (per n. 48.) latus BH.

Con-

Concipiatur ex angulo H demissum perpendiculum in basim BP, quod alicubi cadet in punctum O. Tum (per can. II.) formetur proportio ad inveniendum segmentum PO

Rad: $\cos P = \tan B$. HP: $\tan B$. PO.

Invento PO habebis BO, ob datum BP. Demum ex fegmentis BO, PO et latere HP invenies BH (per can. X. n. 40.), inferendo

Cos. PO: $\cos BO = \cos HP$: $\cos BH$.

Exemplum. Sit declinatio folis borealis AB = 20°.30′, erit eius complementum BP=69°.30′; complementum elevationis poli HB=38°. 54′, horae ad meridiem refiduae tres, erit arcus AL feu angulus $P=45^{\circ}$. 7′.

Erit ex prima

+ log. cofin. P. 45° . 7' = 9.8485989

 $+ \log \tan \theta$. HP. 38° 54′ = 9.9068188

19.7554177

- log. Rad. = 10.0000000

log. tang. PO = 9.7554177.

Cui in tabulis respondent quam proxime 29°. 40'= PO.

Unde BO=69°. 30' - 29°. 40' = 39°. 50'.

D 3 Deinde

Deinde ex altera proportione erit + log. cos. BO: 39°.50′ = 9.8853109 + log. cos. HP. 38°.54′ = 9.8911152

19.7764261 - log. cosin. PO.29°. 40′ = 9.9389796

log. cofin. BH = 9.8374465Cui in tabulis respondent 46° 33' = BH, eritque ipsa solis altitudo 43° . 27'.

73. III. Si fol fuerit in fignis auftralibus, loco baseos BP in priore resolutione adhibitae, sumi debet aggregatum ex quadrante AP et declinatione solis AB, reliqua se habent ut ante. Exempla hucusque allata sufficient, ut tyrones in sequentibus se ipsos per eiusmodi exempla exercere possint.

74. Probl. VIII. Data elevatione poli, declinatione folis, eiusque altitudine, invenire horam diei.

Refolut. I. Si fol extiterit in aequatore, refolutio obtinetur eodem modo, ficut in n. 71. inveniendo cofin. BH, erit nempe cos. HP: Rad.=cos. BP: cos. BH. Inventus arcus BH convertatur in tempus folare (per n. 69.), habebitur tempus ad meridiem refiduum, fi fol fuerit

fuerit in parte orientali, vel a meridie praeterlapfum, si fuerit in occidentali.

Repraesentet in fig. III. circulus DAL aequatorem, H zenith, P polum, DBH circulum altitudinis solis B, AB eiusdem declinationem, erit in triangulo obliquangulo PHB, PH complementum elevationis poli, BP complementum declinationis, BH complementum altitudinis. Quibus datis invenietur angulus P seu arcus aequatoris AL per methodum n. 58. declaratam, qui in tempus solare conversus dabit horam quaesitam.

76. III. Si fol fuerit in fignis australibus, loco arcus BP sumendum est aggregatum ex quadrante AP, et declinatione solis AB; caetera manebunt ut ante.

77. Probl. IX. Datis declinatione, altitudine et azimuth folis, invenire horam diei, et elevationem poli.

Refol. Sit in fig. III. LHP meridianus, P
polus, H zenith, LAD horizon, BP complementum declinationis, BH complementum altitudinis DB, arcus DL azimuth, et
mensura aequalis angulo LHD; quo dato
etiam datur eius contiguus BHP. Datis proinde

inde in triangulo obliquangulo BHP lateria bus BH, BP, cum angulo H opposito, invenietur primo angulus P (per can. VII. n. 37.) feu arcus AL, qui in tempus folare conversus dabit horam diei. Porro ex iisdem datis inveniri poterit arcus HP tertium latus per methodum n. 50. declaratam; quod erit complementum altitudinis poli quaesitae. Vicissim datis declinatione, altitudine solis, et poli elevatione, reperiri facile poterit azimuth folis, adeoque linea meridiana, nec non hora diei; id quod ex contemplatione datorum trium laterum in triangulo BHP fatis persbicitur. Nam per methodum n. 58. inveniendo angulum H, reperietur etiam eius contiguus DHL, cuius mensura est arcus DL azimuth quaesitum.

Et reperiendo angulum P, réperietur areus aequatoris in tempus folare convertendus.

78. Probl. X. Datis declinatione et altitudine folis et hora diei, invenire azimuth folis feu lineam meridianam.

Refol. Datum tempus folare ad meridiem refiduum vel pomeridianum convertatur in arcum aequatoris (per prob.IV. n.69.), habebitur in triangulo

angulo PHB, fig. III. praeter latera BP et BH, quorum illud est complementum declinationis, hoc complementum altitudinis, angulus P, cuius mensura est arcus AL aequatoris ad meridiem residuus, inveniendusque est arcus DL, seu angulus LHD azimuthi. Itaque (per can. VII. n. 37.)

fin. BH: fin. P = fin. BP: fin. H.

Id est sinus complementi altitudinis BH, est
ad sinum distantiae a meridiano, seu sinum anguli P, ut sinus complementi declinationis
BP, ad sinum azimuth a meridiano, seu anguli H quaesitum.

79. Probl. XI. Datis declinatione folis, elevatione poli, et angulo azimuthali, quo habetur linea meridiana, invenire horam diei.

Refolut. Sit in fig. III. LHP meridianus, H zenith, P polus aequatoris DAL, AB declinatio folis, erit BP complementum declinationis, HP complementum elevationis poli, et angulus LHD azimuthalis, quo dato, habetur etiam eius contiguus BHP; datis igitur in triangulo obliquangulo BHP duobus lateribus PH, BP, cum angulo H lateri BP opposito, invenietur angulus P, seu arcus AL aequatoris per methodum n. 51. de-

mon-

monstratam, qui in tempus solare conversus (per n. 69.) dabit horam quaesitam.

80. Probl. XII. Datis elevatione poli, altitudine folis vel stellae, et angulo azimuthali seu linea meridiana, invenire eius declinationem.

Refol. Sit in fig. III. BH complementum datae altitudinis folis vel stellae in B existentis, HP complementum elevationis poli, et angulus DHL vel eius contiguus BHP angulus azimuthalis datus, quaeretur in triangulo BHP complementum declinationis BP, quod invenietur per methodum n. 48. demonstratam.

81. Ex iisdem datis inveniri poterit angulus P feu arcus aequatoris AL per methodum n. 49. adeoque si sermo sit de sole, arcus AL conversus in tempus solare, dabit horam diei. Si vero sermo sit de stella sixa, obtinebitur tempus, quo stella meridianum attinget, si sit in plaga orientali, vel quo a meridiano discessit, si sit in plaga occidentali; et si sciatur, quantum stella solem in ascensione recta vel antecedat vel sequatur, hora diei exinde cognosci poterit. Aut data hora diei vicissim differentia inter ascensionem rectam solis et stellae eruetur.

82. Probl.

82. Probl. XIII. Datis longitudine et latitudine ftellae fixae, invenire eius declinationem.

Refolut. Sit in fig. VII. AEB aequator, P eiusdem polus, 542 ecliptica, Z polus eclipticae, circulus APZ colurus folftitierum, C stella data, cuius longitudo VG, et latitudo GC dantur, quaeritur eiusdem declinatio CE.

Porro in triangulo CPZ arcus PZ est distantia poli eclipticae a polo aequatoris, iam aliunde cognita; et arcus CZ est complementum arcus GC datae latitudinis stellae. Demum ob datam longitudinem GV, datur etiam eius complementum G 5, seu distantia a proximo coluro solstitiorum; est vero arcus G mensura aequalis angulo PZC; adeoque in triangulo PZC datis duobus lateribus PZ, CZ, cum angulo intercepto Z invenietur tertium latus PC (per n. 48.), quod erit complementum quaesitae declinationis CE.

83. *Probl.* XIV. Datis longitudine et latidine stellae fixae, invenire eius ascensionem rectam.

Refol. In fig. VII. arcus aequatoris VE erit ascensio recta quaesita. Datis proinde in triangulo CPZ lateribus PZ, CZ et angulo Z, reperietur (per n. 49.) angulus CPZ, quem meti-

metitur arcus EB, cuius complementum ad 90° est ascensio recta V E quaesita. Vicissim data stellae declinatione et eius ascensione recta, seu latere CP, PZ et angulo P, reperietur primo CZ seu latitudo stellae (per n. 48.). Et demum angulus Z seu complementum longitudinis G V (per n. 49.).

84. Cognita stellae cuiuspiam declinatione altitudo poli invenitur, si ab observata maxima stellae altitudine auseratur eiusdem declinatio, si borealis est; aut ad eam addatur, si australis est, obtinebitur altitudo aequatoris, cuius complementum est elevatio poli. Porro ex declinatione stellae et elevatione poli eruitur amplitudo ortiva et occidua, nec non differentia ascensionalis, per methodum n. 65. declaratam. Ex his porro azimuthum seu linea meridiana, adeoque declinatio magnetis, nec non segmenta parallelorum ipsarum subter et super horizontem; demum quam longe vel prope a zenith absint.

85. Per ascensiones rectas stellarum cognofcitur tempus, quo antecedunt vel sequuntur solem; si videlicet differentia inter ascensionem rectam solis et stellae in tempus solare convertatur; ex quo porro hora diei erui pote-

rit.

rit. Deinde data declinatione et altitudine Rellae et elevatione poli cognosci potest distantia stellae a meridiano eodem modo, quo n. 74. &c. de sole dictum est. Unde inveniri poterit linea meridiana, et hora nocturna. Si enim stella sit in parte orientali, tempus distantiae stellae a meridiano auserri debet a tempore, quo stella solem sequitur. At in parte occidentali idem tempori, quo stella solem sequitur, addendum erit, summa erit tempus solare a meridie computatum.

86. Probl. XV. Datis longitudinibus et latitudinibus duorum locorum, invenire eorum diftantiam feu arcum circuli maximi inter ea comprehensum.

Refolut. Sint in fig. VIII. duo loca B et C; A polus aequatoris F D E G, arcus B D et C E datae locorum latitudines, eruntque AB et AC complementa latitudinum. Ob datas vero longitudines innotescet differentia longitudinum DE, quae est mensura anguli A. Igitur in triangulo BAC datis duobus lateribus AB et AC et angulo comprehenso A, invenietur BC (per n. 48.) distantia locorum quaesita.

87. Ex iisdem datis inveniri potest angulus utervis B vel C (per n.49.). Que invento co-gnosci-

gnoscitur, qua directione ex uno loco B versus alterum C proficiscendum sit, id quod in itineribus faciendis et in re nautica maximi momenti esse solet,

88. Probl. XVI. Datis distantia duorum locorum eorumque latitudinibus, invenire differentiam longitudinis.

Refolut. Cum in eodem triangulo ABC dentur tria latera AB, BC, AC, invenietur angulus A (per n. 58.), cuius mensura est arcus DE differentia longitudinum quaesita; ex qua vel addita vel subtracta ad longitudinem unius loci dati eruetur longitudo alterius. Ex iisdem vero datis eruitur etiam angulus B vel C, iuxta cuius directionem ab uno loco versus alium iter instituendum est. Demum si inventa differentia longitudinis duorum locorum convertatur in tempus solare, data hora diei in uno loco, innotescet, quota sit hora in altero loco.

89. Probl. XVII. Data differentia temporis duorum locorum, eorumque diftantia, ac elevatione poli unius, invenire elevationem poli alterius.

Refol. Data differentia temporis convertatur in arcum aequatoris, reperietur differentia lonlongitudinum DE aequalis angulo A; datis praeterea lateribus AB et BC invenietur tertium latus AC (per n. 50.) complementum elevationis poli quaesitae.

90. Probl. XVIII. Datis distantiis trium locorum, una cum longitudine et latitudine duorum, invenire longitudinem et latitudinem tértii.

Refolut. Sint in fig. VIII. datae distantiae trium locorum BC, BH, CH; sitque latitudo loci B, arcus DB, eius complementum AB, latitudo loci C, arcus CE, eius complementum AC, ac data longitudinum differentia DE seu angulus BAC, quaereturque latitudo loci HO ac differentia longitudinis EO. Itaque

I. in triangulo BHC ex datis tribus lateribus quaeratur angulus C (per n. 58.). II. In triangulo ABC, quaeratur angulus BCA, qui itidem ob cognita tria latera (per n. 58.). inveniri poterit. III. Angulus BCA fubtractus ab angulo BCH relinquet angulum ACH. Demum IV. in triangulo ACH ex cognitis duobus lateribus AC et CH cum angulo comprehenfo facile eruetur tertium latus AH (per n. 48.), ac demum angulus CAH seu differentia longitudinum EO (per n. 49.).

FINIS.

CANONES SINUUM ET TANGENTIUM

PRO DECIMO QUOQUE MINUTO
CUM EORUM LOGARITHMIS.

Operi praestituta brevitas integros sinuum, tangentium, et secantium canones prohibebat inseri; et ex alia parte videbatur discentium exercitationi non satis prospici, si prorsus omitterentur. Selegi proinde sinus et tangentes pro decimo quoque minuto, cum eorum logarithmis; secantibus, quarum vix est usus, penitus praetermissis. Si quis tamen sinus et tangentes intermedios requirat; sic facile investigabit.

Datis sinubus vel tangentibus minutorum decimalium, invenire quoscunque intermedios.

Quaeratur v. g. finus arcus vel anguli 43°. 14'.

1. Defumantur ex tabulis finus proxime maior (43°. 20′. qui est 6862416) et proxime minor (43°. 10′. qui est 6841229) et inquiratur eorum differentia (21187.).

2. Fiat,

Sinuum et Tangentium cum eorum Logarithmis. 65

2. Fiat, ut 10 ad excessum arcus dati (43°. 14'.) supra arcum proxime minorem (43°. 10'.) id est, ut 10 ad 4: ita 21187 differentia sinuum ex tabula desumptorum ad aliud. Quartus terminus 8474₁ seu 8475 additus sinui proxime minori (6841229) dabit (6849704) sinum anguli dati, vel ipsissimum, qui in tabulis reperitur, vel ab illo vix differentem

Eadem operatio institui potest ad logarithmicos sinus inquirendos, licet non ita exacte, sufficienter tamen ad praesens institutum.

Quod dictum de finubus de tangentibus etiam est intelligendum. Hinc etiam colliges, quomodo ex finu vel tangente data inveniantur minuta correspondentia.

_	_	1 60		Tongens	_	Log Sin	Log Tang
۱	Gr.	Min	Sinus.	Tangens.		Log. Sm.	Log. Tang.
١	_	-					
1	0	0	0	0		0	0
ı		10	290.89	290.89		7.4037255	7.4637273
ł		20	581.77	581.78	•		7.7647610
1		30	872.65	872.69		7.9408419	7.9408584
l		40	1163.53	1163.61		8.0057703	8.0658057
I		50	1454-39	1454.54	١,	8.1020808	8.1627267
I	I	0	1745.24	1745.51			8.2419215
A		10	2036.08	2036.50			8-3088842
ł		20	2326.90	2327.53			8.3668945
ł		30	2617.69	2618.59	i		8.4180679
ŧ		40	2908.47	2909.70		8.4636649	8.4638486
١		50	3199.22	3200.86		8.5050447	8-5052671
١	2	0	3489-95	3492.08	l	8.5428192	8-5430838
1	_	10	3780.65				8.5778766
ł		20	4071.31	4074.69	ı		8.6100943
ı		30	4361.94			8.6396796	8.6400931
1		40	4652.53	4657.57		8.6676893	8.6681598
I		50	4943.08	4949.13		8.6939980	
I	3	0	5233.60	5240.78		87188002	8.7193958
١	7	10	5524.06	5532.51			8.7429222
١		20	5814.48	5824.34			8.7652465
1		30	6104.85	6116.26	١.	8.7856753	8.7864861
1		40	6395.17	6408.29		8.8058523	8.8067422
١		50	6685.44	6700.43		8.8251299	8.8261026
I	4	0	6965.65	6992.68		8-8435845	8.8446437
ı	7	10	7265.80			8.8612833	8.8624327
l		20	7555.89	7577-55	. 1	8.8782854	8.8795286
Į		30	7845.91	7870.17		8.8946433	8.8959842
ı		40	8135.87	8162.93			8.9118460
I		50	8425.76				8 9271560
1	5	0	8715.57	8748-87		8.9402960	8 9419518
I	כ	10	9005.32	9042.06	l		8.9562672
ı		20	9294.99		İ		8.9701330
1		30	9584.58		i		8 9835769
l		40	9874.08			8.9944968	8.9966243
I		50	10163.41	10216.41		9.0070436	9.0092984
ı		احرا				1 - 1 - 1 - 7 -	, , , , , , , ,

Gr.	Min	Sinus.	Tangens.	Log. Sin.	Bog, Tang.
89	60	100000.00	Infinit.	10.0000000	Infinit.
	50	199999-58	34377371.00	9.9999982	12.5362727
	40		17188540.00	9.9999927	12.2352390
1	30		11458865.00		12.0591416
1	20		8593979.10	9.9999706	11.9341943
1_	10	99989.42	6875008.70	9.9999541	11.8372733
88	60	99984-77	5728996.16	9.9999338	11.7580785
1	50	99979-27	4910388.06		11.6911158
1	40	1 2 2 2 2 2			11.6331055
!	30	777 7 5			11.5819321
ŀ	20	333711-3		9.9998162	11.5361514
<u> </u>	10	33340.0-	3124157.67	9.9997776	11.4947329
87	60	1 77777	2863625.33	9.9997354	11.4569162
1 .	50		2643159.96	9.9996894	11.4221234
1	40				11.3809057
ł	30	, ,,, , , ,		9.9995865	11.3599059
1	20	7707-16-			11.3318402
_	10	99877.75	2020555.35	9.9994688	11.3054708
86	60	99862.95	1908113.67	9.9994044	11.2806042
1	50	770107	1807497.74	9.9993364	11.2570778
ł	40	,,	1716933.69	9.9992646	11.2347535
	30				11,2135139
	20	99795.29		9.9991101	11.1932578
_	10	99776.27	1492441.70	9.9990273	11.1738074
185	60	99756.40	1430066.63	9.9989408	11.1553563
1	50	99735.69	1372673.79	9.9988506	11.1375673
	40				11.1204714
1	30	99691.73			11.1040158
1	20	99668.49			11.0881540
}_	10	99644.40	1182616.67	9.9984529	11.0728440
84	60	99619.47	1143005.23	9.9983442	11.0580482
1	50	99593.69			11.0437328
1	40	99567.08		9.9981158	11.0298670
	30	9953 9. 62			11.0164231
	20	99511.32			11.0033757
1	10	99482.17	978817.32	9.9977453	10.9907016

G.	Min	Anus.	Tangens.		Log. Sin.	Log. Tang.
	5		_			1
6	0	10552.85	10510.42		9.0192346	9.0216202
	10		10804.62			9.0336093
1	20		11098.99		9.0426249	9.0452836
1	30		11393.56		9.0538588	9.0566595
1	40				9.0648057	9.0677522
1_	50	11898.16	11983.28		9.0754799	9.0781760
7	0	12186.93	12278.46		9.0858945	9.0891438
1	10		12573.84		9.0960615	
l	20					9.1095594
1		13052.62		'		9.1194291
1		13340.96		1		9.1290868
ł	50	13629.19	13757-57		9.1344702	9.1385417
8	0	13917.31	14054.08	1	9.1435553	9.1478025
1	10			1		9.1568773
1	20	14493.19		}	9.1611639	9.1657737
1	30		14945.10	l		9.1744988
		15068.57				9.1830595
 _	50	15356.07	15540.40		9.1862802	9.1914621
9	0	15643.45	15838-44		9.1943324	9.1997125
	10	15930.69	16136.77		9.2022345	9.2078165
1	20	16217.79	16435.37	١,	9.2099917	9.2157795
1		16504.76				9.2236065
١.		16791.59		ľ		9.2313024
1_	50	17078.28	17332.92	'	9.2324440	9.2388717
10	0		17632.70		9.2396702	9.2463188
	10	17651.21	17932.78	٠	9.2467746	9.2536477
		17937.46		'	9.2537609	9.2608625
	30	18223.55			9.2606330	9.2679669
	40		18834.95			9.2749644
	50	18795.27	19136.32		9.2740487	9.2818585
11	0	19080.90	19438.03		9.2805988	9.2886523
ł	10	19366.36	19740.08			9.2953489
	20	, , , ,			9.2933993	9.3019514
	30					9.3084626
	40	20221.76	20648.34		9.3058189	9.3148851
1	50	20506.55	20951.81		9.3118926	9.3212216

		1 6:	100		(T
3	K	Sinus.	Tangens.	Log. Sin.	Log. Tang.
_	1.				
83	60	99452.18	951436.45	9.9976143	10.9783798
	50	99421.36	925530.35	9.9974797	10.9663907
	40	99389.69	900982.61	9.9973414	10.9547164
	30	99357.18	877688.74	9.9971993	10.9433405
	20	99323.83	855554.68	9.9970535	10.9322478
	10	99289.64	834495.57	9.9969040	10.9214240
82	60	99254.62	81443464	9.9967507	10.9108562
"		99218.74		9.9965937	10.9005322
1 1		99182.03	777035.06	9.9964330	
	30		759575.41	9 9962686	10,8805709
	20			9.9961004	
	10	99066.87	726872.55	9.9959284	10.8614583
81	60	98026.80	711536.97	9.9957528	10.8521975
	50	98985.90		9.9955734	
		98944.16	682694.37	9.9953902	
j.	30	98901.58	699115.62	9.9952033	
L		98858.17	656055.38	9.9950126	
	10	98813.92	643484.28	9.9948181	10.8085379
80	60	98768.83	631375.15	9.9946199	10.8002875
	50	98722.91	619702.79	9.9944180	10.7921935
ţ .				9.9942122	10.7842205
1			597576.44	9.9940027	
	20	98580.13	587080-42	9.9937894	
	10	98530.87	576936.88	9.9935723	10.7611283
79			567128.18	9.9933515	10.7536812
1			557637.86	9.9931269	
			548450.52	9.9928984	10.7391375
			539551.72	9.9926661	10.7320331
1	20	98272.00	530927.93	9.99243@1	
1_	! —		522566.47	9.9921902	10.7181415
78		98162.71		9.9919466	10.7133477
	150	98106.80	506583.52	9.9916991	10.7046511
1		98050.05		9.9914478	
1			491515.70	9.9911927	
1			484300.45	9.9 9 09338	
1	10	19787483	477285.67	1 19 .990671 0	10.6787784

Gr.	Min.	Sinus.	Tangens.		Log. Sin.	Log. Tang.
- :	1-					
12	10	20791.17	121255.05		9.3178789	9:3274745
1	10	21075.61	21559.88		9.3237802	9.3336463
١.	20	21359.88	21804.48		9.3295988	9.3397391
		21643.96			9.3353368	
1 1		21927.86				9.3516968
	<u>5</u> 0	22211.58	22780.63		9.3465794	9.3575658
13	0	22495.11	23086.82	4	9.3520880	9.3633641
	10		23393.42	1	9.3575240	9.3690937
	20	23061.59	23700.44		9.3628892	9.3747563
	30	23344.54	24007.87			9.3803537
	40	23027.29	24315.75		9.3734139	
_	50	23909.84	24624.05			9.3913595
14	0	24192.19			9.3836752	9.3967711
		24474.33	25242.00		9.3887109	9.4021237
	20	24756.27				9.4074189
	30	25038.00	25861.76		9.3985996	
	40	, , , , ,	26172.34			9.4178425
_	50	25600.82	26483.39	Н	9.4082539	9.4229735
15		25881.90			9.4129962	9.4280525
		26162.77			9.4176837	9.4330804
	20	1 1127 2	27419.44		9.4223176	9-4380587
	30	26723.84	27732.45	1	9.4268988	9.4429883
		27004.03	28045.97		9.4314286	9.4478704
_	50	27284.00			9.4359080	9.4527061
16		27563.74	28674.54		9.4403381	9.4574964
1		27843.24	28989.61	H	9.4447197	9.4622423
		28122.51		li		9,4669448
Ī.		28401.53			9.4533418	9.4716048
		28680.32			9.4575840	9.4762233
_	50	28958-87	30255.27		9.4617816	9.4808011
17	0	29237.17	30573.07		9.4659353	9.4853390
	10	29515.22			9.4700461	9.4898380
		29793.03			9.4741146	9.4942988
	30	30070.58	31529.88		9.4781418	9.4987223
1	40	30347.88	31849.98	١.	9.4821283	9.5031002
1	50	30624.92	32170.67		9.4860749	9.5074600
	**-			-		

<u>୍</u> ର	Min.	Sinus.	Tangens.	Log. Sin.	Log. Tang.
	3	•			
77	60	07814.76	470463.01	9.9904044	10.6725255
"	50	07753.86	463824.57	9.9901339	10.6663537
	40	07602.15	457362.87	9.9898597	10.6602609
	30	97629.60	451070.85	9.9895815	
1:			444941.81	9.9892995	
		97502.03		9.9890137	10.6424342
76		97437.01		9.9887239	10.6566359
,	50	97371.16	427470.66	9.9884303	10.6309063
	40	97304.48	421933.18	9.9881329	10.6252437
!	30	97236.99	416529.98	9.9878315	10.6196463
		97168.67		9.9875263	10.6141124
		97099.54		9.9872171	10.6086405
75	60	97029.57	401078.09	9.9869041	10.6032289
1 ''	50	96958.79	396165.18	9.9865872	
	40	96887.18	391364.20	9.9860663	10.5925811
	30	96814.76	386671.31	9.9859416	10.5873419
	20	9-61	382082.81	9.9856129	10.5821575
1_	10	96667.46	377595-19	9.9852803	10.5770265
74	60	96592.58	373205.08	9.9849438	10.5719475
	50	96516.88	368909.27	9.9846033	10.5669196
!	40	96440.37	364704.67	9.9842589	
	30	96363.05	360588.35		10.5570117
1			356557.49	9.9835582	
	10	96205.94	352609.38	9.9832010	10.5472939
73	60	96126.17	348741-44	9.9828416	
	50	96045.58	344951.20	9.9824774	10.5377577
j	40	95964.18	341236.26	9.9821092	10.5330552
1			337594-34	9.9817370	10.5283952
1	20	95798.95	334023.26	9.9813608	10.5237767
1_1	10	95715.12	330520.91	9.9809805	
72	60	95630.48	327085.26	9.9805963	10.5146610
1	50	95545.02	323714.38	9.9802081	10.5101620
	40	95458.76	320406.381	19.9798158	10.5057012
	30	95371.69	317159.48	19.9794195	10.5012777
	20	95283.82	313971.94	19.9790192	10.4968908
	10	195195.14	310842.10	19.9780148	10.4925398

					- C:	7 75
[유	X	Sinus.	Tangens.		Log. Sin.	Log. Tang.
Ľ	.31					
18	0	30901.70	32401.07		9.4899824	9.5117760
		31178.22				9.5160575
1		31454.48				9.5203052
1		31730.47				9.5245199
1		32006.19				9.5287021
1	50		34107.71		9.5089556	9.5328526
19	_	32556.82	34432.76			9.5369718
1 - 7		32831.72				9.5410606
1	20	33106.34	35084.83			9.5451193
ł	20	33380.69	35411.86		0.5234053	9.5491487
1	140	33654.75	35739.56		0.5270463	9.5531492
1/		33928.53	36067.95			9.5571214
20	-		36397.02			9.5610658
120	0		36726.80		0.534051	9.5649831
1					0.5375009	9.5688735
1			37057.28		0.5409314	0 5727277
1			37388-47		0.5445253	9.5727377 9.5765761
			37720:38 38053.03		9.5510237	
-	50			1		
21	0	35836.79	38386.40	l		9.5841774
i		36108.21			9.5570000	9.5879413
1		36379.32		1		9.5916812
			39391.05	1		9.5953975
1			39727.46		9.5072089	9.5990908
1_	50	37190.80	40064.65	1		9.6027613
22	0	37460.66	40402.62	١.	9.5735754	9.6064066
			40741.39	ł	9.5766892	9.6100359
	20	37999-44	41080.97		9.5797772	9.6136407
1	30	38268.34	41421.36	l	9.5828397	9.6172243
•	40	38536.93	41762.57		9.585877.1	9.6207872
I	50	38805.18	42104.60		9.5888897	9.6243296
23	0	30072.11	42447.49	١.		9.6278519
1	10	30340.71	42791.20		9.5948422	9.6313545
1	20	30607.08	43135.70		0.5077827	9.6348378
.	30	39874.91	43135.79 43481.24	i	9.6006007	9.6383019
	40	40141.50	43827.56			9.6417473
			44174.76	Ĺ		9.6451743
•					, y 4 - 4 t	

1 8	Min.	Sinus.	Tangens.	Log. Sin.	Log, Tang.
71	60	95105.65	307768.35	9.9782063	10.4882240
1			304749.15	9-9777938	
			301783.01	9.9773772	
!			298868.50	19.9769566	10.4754801
			296004.22	9.9765318	10.4712979
I _	10	94646.16	293188.85	9.9761030	10.4671474
70	60	94551.85	290421.09	9.9756701	16.4630281
1 1	50	94456.75	287699.70	9.9752330	10.4589394
1 1			285023.49	9.9747918	10.4548807
; ;	30	94264.15	282391.29	9.9743466	10.4508513
	20		279801.98	9.9738971	
_	10	94068 35	277254.48	9.9734435	10.4428786
69	60	93969.26	274747.74	9.9729858	10.4389341
1 1	50	93869.37	272280.75	9.9725239	
	40	93768.69	269852.54	9.9720579	10.4311265
1 1			267462.15	9.9715876	10.4272623
1 1			265108.67	9.9711132	10.4234239
_	10	93461.89	262791.21	9.9706346	10.4196108
68	60	93358.04	260508.91	9.9701517	10.4158226
1 1	50	93253.40}	258260.94	9.9696647	10.4120587
1	40	93147.97	256046.49	9.9691734	
			253864.79		10.4046025
			251715.07	9.9681781	10.4009092
	10	92826.96	249596.61	9:9676741	10.3972587
67	60	92718.39	247508.69	9.9671659	10,3935904
. 1	50	92609.03	245450.61	9.9666533	10.3899641
	40	92498.88	243421.72	9.9661365	10.3863593
	30	92387.95	241421.36	[9.9656153]	10.3827757
	20	92276.24	239448.89	9.9650899	10.3792128
	10	92163.75	237503.72	9.9645602	10.3756704
66	60	92050.49	235585.24	9.9640261	10.3721481
	50	91936.44	233692.87		10.3686455
			231826.06	9.9629449	10.3651622
	30	91706.01	229984.25	9.9633978	10.3616981
		91589.63		9.9618463	10.3582527
1.1	IO	91472.47	2 3 6373.57	19.9612904	10.3548257

				<u> </u>		
13	X	Sinus.	Tangens.	ŀ	Log. Sin.	Log. Tang.
1-	<u> </u>					
24	0	40673.66	44522.87		9.6093133	9.6485831.
	10	40939.23	44871.87		9.612.1397	9.6519742
	20	41204.46	45221.79	•	9.6149441	
	30	41469.32	45572.64	!	9.6177270	9.6587041
	40	41733.85	45924.39		9.6204884	9.6620434
 	50	41998.01	46277.09		9.6232287	9.6653662
25	0	42261.83	46630.77		9.6259483	9.6686725
	10	42525.28	46985.39			9.6719628
	20	42788-38	47340.98		9.6313258	9.6752372
1		43051.11			9.6339844	0.6784061
1		43313.48			0.6366231	9.6817396
_	50	43575.48			9.6392422	9.6849681
26	. 0		48773.26	'		9.6881818
	10	44098.38				9.6913809
	20				0.6460844	9.6945656
	30	44619.78	46858.16	1	9.6495274	9.6977363
	40	44879.92	50221.80		0.0497274	9.7008930
	50	45139.68	50586.68		9.6545584	9.7040362
27	0					9.7071659
ł	10	45658.04	51319.50		0.6505173	9.7102824
	20	45916.64	51687.55		0.6610701	9.7133859
	30	46174.86	52056.70		0.6644056	9.7164767
	40	46432.69	52426.08		0.6668238	9.7195549
	50	46690.12	52798.39		9.6692250	9.7226207
28		46947.16				9.7256744
	10	47203.80	53544.65		0.6730760	9.7287161
i '	20	47460.04	53919.52		9.6763281	9.7317460
	30	47715.88	54295.57		9.6786620	9.7347644
	40	47971.31	54672.81	li	9.6800816	9.7377714
	50	48226.34	55051.25		9.6832843	9.7407672
29	_	48480.96				9.7437520
	10	48735.17	55811.79		9.6878425	9.7467259
	20	48988.97	56193.91		9.6900983	9.7496892
1	30	49242.36	56577.28	i	9.6923388	9.7526420
1		49495-33		1	9.6945642	9.7555846
1		49747-87		1	9.6967745	9.7585170
-						

Ī	Gr.	Min.	Sinus.	Taugens.		Log. Sin.	Log. Tang.
ı	65	60	91354.54	224603.68		9.9607302	10.3514169
1		50	91235.84	222856.75	ŀ	9.9601655	10.3480258
1		40	91116.37	221132.34	1	9.9595964	10.3436523
ı				219429.97		9.9590229	
ı		20		217749.30		9.9584450	
1	_	10	90753.33	216089.58		9.9578626	10.3346338
]	64	60	90630.78	214450.69		9.9572757	10.3313275
I		50	90507.46	212832.13		9.9566844	10.3280372
1	- 1	40		211233.48		9.9560886	
i			90258.53			9.9554882	
1			90132.91			9.9548834	10.3182604
1	٠	10	90006.54	206553.18		9.9542741	10.3150319
1	63	60	89879.40	205030.38		9.9536602	10.3118182
1		50		203525.65		9.9530418	10.3086191
ı		40	89622,85	202038.62		9.9524188	10.3054344
ı	- }		89493.43	200568.97		9.9517912	
ı			89363.27	199116.37		9.9511590	10.2991070
ı	_	10	89232.33	197680.50		9.9505223	10.2959638
1	62	60	89100.65	196261.05		9.9498809	10.2928341
١		50	88968.21	194857.71		9.9492349	10.2897176
ı	1		88835.02			9.9485842	
ı	1	30	88701.08	192098.21		9.9479289	10.2835233
١		20	88566.39			9.9472689	
ł	_	10	88430.95	189399.71		9.9466043	10.2773793
I	61	60	88294.76	188072.65		9.9459349	10.2743259
ı		50	88157.82	186760.03	1	9.9452609	10.2712839
١			88020.14		ķ	9.9445821	10.2682540
i		30	87881.71	184177.09		9.9438985	10.2652356
1			87742.54		4	9.9432102	10.2522286
ł	_	10	87602.62	181648.92		9.9425171	10.2592328
İ	60	60	87461.97	180404.78		9.9418193	10.2562480
			87320.58			9.9411166	10.2532741
ſ			87178-44			9.9404091	10.2503108
1	į.	30	87035.57	176749.70	l	9.9396968	
I	,	20	86891.96	175555.90	ŀ	9.9389796	10.2444154
1		10	86747.62	174374.53	l	19.9382570	10.2414830

G.	Min	Sinus.	Tangens.		Log. Sin.	Log. Tang.
_	-					
30	0	50000.00	57735.03		9.6989700	9.7614394
		50251.70			9.7011508	9.7643520
	20	50502.99	58513:35		9.7033170	9.7672550
	30	50753.84	58904.50 59296.99		9.7054689	9.7701485
	40	51004.26	59296.99			9.7736327
	50	51254.25	59690.84		9.7097299	9.7759077
31	0	51503.81	60086.06		9.7118393	9.7787737
	10	51752.93	60482,66	. 1	9.7139349	9.7816309
		52001.61	60880.67		9.7160168	9.7844794
		52249.86	61280.08		9.7180851	9.7873193
-	40	52497.66			9.7201399	9.7901508
	50	52745.02	62083.20		9.7221814	9.7929741
32	0	52991.93	62486.94		9.7242097	9.7957892
-		53238.39				9.7985964
		53484.40				9.8013957
i	30	53729.96			9.7302165	
	40	53975.07			9.7321932	
		94219.71			9.7341572	9.8097480
33	0	54463.90	64940.76		9,7361088	9.8125174
		54707.63				9.8152795
		54950.90				9.8180347
		55193.70			9:7418895	9.8207829
			66607.69		9.7437921	9.8235244
	50	55677.90	67028.45		9.7456828	9.8262592
34	0	55919.29	67450.85		9.7475617	9.8289874
	10	56160.21	67874.92			9.8317093
	20	50400.05	00300.00		9.7512842	9.8344249
		56640.62	68728.10			9.8371343
	40	56880.11	69157#4		9.7549604	9.8398377
	50	57119.12	69588.13		9.7567815	9.8425351
35	0	57357.64	70020.75		9.7585913	9.8452268
		57595.68		1	9.7603899	9.8479127
			70891.33.		9.7621775	9.8505931
1.	30	58070.30	71329.31		9.7639540	9.8532680
	40	58305.87	71769.11		9.7657197	9.8559376
			71210.75		9.7674746	9.8586019

G.	Min.	Sinus,	Tangens.		Log. Sin.	Log. Tang.
59	_ 60	86602.54	173205.08		9.9375306	10.2385606
1	50	86456.73	172047.36		9.9367988	10.2356480
1	40	86310.19	170901.16		9.9360621	10.2327450
1	30	86162.92	169766.31		9.9353204	10.2298515
	20	86014.91	168642.61		9-9345738	10.2269673
	10	85866.18	167529.88	,	9.9338222	10.2240923
58	60	85716.73	166427.95		9.9330656	10.2212263
	50	85566.55	165336.63	;	9.9323040	10.2183691
	40	85415.64	164255.76		9.9315374	10.2155206
,		85264.02	163185.17		9.9307658	
1		85111.66			9.9299891	10.2098492
I _	10	84958.60	161074.17		9.9292073	10.2070259
57	60	84804.81	160033.45	, '	9.9284205	10,2042108
	50				9.9276285	10.2014036
	40	84495.08	157980.79		9.9268314	10.1986043
	30	84339.12	156968.56		9.9260292	10.1958127
1	20	84182.49			9.9252218	10.1930286
1_	01	84025.13	154971.55		9.9244092	10.1902520
56	60	83867.06	153986.50		9.9235914	10.1874826
1	50	83708.27	153010.23		9.9227684	10.1847205
	40	83548.78	152042.61		9.9219401	10.1819653
		83388-58	151083.52		9.9211066	10.1792171
	20		150132.82		9.9202678	
	10	83066.07	149190.38		9.9194237	10.1737408
55	60	82903.76	148256.10		9.9185742	10.1710126
	50				9.9177194	10.1682907
	40	82577.03	146411.47		9.9168593	10.1655751
			145500.90		9.9159937	10,1628657
1	20	82247.51	144598.01		9.9151228	10.1601623
	10	82081.70	143702.68		9.9142464	10.1574649
54	60	81915.21	142814.80		9.9133645	10.1547732
		81748.01		ŀ	9.9124772	
			141060.98		9.9115844	10.1494069
	30	81411.55	140194.83			10.1467320
			139335.71		9.9097821	
1	10	81072.33	138483.53		9.9088727	10.1413981

10	1 7	l Cinus I	Tongong		I an Cin	Han Town
S	X	Sinus.	Tangens.		Log. Sin.	Log. Tang.
1 -	<u>ا ـ</u> ــا					
36		58778-53			9.7692187	
		59013.61			9.7709522	
		59248.19			9.7726751	
1		59482.28				9.8692089
ł		59715.86				9.8718486
	50	59948.93	74900.33		9.7777815	9.8744838
37	0	60181.50	75355.41		9.7794630	9.8671144
	10	60413.56	75812.48		9.7811344	
1	20	60645.11	76271.57		9.7827958	9.8823627
	30	60876.14	76732.70		9.7844471	9.8849805
	40	61106.66	77195.89		9.7860886	9.8875942
1	50	61336.66	77661.17		9.7877202	9.8902040
38	0	61566.15	78128.56		9.7893420	9.8928098
	10	61795.11	78598-08		9.7909541	9.8954119
1	20	62023.55	79069.75		9.7925566	9.8980104
l		62251.46				9.9006052
	40	62478.85	80019.63			9.9031966
l	50	62705.71	80497.90		9.7973071	9.9057845
39		62932.04			9.7988718	9.9083692
1		63157.84				9.9109507
1		63383.09				9.9135291
•	30	63607.82	82433.64			9.9161045
	40	63842.01	82923.37		9.8050385	9.9186769
1 _	50	64055.66	83415.47		9.8065575	9.9212466
40		64278.76			9.8080675	9.9238135
		64501.32			9.8095686	9.9263778
		64723.34			9.8110609	9.9289396
		64944.80			9.8125444	9.9314989
		65165.72			9.8140192	9.9340559
	50	65386.09	86419.26		9.8154854	9.9366105
41		65605.90			9.8169429	9.9391631
ì	10	65825.16	87440.67		9.8183919	9.9417135
	20	66043.86	87955.28	1	9.8198325	9.9442619
		66262.01			9.8212646	9.9468984
	40	66479,59	88992.45		9.8226883	9.9493531
1	50	00096.61	89515.06		9.8241037	9.9518961

Gr.	Min.	Sinus.	Tangens.		Log. Sin.	Log. Tang.
53	60	80901.70	137638.19		9.9079576	10.1387390
"		80730.38			9.9070370	
		80558.37			9.9061107	10.1334356
			135142.24		9.9051787	
1.	20		134323.31		9.9042411	10.1281514
1_	10	80038.27	133510.75		9.9032977	10.1255162
52	60	79863.55	132704.48		9.9023486	10.1228856
	50	79698.15	131904.41		9.9013938	10.1202593
1	40	79512.08	131110.46		9.9004331	10.1176373
1	30	79335-33			9.8994667	
1	20	1., , , ,			9.8984944	
_	10	78979-83	128764.47	ı	9.8975162	10.1097960
51	60	78801.07	127994.16		9.8965321	10.1071902
1	50	78621.65	127229.57		9.8955422	1
1	40	78441.57	126470.62		9.8945463	10.1019896
	30	78260.82	125717.23		9.8935444	
1	20		124969.33	١.	9.8925365	10.0968034
1_	10	77897-33	124226.85		9.8915226	10.0942155
50	60	77714.60	123489.72	į.	9.8905026	10.0916308
	50			l	9.8894765	10.0890493
	40		122031.21	١	9.8884444	10.0864709
			121309.70	İ	9.8874061	10.0838955
		76977.10		ı	9.8863916	10.0813231
1	10	76791.10	119881.84		9.8853109	10.0787534
49	60	76604.44	119175.36	Ì	9.8842540	10.0761865
1 "	50	76417.14	118473.76	ı	9.8831908	10.0736222
1	40	76229.19	117776.98	ı	9.8821213	10.0710604
1	30	76040.60	117084.96		9.8810455	10.0685011
1	20	75851.36	116397.63	l	9.8799634	10.0659441
1_	10	75661.47	115714.95		9.8788748	10.0633895
48	60	75470.97	115036.84		9.8777799	10.0608369
1			114363.26		9.8766785	10.0582865
1	40	75088.00	113694.14		9.8755706	10.0557381
1	30	74895.57	113029.44		9.8744561	10.0531916
	20	74702.51	112369.09		9.8733352	10.0506469
1	10	74508.81	111713.05		9.8722076	10.0481039

1 5	Min	Sinus.	Tangens.		Log. Sin.	Log. Tang.
42	-	66913.06	90040-41		9.8255109	9 9544374
"		67128.95			9.8259098	
1		67344.27		П	9.8283006	
1		67559.02			9.8296833	
1		67773.20			9.8310580	
1_	50	67986.81	92709.14		9.8324246	9.9671225
43	0	68199.84	93251.51		9.8337833	9:9696559
		68412.29	93796.83		9.8351341	9.9721882
1		68624.16	94345.13		9.8364771	9:9747195
1		68835.45	94896.46		9.8378122	
ł		69046.17	9545083		9 .8391396	
_	<u> 50 </u>	69256.30	96008.29	١	9.8404593	9.9823087
44	0	69465.84	96568.88	1	9.8417713	9.9848372
		69674.79	97132.62	!	9.8430757	9.9873651
		69883.15	97699.56		9.8443725	9.9898926
	- 1	70090.93	98269.73		9.8456618	
		70298-10	98843.16		9.8469436	9.9949466
_		70504.69	99419-91	ľ	9.8482180	9.9974734
45	0	70710.68	1000000.00	1	9.8494850	10.0000000

In tabulis his fecantes praetermissimus, tum quia in ea, quam secuti sumus, methodo nunquam adhibentur: tum quia notis complementorum sinubus nullo negotio possunt investigari.

Dato sinu complementi culusvis arcus vel anguli, inve-

nire illius secantem.

Divide quadratum finus totius per sinum complementi; quotiens erit secans quaesita, Ratio patet ex p. 2. c. 1. P. 1.

Exemplum. Quaeratur secans anguli 60.gr. Quadratum radii, seu 1000000000000000, divide per 5000000 sinum 30 gr. seu complementi. Quotiens 20000000 erit secans quaesita.

st per logarithmos opereris, ex logarithmo radii duplicato, subtrahe logarithmum sinus complementi. Residuum erit secans quaesita.

Idem obtinebis dicendo: Ut finus anguli dati, ad finum totum: sie tangens anguli dati, ad secantem quaesitam.

Moneri

1.5	Min	Sinus.	Tangens.		Log. Sin.	Log. Tang.
47			111061.25			10.0455626
}	40	73923.94	110413.65 109770.20		9.8687851	10-0430228 10-0404845
	20	73530.90	109130.85		9.8664699	10.0379475
46	60	73333·45 73135·37	107236.87			10.0328775
			106613.41 105993.81			10.0278118 10.0252805
1			105378.01 104765.98			10.0227500 10.0202203
45	-		104157.67	- 1	9.8581505 9.8569341	10.0176913
["	50	71731.61	102952.03	ļ	9.8557106	10.0126349
	30	71325.05	101760.74	1	9.8532421	10.0075803
_	10	70916.07	1005,83.47		9.8507446	10.0025266
1 44	100	70710.68	1000000.00	. [9•8494859	10.0000000

Moneri hic etiam debet Lector, quod tametsi in tabulis somputari soleant sinus, tangentes et secantes pro sinu toto 10000000: abiectis tamen duabus notis prioribus, habeantur sinus &c. ad radium 100000, quales ad operationes obvias satis accurate peragendas omnino sufficient. Quaemam vero notae sint abiliciendae, indicat punctum, quod postponi solet duabus primis notis a dextra vel expressis vel intellectis.

Dixi expressis vel intellectis; quia si punctum, ut quandoque sit, sequatur immediate primam notam, indicium est deesse unam: si vero praesigatur primae, ostendit desiderari duas notas, quibus totidem cyphrae sunt substituendae. Ex. gr. Si in tabulis deprehendatur tangens 8814357. 2, adiici debet una cyphra, sic \$814357. 20: vel si inveniatur secans 85943689, praesigendae sunt duae cyphrae, sic 85943689.00, ut habeatur tangens vel secans integra pro radio 10000000.

TABU:

TABULA LOGARITHMORUM,

PRO NUMERIS NATURALI
SERIE CRESCENTIBUS AB
UNITATE AD 1000.

Quae ad logarithmorum naturam, inventionem, usumque pertinent, videre poterit studiosus Lector in element, algeb. P. Mako cap.; 5. ubi demonstratur modus facilis inveniendi cuiuscunque numeri, sive fracti, sive integri logarithmum; et numerum cuicunque logarithmo dato correspondentem. Nec refert, quod regulae ibidem traditae adaptentur praecipue tabulis maioribus continentibus logarithmos numerorum naturali serie crescentium ab unitate ad 10000, quales passim extant; nam quicunque regulas illas, et illarum demonstrationes intellexerit, quae istic praecipiuntur, sequenti tabulae facile adplicabit.

Aliud etiam est, quod si a Lectore observetur, tabulae huius logarithmicae brevitatem

tem aliquatenus compensabit; si nimirum quando numerus proponitur excedens maximum in tabula, eum (per reductionis regulam) convertat in alium minorem, sed aequivalentem in specie diversa: Ex. gr. Si in triangulo aliquo resolvendo detur latus continens pedes 2400, reducantur pedes ad ulnas 800, vel passus 480, vel hexapedas 400, vel decempedas 240. Et per numeri sic reducti logarithmum persiciatur operatio.

Quod fi contingat, ut post reductionem supersit aliqua fractio, quomodo inveniatur logarithmus huic correspondens in arithmetica indicatur.

	· · ·			1	
N.	Logarith.	N.	Logarith.	N.	Logarith.
7.1	0.0000000	34	1.5314789	67	1.8260748
2	0.3010300	35	1.5440680	68	1.8325089
3	0.4771212	36	1.5563025	69	1.8388491
	0,6020600	37	1.5682017	70	1.8450980
4	0.6989700	38	1.5797836	71	1.8512583
- 6	0.7781512	39	1.5910646	72	1.8573325
7	0.8450980	40	1.6020600	73	1.8633229
8	0.9030900	41	1.6127839	74	1.8692317
9	0.9542425	42	1.6232493	75	1.8750613
10	1,0000000	43	1.6334685	76	1.8808136
11	1.0413927	44	1.6434527	77	1.8864907
12	1.0791812	45	1.6532125	78	1.8920946
13	1.1139433	46	1.6627578	79	1.8976271
14	1.1461280	47	1.6720979	80	1.9030900
15	1.1760913	48	1.6812412	81	1.9084850
16	1.2041200	49	1.6901961	82	1.9138138
17	1.2304489	50	1.6989700	83	1.9190781
18	1.2552725	51	1.7075702	84	1.9242793
19	1.2787531	52	1.7160033	85	1.9294189
20	1.3010300	53	1.7242759	86	1.9344984
21	1.3222193	54	1.7323938	87	1.9395192
22	1.3424227	55	1.7403627	88	1.9444827
23	1.3617278	56	1.7481880	89	1.9493900
24	1.3802112	57	1.7558748	90	1.9542425
25	1.3979400	58	1.7634280	91	1.9590414
26	1.4149733	59	1.7708520	92	1.9637878
27	1.4313638	60	1.7781512	93	1.9684829
28	1.4471580	61	1.7853298	94	1.9731278
29	1.4623980	62	1.7923917	95	1.9777236
30	1.4771212	63	1.7993405	96	1.9822712
31	1.4913617	64	1.8061800	97	1.9867717
32	1.5051500	65	1.8129133	98	1.9912761
33	1.5185139	66	1.8195439	99	1.9956352
34	1.5314789	67	1.8260748	100	2.0000000

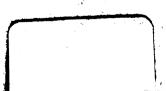
٠.	-					
ı	100		· 1	1 1	1	, ,
ł	N.	Logarith.	N.	Logarith.	N.	Logarith.
ł	101	2.0043214	134	2.1271048	167	2.2227165
1	102	2.0086002	135	2.1303338	168	2.2253093
1	103	2.0128372	136	2.1335389	169	2.2278867
ì	104	2.0170333	137	2.1367206	170	2.2304489
I	105	2.0211893	138	2.1398791	171	2.2329961
I	106	2.0253059	139	2.1430148	172	2.2355284
ı	107	2.0293838	140	2.1461280	173	2.2380461
l	108	2.0334238	141	2.1492191	174	2.2405492
١	-109	2.0374265	142	2.1522883	175	2.2430380
Ì	110	2.0413927	143	2.1553360	176	2.2455127
1	LII	2.0453230	144	2.1583625	177	2.2479733
I	112	2.0492180	145	2.1613680	178	2.2504200
ı	113	2.0530784	146	2.1643528	179	2.2528530
l	. 114	2.0569048	147	2.1673173	180	2.2552725
I	115	2.0606978	148	2.1702617	181	2.2576786
I	116	2.0644580	149	2.1731863	182	2.2600714
ı	117	2.0681859	150	2.1760913	183	2.2624511
I	118	2.0718820	151	2.1789769	184	2.2648178
1	119	2.0755470	152	2.1818436	185	2.2671717
1	120	2.0791812	153	2.1846914	186	2.2695129
Í	121	2.0827854	154	2.1875207	187	2.2718416
ı	122	2.0863598	155	2.1903317	188	2.2741578
	123	2.0899051	156	2.1931246	189	2.2764618
1	124	2.0934217	157	2.1958996	190	2.2787536
1	125	2.0969100	158	2.1986571	191	2.2810334
I	126	2.1003705	159	2.2013971	192	2.2833012
ı	127	2.1038037	160	2.2041200	193	2.2855573
1	128	2.1072100	161	2.2068259	194	2.2878017
1	129	2.1105897	162	2.2095150	195	.2.2900346
-	130	2.1139433	163	2.2121876	196	2.2922561
	131	2.1172713	164	2.2148438	197	2.2944662
	132	2.1205739	165	2.2174839	198	2.2966652
	133	2.1238516	166	2.2201081	199	2.2988531
,	134	2.1271048	167	2.2227165	200	2.3010300
_			,			

1	200		1		1	· · ·
	N.	Logarith.	N.	Logarith.	N.	Logarith.
1	201	2.3031961	234	2.3692159	267	2.4265113
ı	202	2.3053514	235	2.3710679	268	2.4281348
ì	203	2.3074960	236	2.3729120	269	2.4297523
1	204	2.3096302	237	2.3747483	270	2.4313638
ı	205	2.3117539	238	2.3765770	271	2.4329693
1	206	2.3138672	239	2.3783979	272	2.4345689
1	207	2.3159703	240	2.3802112	273	2.4361626
	208	2.3180633	241	2.3820170	274	2.4377506
1	209	2.3201463	242	2.3838154	275	2.4393427
1	210	2.3222193	243	2.3856063	276	2.4409091
1	211	2.3242824	244	2.3873898	277	2.4424798
1	212	2.3263359	245	2.3891661	278	2.4440448
1	213	2.3283796	246	2.3909351	279	2.4456042
1	214	2.3304138	247	2.3926969	280	2.4471580
1	215	2.3324385	248	2.3944517	281	2.4487063
1	216	2.3344537	249	2.3961993	282	2.4502491
1	217	2.3364597	250	2.3979400	283	2.4517864
1	218	2.3384565	251	2.3996737	284	2.4533183
1	219	2.3404441	252	2.4014005	285	2.4548349
1	220	2.3424227	253	2.4031205	286	2.45 63660
1	221	2.3443923	254	2.4048337	287	2.4578819
I	222	2.3463530	255	2.4065402	288	2.4593925
1	223	2.3483049	256	2.4082400	289	2.4608978
	224	2.3502480	257	2.4099331	290	2.4623980
1	225	2.3521825	258	2.4116197	291	2.4638930
	226	2.3541084	259	2.4132998	292	2.4653828
1	227	2.3560259	260	2.4149733	293	2.4668676
1	228	2.3579348	261	2.4166405	294	2.4683473
1	229	2.3598355	262	2.4183013	295	2.4698220
1	230	2.3617278	263	2:4199557	296	2.4712917
1	231	2.3636120	264	2.4216039	297	2.4727564
	232	2.3654880	265	2.4232459	298	2.4742163
	233	2.3673559	266	2.4248816	299	2.4756712
	234	2.36921591	1267	2.42651131	1300	2,4771212

300		1	1	ſ	
N.	Logarith.	N.	Logarith.	N.	Logarith.
301	2.4785665	334	2.5237465	367	2.5646661
302	2.4800069	335	2.5250448	368	2.5658478
303	2.4814426	336	2.5263393	369	2.5670264
304	2.4828736	337	2.5276299	370	2.5682017
305	2.4842998	338	2.5289167	371	2.5693739
306	2.4857214	339	2.5301997	372	2.5705429
307	2.4871384	340	2.5314789	373	2.5717088
308	2.4885507	341	2.5327544	374	2.5728716
309	2.4899585	342	2.5340261	375	2.5740313
310	2.4913617	343	2.5352941	376	2.5751878
311	2.4927604	344	2.5365584	377	2.5763413
312	2.4941546	345	2.5378191	378	2.5774918
313	2.4955443	346	2.5390761	379	2.5786392
314	2.4969296	347	2.5403295	380	2.5797836
315	2.4983105	348	2.5415192	381	2.5809250
316	2.4996871	349	2.5428254	382	2.5820634
317	2.5010593	350	2.5440680	383	2.5831988
318	2.5024271	351	2.5453071	384	2.5843312
319	2.5037907	352	2.5465427	385	2.5854607
320	2.5051500	353	2.5477747	386	2.5865873
321	2.5065050	354	2.5490033	387	2.5877110
322	2.5078559	355	2.5502283	388	2.5888317
323	2.5092025	356	2.5514500	389	2.5899496
324	2.5105450	357	2.5526682	390	2.5910646
325	2.5118834	358	2.5538830	391	2.5921768
326	2.5132176	359	2:5550944	392	2.5932861
327	2.5145477	360	2.5563025	393	2.5943925
328	2.5158738	361	2.5575072	394	2.5954962
.329	2.5171959	362	2.5587086	395	2.5965971
330	2.5185139	363	2.5599066	396	2.5976952
331	2.5198280	364	2.5611014	397	2.5987905
332	2.5211381	365	2.5622929	398	2.5998831
333	2.5224442	366	2.5634811	399	2.6009729
334	2.5237465	367	2.5646661	400	2.6020600

ī	400	(t i]		
	N.	Logarith.	N.	Logarith.	N.	Logarith.
ı	401	2.6031444	434	2.6374897	467	2.6693169
1	402	2,6042260	435	2.6384893	468	2.6702458
I	403	2.6053050	436	2.6394865	469	2.6711728
i	404	2.6063814	437	2.6404814	470	2.6720979
ı	405	2.6074550	438	2.6414741	471	2.6730209
ı	406	2.6085260	439	2.6424645	472	2.6739420
ı	407	2.6095944	440	2.6434527	473	2.6748611
1	408	2.6106602	441	2.6444386	474	2.6757783
1	409	2.6117233	442	2.6454223	475	2.6766936
1	410	2.6127839	443	2.6464037	476	2.6776069
1	411	2.6138418	444	2.6473830	477	2.6785184
ł	412	2.6148972	445	2.6483600	478	2.6794279
ł	413	2.6159500	446	2.6493349	479	2.6803355
1	414	2.6170003	447	2.6503075	480	2.6812412
1	415	2.6180481	448	2.6512780	481	2.6821451
4	416	2.6190933	449	2.6522463	482	2.6830470
1	417	2.6201360	450	2.6532125	483	2.6839471
1	418	2.6211763	451	2.6541765	484	2.6848454
1	419	2.6222140	452	2.6551384	485	2.6857417
ı	420	2.6232493	453	2.6560982	486	2.6866363
1	421	2.6242821	454	2.6570558	487	2.6875290
1	422	2.6253124	455	2.6580114	488	2.6884198
ı	423	2.6263404	456	2.6589648	489	2.6893089
1	424	2.6273659	457	2.6599162	490	2.6901961
ł	425	2.6283889	458	2.6608655	491	2.6910815
	426	2.6294096	459	2.6618127	492	2.6919651
I	427	2.6304279	460	2.6627578	493	2.6928469
ı	428	2.6314438	461	2.6637009	494	2.6937269
	429	2.6324573	462	2.6646420	495	2.6946052
1	430	2.6334685	463	2.6655810	496	2,6954817
	431	2.6344773	464	2.6665180	497	2.6963564
	432	2.6354837	465	2.6674529	498	2.6972293
	433	2.6364879	466	2.6683859	499	2.6981005
1	434	2.6374897	467	2.6693169	1500	2.6989700

Logarithmi Numerorum naturalium.


5∞		1	۱ ا		
N.	Logarith:	N.	Logarith:	N.	Logarith.
501	2.6998377	534	2.7275413	567	2.7535831
502	2.7007037	535	2.7283538	568	2.7543483
503	2.7015680	530	2.7291648	569	2.7551123
504	2.7024305	537	2.7299743	570	2.7558748
505	2.7032914	538	2.7307823	571	2.7566361
506	2.7041503	539	2.7315888	572	2.7573960
507	2.7050080	540	2.7323938	573	2.7581546
508	2.7058637	541	,2.7331973	574	2.7589119
509	2,7067178	542	2.7339993	575	2.7596678
510	2.7075702	543	2.7347998	576	2.7604225
511,	2.7084209	544	2.7355989	577	2.7611758
512	2.7092700	545	2.7363965	578	2.7619278
513	2.7101174	546	2.7371926	579	2.7626786
514	2.7109631	547	2.7379873	580	2.7634280
515	2.7118072	548	2.7387806	581	2.7641761
516	2.7126497	549	2.7395723	582	2.7649230
517	2.7134905	550	2.7403627	583	2.7656685
518	2.7143298	551	2.7411516	584	2.7664128
519	2.7151674	552	2.7419391	589	2.7671559
520	2.7160033	<u>553</u>	2.7427251	586	2.7678976
521	2.7168377	554	2.7435098	587	2.7686381
522	2.7176705	555	2.7442930	588	2.7693773
523	2.7185017	556	2.7450748	589	2.7701153
524	2.7193313	557	2.7458552	590	2.7708520
525	2.7201593	558	2.7466342	591	2.7715875
526	2.7209857	559	2.7474118	592	2.7723217
527	2.7218106	560	2.7481880	593	2.7730547
528	2.7226339	561	2.7489629	594	2.7737864
529	2.7234557	562	2.7497363	595	2.7745170
530	2.7242759	563	2.7505084	596	2.7752463
531	2.7250945	564	2.7512791	597	2.7759743
532	2.7259116	565	2.7520484	598	2.7767012
533	2.7267272	566	2.7528164	599	2.7774268
534	2.72754131	567	2.7535831	1600	2.7781512

÷						· · · · · · · · · · · · · · · · · · ·	٠.
	600	. ! 1	1	1	1	, ,	ŀ
	N.	Logarith.	N.	Logarith.	N.	Logarith.	
	601	2.7789745	634	2.8020893	667	2.8241258	l.
	602	2.7795965	635	2.8027737	668	2.8247765	
	603	2.7803173	636	2.8034571	669	2.8254261	į.
	604	2.7810369	637	2.8041394	670	2.8260748	ļ
1	605	2.7817554	638	2.8048207	671	2.8267225	;
-	606	2.7824726	639	2.8055009	672	2.8273693	ì
1	607	2.7831887	640	2.8061800	673	2.8280151	
	608	2.7839036	641	2.8068580	674	2.8286599	
	609	2.7846173	642	2.8075350	675	2.8293038	l
1	610	2.7853298	643	2.8082110	676	2.8299467	ļ.
-	611	2.7860412	644	2.8088859	677	2.8305887	١.
1	612	2.7867514	645	2.8095597	678	2.8312297	
	613	2.7874605	646	2.8102325	679	2.8318698	ľ
1	614	2.7881684	647	2.8109043	680	2.8325089	ŀ
l	615	2.7888751	648	2.8115750	681	2.8331471	
	616	2.7895807	649	2.8122447	682	2.8337844	
	617	2.7902852	650	2.8129134	683	2.8344207	
1	819	2.7909885	651	2.8135810	684	2.8350561	l
1	619	2.7916906	652	2.8142476	685	2.8356906	l
	620	2.7923917	653	2.8149132	686	2.8363241	l
1	621	2.7930916	654	2.8155777	687	2.8369567	l
	622	2.7937904	655	2.8162413	188	2.8375884	l
	623	2.7944880	656	2.8169038	689	2.8382192	l
-	624	2.7951846	657	2.8175654	690	2.8388491	l
1	625	2.79588∞	658	2.8182259	691	2.8394780	l
	626	2.7965744	659	2.8188854	692	2.8401061	l
	627	2.7972675	660	2.8195439	693	2.8407332	ł
	628	2.7979596	199	2.8202015	694	2.8413595	l
	629	2.7986506	662	2.8208580	695	2.8419848	l
	630	2.7993405	663	2.8215135	696	2.8426092	l
1	631	2.8000294	664	2.8221681	697	2.8432328	
	632	2.8007171	665	2.8228216	698	2.8438554	
1	633	2.8014037	666	2.8234742	699	2.8444772	
	634	2.80208931	667	2.8241258	700	2.8450980	
							•

	700 N.	Logarith.	N.	Logarith.	Nr.	Logarith.
1					14.	
1	701	2.8457180	734	2.8656961	767	2.8847954
1	702	2.8463371	735	2.8662873	768	2.8803612
1	703	2.8469553	736	2.8668778	769	2.8859263
i	704	2.8475727	737	2.8674675	770	2.8864907
ł	705	2.8481891	738	2.8680564	771	2.8870544
	706	2.8488047	739	2:8686444	772	2.8876173
ı	707	2.8494194	740	2.8692317	773	2.8881795
1	708	2.8500333	741	2.8698182	774	2.8887410
I	709	2.8506462	742	2.8704039	775	2.8893017
١	710	2.8512583	743	2.8709888	776	2.8898617
	711	2.8518696	744	2.8715729	777	2.8904210
	712	2.8524820	745	2.8721563	778	2.8909796
1	713	2.8530895	746	2.8727388	779	2.8915375
1	714	2.8536982	747	2.8733206	780	2.8920946
Į	715	2.8543060	748	2.8739016	187	2.8926510
ı	716	2.8549130	749	2.8744818	782	2.8932067
ı	717	2.8555191	750	2.8750613	783	2.8937618
ı	718	2.8561244	751	2.8756399	784	2.8943161
ı	719	2.8567289	752	2.8762178	785	2.8948696
ı	720	2.8573325	753	2.8767950	786	2.8954225
1	721	2.8579353	754	2.8773713	787	2.8959747
ı	722	2.8585372	755	2.8779469	788	2.8965262
ı	723	2.8591383	756	2.8785218	789	2.8970770
I	724	2.8597386	757	2.8790959	790	2.8976271
1	725	2.86 03380	758	2.8796692	791	2.8981765
1	726	2.8609366	759	2.8802418	792	2.8987252
1	727	2.8615344	760	2.8808136	793	2.8992732
1	728	2.8621314	761	2.8813847	794	2.8998205
ı	729	2.8627275	762	2.8819550	795	2.9003671
1	730	2.8633229	763	2.8825245	796	2.9009131
	731	2.8639174	764	2.8830934	797	2.9014583
	732	2.8645111	765	2.8836614	798	2.9020029
1	733	2.8651040	766	2.8842288	799	2.9025468
	734	2.8656961	1767	2.8847954	800	2.9030900

800		1 -	l I	1	
N.	Logarith.	N.	Logarith.	N.	Logarith.
:80I	2.9036325	834	2.9211660	867	2.9380191
802	2.9041744	835	2.9216865	868	2.9385197
803	2.9047155	836	2.9222063	869	2.9390198
804	2.9052560	837	2.9227254	870	2.9395192
805	2.9057959	838	2.9232440	871	2.9400181
806	2.9063350	839	2.9237620	872	2.9405165
807	2.9068735	840	2.9242793	873	2.9410142
808	2.9074114	841	2.9247960	874	2.9415114
809	2.9079485	842	2.9253121	875	2.9420080
810	2.9084850	843	2.9258276	876	2.9425041
811	2.9090208	844	2.9263424	877	2.9429996
812	2.9095560	845	2.9268567	878	2.9434945
813	2.9100905	846	2.9273704	879	2.9439889
814	2.9106244	847	2.9278834	880	2.9444827
815	2.9111576	848	2.9283958	881	2.9449759
816	2.9116 9 01	849	2.9289077	882	2.9454686
817	2.9122220	850	2.9294189	883	2.9459607
818	2.9127533	851	2.9299296	884	2.9464523
819	2.9132839	852	2.9304396	885	2.9469433
820	2.9138138	853	2.9309490	886	2.9474337
821	2.9143431	854	2.9314579	887	2.9479236
822	2.9148718	855	2.9319661	888	2.9484130
823	2.9153998	856	2.9324738	889	2.9489018
824	2.9159272	857	2.9329808	890	2.9493900
825	2.9164539	858	2.9334873	891	2.9498777
826	2.9169800	859	2.9339932	892	2.9503648
827	2.9175055	860	2.9344984	893	2.9508514
828	2.9180303	861	2.9350031	894	2.9513375
829	2.9185545	862	2.9355073	895	2.9518230
830	2.9190781	863	2.9360108	896	2.9523080
831	2.9196010	864	2.9360137	897	2.9527924
832	2.9201233	865	2.9370161	898	2.9532763
833	2.9206450	866	2.9375179	899	2.9537597
834	2.92 11660	867	2.9380191	1900	2.9542425

N. Logarith. N. Logarith. N. Logarith. 901 2.9547248 934 2.9703469 967 2.9854265 902 2.9552065 935 2.9712758 969 2.9863238 904 2.9561684 937 2.9717396 970 2.9867717 905 2.9366486 938 2.9722028 971 2.9872192 906 2.9576073 940 2.9731278 973 2.9876663 907 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988046 910 2.9590414 943 2.9749720 977 2.98984498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.959948 945 2.9758911 979 2.9898946 913 2.9604708 946 2.975803 981 2.9903388 913 2.9614211 948 2.9	900	1 1	1	1	1	
902 2.9552065 935 2.9708116 968 2.9858753 903 2.9556877 936 2.9712758 969 2.9863238 904 2.9561684 937 2.9717396 970 2.9867717 905 2.9366486 938 2.9722028 971 2.9872192 906 2.9576073 940 2.9731278 973 2.9876663 907 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988946 901 2.9599414 943 2.9749720 977 2.98984498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.959948 945 2.9753500 980 2.9912261 912 2.9614211 948 2.972662 982 2.9912669 915 2.9618955 949 2.9772662 982 2.9925535 919 2.9637878 953		Logarith.	N.	Logarith.	N.	Logarith.
903 2.9556877 936 2.9712758 969 2.9863238 904 2.9561684 937 2.9717396 970 2.9867717 905 2.9366486 938 2.9722028 971 2.9872192 906 2.9571282 939 2.972656 972 2.9876663 907 2.9576073 940 2.9731278 973 2.9881128 908 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988046 910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.959948 945 2.975318 978 2.9903388 913 2.9604708 946 2.9753500 980 2.9912261 915 2.9618955 949 2.9772662 982 2.99126690 916 2.9618955 959 2	901	2.9547248	934	2.9703469	967	2.9854265
904 2.9561684 937 2.9717396 970 2.9867717 905 2.9366486 938 2.9722028 971 2.9872192 906 2.9571282 939 2.9726656 972 2.9876663 907 2.9576073 940 2.9731278 973 2.9881128 908 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988046 910 2.9599414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.959948 945 2.9758911 979 2.9899388 913 2.9604708 946 2.975891 979 2.9997827 914 2.9609462 947 2.9768083 981 2.991261 915 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.	902	2.9552065	935	2.9708116	968	2.9858753
905 2.9766486 938 2.9722028 971 2.9872192 906 2.9571282 939 2.9726656 972 2.9876663 907 2.9576073 940 2.9731278 973 2.9881128 908 2.9588589 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.9894498 910 2.9599414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.989846 912 2.9599948 945 2.9758911 979 2.9899388 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9768083 981 2.9912261 915 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9772662 982 2.99291115 918 2.9623693 951 <t< td=""><td>903</td><td></td><td>936</td><td>2.9712758</td><td>969</td><td>2.9863238</td></t<>	903		936	2.9712758	969	2.9863238
906 2.9571282 939 2.9726656 972 2.9876663 907 2.9576073 940 2.9731278 973 2.9881128 908 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.974509 975 2.988046 910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.989846 912 2.9599948 945 2.9758911 979 2.9903388 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9772662 982 2.9921115 917 2.9623693 950 2.9772662 982 2.9921115 917 2.9623155 952 2.9786369 985 2.99234362 920 2.9637878 953				2.9717396	970	
907 2.9576073 940 2.9731278 973 2.9881128 908 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988046 910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.9599948 945 2.9758911 979 2.9898946 913 2.9604708 946 2.9758911 979 2.990388 913 2.9614211 948 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9772662 983 2.9925535 918 2.96237878 951 2.9786369 985 2.9934769 921 2.9642596 954 <td< td=""><td>905</td><td>2.9366486</td><td>938</td><td>2.9722028</td><td>971</td><td>2.9872192</td></td<>	905	2.9366486	938	2.9722028	971	2.9872192
908 2.9580858 941 2.9735896 974 2.9885589 909 2.9585639 942 2.9740509 975 2.988046 910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.9599948 945 2.9754318 978 2.9903388 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 981 2.9916690 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.97712662 983 2.9925535 918 2.9623693 951 2.9781805 984 2.99292553 919 2.9633155 952 2.9786369 985 2.9938769 921 2.9642596 954 <	906	2.9571282	939	2.9726656	972	2.9876663
909 2.9585639 942 2.9740509 975 2.988046 910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.9599948 945 2.9758911 979 2.9898946 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9772662 982 2.9921115 918 2.9623693 950 2.9781805 984 2.9929553 918 2.96237878 951 2.9786369 985 2.9938769 921 2.9642596 954 2.9795484 987 2.9943769 922 2.965720 955 <td< td=""><td>907</td><td>2.9576073</td><td>940</td><td>2.9731278</td><td>973</td><td>2.9881128</td></td<>	907	2.9576073	940	2.9731278	973	2.9881128
910 2.9590414 943 2.9745117 976 2.9894498 911 2.8595184 944 2.9749720 977 2.9898946 912 2.9599948 945 2.9754318 978 2.9903388 913 2.9604708 946 2.9758911 970 2.9907827 914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.991115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9623693 951 2.9781805 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9938769 921 2.9642596 954 2.9795484 987 2.99347569 922 2.9647309 955 2.980034 988 2.9947569 923 2.9666110 959 <td< td=""><td>908</td><td></td><td>941</td><td>2.9735896</td><td>974</td><td>2,9885589</td></td<>	908		941	2.9735896	974	2,9885589
911 2.8595184 944 2.9749720 977 2.9898946 912 2.9599948 945 2.9754318 978 2.9903388 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 980 2.9916690 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9916690 917 2.9623693 950 2.97772662 982 2.9921115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9786369 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9934769 920 2.9642596 954 2.9799029 986 2.9938769 921 2.9642596 954 2.980034 988 2.9947569 923 2.9656720 957 <t< td=""><td>909</td><td>2.9585639</td><td>942</td><td>2.9740509</td><td></td><td>2.9880046</td></t<>	909	2.9585639	942	2.9740509		2.9880046
912 2.9599948 945 2.9754318 978 2.9903388 913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9772662 983 2.9925535 918 2.9628427 951 2.9781805 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9938769 920 2.9637878 953 2.979929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958	910	2.9590414	943	2.9745117	976	2.9894498
913 2.9604708 946 2.9758911 979 2.9907827 914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9938769 920 2.9647578 953 2.979929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.9800034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9818186 992 2.9965736 924 2.96675480 961 <t< td=""><td></td><td>2.8595184</td><td>944</td><td>2.9749720</td><td>977</td><td>2.9898946</td></t<>		2.8595184	944	2.9749720	977	2.9898946
914 2.9609462 947 2.9763500 980 2.9912261 915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.992951 919 2.9633155 952 2.9786369 985 2.9938769 920 2.9637878 953 2.979929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9818186 992 2.9965736 927 2.9666110 959 2.9818186 992 2.9978231 929 2.9688157 962 2	912			2.9754318	978	2.9903388
915 2.9614211 948 2.9768083 981 2.9916690 916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.992951 919 2.9633155 952 2.9786369 985 2.9938769 920 2.9637878 953 2.979929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.981865 991 2.9965736 926 2.9666110 959 2.9818186 992 2.9965117 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9684829 962 2.	913		946		979	2.9907827
916 2.9618955 949 2.9772662 982 2.9921115 917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9938769 920 2.9637878 953 2.979929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.981865 991 2.9965736 926 2.9666110 959 2.9818186 992 2.9965117 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2			1			
917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.992951 919 2.9633155 952 2.9786369 985 2.9934362 920 2.9647596 953 2.9790929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.9800034 988 2.9947569 923 2.9652017 956 2.9804579 989 2.9951963 924 2.9656720 957 2.9809119 990 2.9956352 925 2.9666110 959 2.9818186 992 2.9965736 927 2.9666110 959 2.9818186 992 2.9965492 928 2.9675480 961 2.9827234 994 2.9978231 929 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 <td< td=""><td>915</td><td>2.9614211</td><td>948</td><td>2.9768083</td><td>981</td><td>2.9916690</td></td<>	915	2.9614211	948	2.9768083	981	2.9916690
917 2.9623693 950 2.9777236 983 2.9925535 918 2.9628427 951 2.9781805 984 2.9929951 919 2.9633155 952 2.9786369 985 2.9934362 920 2.9642596 954 2.9795484 987 2.9943171 921 2.9642596 954 2.9800034 988 2.9947569 921 2.9652017 956 2.9804579 989 2.9951963 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9666110 959 2.981866 992 2.9965736 926 2.9666110 959 2.9818186 992 2.996517 928 2.9675480 961 2.982712 993 2.9978231 929 2.9684829 963 2.9831751 995 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2	916	2.9618955	949	2.9772662	982	2.9921115
918 2.9628427 951 2.9781805 984 2.992951 919 2.9633155 952 2.9786369 985 2.9934362 920 2.9642596 954 2.9795484 987 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9652017 956 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9666110 959 2.9818186 992 2.9965173 926 2.9666110 959 2.9818186 992 2.9965117 927 2.9670797 960 2.982712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2	917		950	2.9777236		
920 2.9637878 953 2.9790929 986 2.9938769 921 2.9642596 954 2.9795484 987 2.9943171 922 2.9652017 955 2.980034 988 2.9947569 923 2.9656720 957 2.9809119 990 2.9956352 925 2.9666110 959 2.981865 991 2.9960736 926 2.9676707 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	918			2.9781805	984	
921 2.9642596 954 2.9795484 987 2.9943171 922 2.9647309 955 2.980034 988 2.9947569 923 2.9652017 956 2.9804579 989 2.9951963 924 2.9656720 957 2.9809119 990 2.9956352 925 2.9666110 959 2.9818186 992 2.996517 926 2.9676797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9982593 931 2.96894829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9698159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655			952	2.9786369	985	2.9934362
922 2.9647309 955 2.9800034 988 2.9947569 923 2.9652017 956 2.9804579 989 2.9951963 924 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9813655 991 2.996736 926 2.9666110 959 2.9818186 992 2.9965117 927 2.9675480 960 2.9822712 993 2.9969492 928 2.9685157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9698159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	920	2.9637878	953	2.9790929	986	2.9938769
922 2.9647309 955 2.980034 988 2.9947569 923 2.9652017 956 2.9804579 989 2.9951963 924 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9813655 991 2.996736 926 2.9666110 959 2.9818186 992 2.9965117 927 2.9670797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9694159 965 2.9845770 997 2.9986951 932 2.9698816 966 2.9849771 999 2.9995655	921		954	2.9795484	987	2.9943171
923 2.9652017 956 2.9804579 989 2.9951963 924 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9813655 991 2.9960736 926 2.9666110 959 2.9818186 992 2.9965117 927 2.9670797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9698159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	922	2.9647309	955			
924 2.9656720 957 2.9809119 990 2.9956352 925 2.9661417 958 2.9813655 991 2.9960736 926 2.9666110 959 2.9818186 992 2.9965117 927 2.9670797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	923	2.9652017	956	2.9804579	989	
926 2.9666110 959 2.9818186 992 2.9965117 927 2.9676797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655			1	2.9809119	990	2.9956352
927 2.9670797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	925	2.9661417	958	2.9813655	991	2.9960736
927 2.9670797 960 2.9822712 993 2.9969492 928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	926	2.9666110	959	2.9818186	992	2.9965117
928 2.9675480 961 2.9827234 994 2.9973864 929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	927	2.9670797	960			
929 2.9680157 962 2.9831751 995 2.9978231 930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655			1961			
930 2.9684829 963 2.9836263 996 2.9982593 931 2.9689497 964 2.9840770 997 2.9986951 932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655						
932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655	930	2.9684829	963	2.9836263	996	2.9982593
932 2.9694159 965 2.9845273 998 2.9991305 933 2.9698816 966 2.9849771 999 2.9995655				2.9840770	997	2.9986951
933 2.9698816 966 2.9849771 999 2.9995655			965		998	
				2.9849771		2.9995655
1	934	2.9703469	1967	1 2.98542651	1000	3.0000000

81 L108