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PREFACE.

Tuis treatise may bo considered as a sequel to the small Ele-
mentary Algebra, whose second edition, revised and enlarged,
has just preceded the present publication. However, it is not so
connected with the Elementary Algebra that it might not be
taken alone, for it does not depend on the former in any of its
parts, and is complete, as far as is allowed by the nature of a
book destined for the use of those who desire to be initiated in
the study of Algebra.

The reader, even before perusing the present introduction, has
probably noticed the difference of type, intended to separate those
gubjects which are more accessible to pupils at large from those
which suppose in the student either quicker parts or already some
advancement in the study of Algebra. That is to say, the most
elementary principles adapted even for those who, for the first
time, open a book of Algebra, are printed in larger type: the
other parts, which enter a little more into the secrets of the
science, are printed in smaller characters,

‘We beg the reader, however, to observe, first, that the under-
standing even of the most elementary principles of Algebra and
Geometry supposes always a certain degree of aptitude, Of this,
one who for any time has had experience of the tedious labour of
teaching, will render, without hesitation, abundant testimony.
Another observation to be made is, that the separation adopted
in the present treatise, with distinction of type, does not trace &
limit to be scrupulously followed, so that the teacher or the stu-
dent be compelled to go over all that is printed in large characters
before commencing the rest. But it is left to the discretion of
the teacher to enter, more or less, into the subject where and
when he will judge fit todo so. The teacher is fully aware that

he must unquestionably labour, and must not be satisfied merely
3



4 PREFACE.

with what he is to teach, but he should know much more. He
should he master of the subject, and be competent to adapt it to
the capacity of his pupils.

The Treatise is divided into two parts, the first of which con-
tains algebraical operations, with several questions and doctrines
connected with them, so that each section may prove complete in its
own subject, and the inconvenience of returning elsewhere to
speak of matter left unfinished before, may be avoided. The
same method is followed in the second part, of which we will im-
mediately say a few words. With this method, every thing is
put in its own place, so that any one who would go over the
whole uninterruptedly might have the advantage of order, and
of seeing, at a single glance, all that each subject embraces. Nay,
the same advantages may be enjoyed by those also who will he
able to overcome the first difliculties at a second or third reading,.
This method, we believe, has also the advantage of contracting
the bulk of the volume, which the same subjects, disorderly scat-
tered, would render much larger.

The second part contains the most indispensable theories of
equations, proportions, and progressions, logarithms, and some
few principles on the series. The doetrine of equations has been
treated more copiously than the others, not so much on account
of its importance, as because it is well adapted to give an idea of
algebraic analysis, and thus prepare the mind of the student
who would afterwards apply himself to higher studies.

Grorarrows Correck, July, 1855,
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TREATISE ON ALGEBRA.

INTRODUCTORY ARTICLE.

Mathematios: their 3 1+ MATHEMATICS treat of quantities; name-
oRjocts ly, of all that which can be numerically esti-
mated or measured.

Their variows  § 2- Hence, Mathematics, in their general
B, acceptation, embrace as many branches as there
are species of quantities taken into consideration, and these
various branches are also distinguished by appropriate denomi-
nations, as Geometry, Hydraulics, Optics, &o.

§ 3. Algebra considers quantities in an ab-
stract manner; that is, it considers in quantities
those properties and relations which are common to all the
various species; and we may add: That which Logic is to
mental philesophy and mental sciences of every description,
in some measure Algebra is to the mathematical sciences.
el of A :§4. Algebraic questions are consequently
Algebraic symbols. quite general, as well as the symbols used to
represent the quantities. These symbols are commonly the
letters of the Latin and Greek alphabet.

Algebrale  ques-  § 5. Algebraic questions and operations are,
tions connected with % . . . .
arithmetical ques- besides, strictly conneeted with numerical or
tions. Relation of . . . .
maguitude. arithmetical questions. Beecause, whenever one

quantity is compared with another of the same kind, for
2 13

Algebra: its object.



14 TREATISE ON ALGEBRA.

instance, weight with weight, space with space, &e., the rela-
tion is no other than numerical, This relation is a relation of
magnitude.

Relation of oppe- 5 0. Another relation, we may say of oppo-
Ao sition, depends on the different manner of the
existence of quantities. This opposition is designated by the
denominations of positive and negative quantities. 8o, for
example, two forces acting in the same straight line, but in a
direction opposite to each other, if compared, are respectively
positive and negative.

§7. When a quantity, for instance, a, is destined
to represent a positive one, the sign - ( plus) is fre-
quently placed before it. When the quantity is negative, the
sign — (minus) is always prefixed to the symbol.

§ 8. When, therefore, in the same question
we meet with the quantities 4- o —b, it is-
always understood that @ is positive with reference to &, and &
is negative with reference to” a. And, wvice versa, if two
quantities are given opposite to each other, and before the
first we put no sign or the positive sign, the negative sign is
then to be constantly put before the second.

How opposite  §9. When quantities of different signs, sup-
quantities are mu- % :
tually influenced. pose two, are collectively taken, their value is
then equivalent to a third quantity, which is the difference of
the absolute value of them, and whose sign is either positive
or negative according as the greater absolute value of the
two quantities is that of the positive, or that of the negative.
For example : two forces, -+ B and — b, if applied to the same
material point and along the same straight line, their effect is
the fesult of their simultaneons and collective action. But, if
we suppose B to impel the point twice as much as b, or, which
is the same, the absolute value of B to be twice as great as
that of &, since the forces act in opposition, the effect of &
will be counteracted by that of B ; and one-half of B (which

Eipns.

Use of the signs.
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is equal to &) will produce alone the effect in the positive
direction of B. That is, the collective action of the two forces
1s equal to that of their difference, and this difference acts in
the direction of the greater force.

§ 10. When a symbol, for example, b, is adopted
to represent a certain quantity, and it happens
that in the same investigation another quantity occurs whose
magnitude is twice, three times, &c. the magnitude of the
former & ; instead of making use of another symbol, or repeating
the same, we write only once the symbol &, placing before it a
figure to show how many times the quantity is taken. This

Coefficient.

number is called coeflicient, which means malking «together
with the symbol, the whole of a quantity. If, for instance,
the quantity B is three times as great as b, or C five times
as great as ¢, instead of writing B and C, we would write 3
and He.

When two or more terms differ only in the
coeflicient, they are termed similar. For ex-
ample, 5b, 2b, or 3¢, Te, 12¢, are similar terms.

§11. Let us remark here also, than when a
quantity is to be added to another quantity, b
for instance to a, or several quantities are to be added to
another, this addition is commonly expressed by interposing
between the quantities or terms the positive sign -, which,
for this reason, is termed also a sign of addition. Suppose, Tor
example, that the quantities b, ¢, & are to be added to «, this
will be indicated by writing, @ - b4-¢ -} d.

Sign of subtrae. 3 12- When, on the contrary, a quantity is to
on be subtracted from another, the quantity from
which we subtract is first written, then the other, and the
negative sign is placed between them. If, for instance, b is to
be subtracted from @, we will write a — b.

Fqoations ana § 13. Comparing together quantities of the
Inequalitios same kind, for example, weights with weiglts,

Similar terms,

Sign of addition.
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surfaces with surfaces, &6., we will find them either equal or
not. Suppose now, for the sake of simplicity, only two such
quantities, which we will call a, b. If they are equal, then
we write @ = b, and the sign (==) of equality is m_ad equal to;
the terms so compared, considered as forming a single expres-
sion, are called an equation. If the same terms represent two
unequal quantities, then a is either greater or less_ r:hnu b in
the former case the inequality is expressed by writing a >0,
in the second, @< b; that is, we place between the terms the
angle, or sign of inequality, with the vertex towards the less
of the unequal terms.

Monomisls ana § 14. Any algebraical expression whose sym-
polynomials, bols are not separated by positive or negative
signs, or the signs of equality or inequality, is called term or
monomial. For example, the symbol b, together with the
coefficient 5, constitute the monomial 56. When two terms
are separated by a positive or negative sign, the expression is
then called binomial ; if three such terms are separated in the
same manner, they form then a ¢rinomial, &e.; and in general
these expressions are called polynomials.

Membersofequs-  § 10+ When two or more terms are separated

R0 by the sign of equality or inequality, these
terms constitute the members of the equation or inequality.
For example, in the equation, a -} & + ¢ = m —n, the tri-
nomial @ -5 ¢ forms the first member, and the binomial
m — n the second member of the equation. Likewise, in the
inequality p + ¢ > f— d, the first binomial is the first mem-
ber, and the second binomial forms the second member of the
inequality.

Constant  mma  § 16, Any algebraical expression whose value
varfable quantities, . . &
Functions. depends on the value of a variable quantity, is
called function of that variable. For instance, the monomial
6z depends on the value given to x. So. likewise, in the
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equation, ¥ = a - x, suppesing @ an invariable or constamnt
quantity, and @ variable, y necessarily depends on the value of
a; hence, y is a function of @. When such quantities as y
are functions of another, or other quantities, this is expressed
by the index f; and, instead of writing, for example, y or
@ -} a, we simply write, f (@), or y =/ (®). The index f
must be varied when different functions occur in the same
question, and we then make use of F or ¢, or some other
letter.

When, therefore, a quantity @, or several quantities a -|- b,
&e., are submitted to any operation, the result is a function
of those quantities, because it depends on the same ¢uantities;
so that, if instead of @ or a—-&, we should submit to the
same operations other quantities, for instance, A and A - B,
the result would necessarily be different. But if two or more
guantities are equal among themselves, and are subwitted to
the same operations or equally modified, the result must
neeessarily be the same. Hence, if a is equal to b and ¢, &e.,
and a is submitted to such an operation as to give for result,
f(a), if we submit b and ¢ to the same operation, with the
cql?ation, g hea e
we must have also,

f@=F®=F()=...
That is to say, the members of an equation equally modified
Joerm another equation.

This deduction cannot for the present be developed nor
illustrated by examples, but its frequent application will soon
supply copious illustrations.

Modifieation of - § 17. Quantities are essentially capable of
mutul relations.increase and diminution ; and considering any
quantity in an abstract manner, we cannot conceive any other
modification of it, except that which is performed by addition
or by subtraction, or by equivalent operations. Again,

2%



18 TREATISE ON ALGEBRA.

quantities may be compared together, cither by a simple or
complex comparison. 'This is all that concerns quantities,

Divicion of the generally considered ; hence, Algebra may be
froatiéa. conveniently divided into two parts: the first of
which has for its object operations on quantitics ; the second,
to investigate and discover the properties, connections, and
dependences of quantities, according to their various com-
parisons and combinations.



FIRST PART.
ALGEBRAIC OPERATIONS.

CHAPTER L

DEFINITIONS AND OPERATIONS ON MONOMIALS.

ARTICLE 1.
Addition and Subtraction.

Aabrateand 3 18- Apprrron.—Numerical or arithmetical
arithmetilad- g4 dition consists in finding out a number containing
i in itselfas many unitsand fractions of units as there
are in all the numbers to be added together. For example, to
find out the number 12, which contains in itself as many units
as there are in the numbers 2, 4, 6, is to make the sum or
addition of these numbers, and this sum is expressed (11, 13)
by 2 4 4+ 6=12. But, with regard to algebraical quanti-
ties; for instance, a, b, ¢, ... ., although the sum is repre-
sented as in numbers, namely, a-}b-fe4- ..., yet, on
account of the more general signification of the algebraic
symbols, the operation is not equally simple as for numbers.
The quantities represented by algebraic symbols have, indeed,
a numerical value; nay, this value is the one taken into
aceount in addition, as well as in other algebraic operations.
But quantities may have either a positive or a negative value ;
so that a, for example, may be negative with rezard to b and .
Then the numerical and relative value of a is to be expressed,
for instance, by — 3, while the others are expressed, suppose

by -+ 4 and 4 5 in this sum or collection the negative part is
19
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destroyed by the positive, and since 5 -}- 4 = 49 and 9 -—
8 — - 6, a quantity m, whose numerical value is +- 6, will
represent the sum of the given quantities a, b, ¢, and we will
have atb4c=m.

From these remarks we deduce the following definition, and
two practical rules :

Detinition of  The sum of a number of guantities is a mo-
algebruic addi- .
tion, nomial, whose numerical value @s the exeess of
the numerical value of the quantities affected by one sign,
over the numerical value of the quantities affected by the
opposile sign, and the sign of which s the sign of the same
excess. :
m:{':;mg;nl;g Some consequences easily derived from this
same sign, definition will make it more clear. First, if all
the quantities to be added have either a positive or a negative
sign or value, the sum has, likewise, a positive or negative
value, and the numerical value of this sum_contains as many
units and fractions as there are in all the numerical values of
the quantities, added exactly as for numbers. Secondly, if the

Equal nume- numerical value of the qu:mt.ities to be added

rieal walue of 3 ¥
quantities af amount to the same for those which have a posi-

ﬁféﬁgﬁ.m& tive, and for those which have a negative value,
the sum is then equal to zero. A third consequence needs
not to be pointed out, since it obviously appears from the
definition itself.

RuLE 1.— When the quantities to be added are
merely represented by symbols, we consider them as
having a positive sign, and their sum is expressed by writing
in succession the same quantities, and placing the positive
siyn between them.

For example, the sum of the guantities

b di o0
is expressed by a-f-btcd-d4-....
Rure 2.— When the sign s placed before the quantities to

Rules.
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be added, then the sum s vepresented by writing, likewise, the
symbols in succession, each with its own sign ; but the sign of
the first is not written unless 1t be negative.

For example, the sum of the quantities,

a,by¢e, —g —h—k

isexpressed by a-+bte—g—h—F

It is evident that a sum will be always equal to a certain
unvariable monomial expression, whatever be the order in
which the terms are written. So, for instance, calling m the
equivalent monomial expression, we may write

atfbte—yg—h—rlk=m,

or a—gtb—h+c—k=m,&e

The proposed examples are the most general. In more
particular cases there occur simplifications or reductions of
terms, which we will soon see in other examples.

Doctrine of & 19. We have already remarked, that the sign placed
signs. before a symbol is not always the same sign as that of
the numerical value of the quantity represented by it; and although,
generally, the quantity @ or 4 a is considered as having a positive
numerieal value, and the quanity — b, a negative numerical value,
it happens, however, in mathematieal investigations, that the numeri-
cal value of a positive quantity is sometimes found negative, and vice
versa. Hence, some questions arise concerning the final sign to be
given to a quantity, which deserve to be noticed here. And, to give
to our researches a quite general character, let us first remark, that
one or more signs by which an algebraieal symbol can be occasionally
affected necessarily affect the numerical value itself, and wvice versa ;
secondly, an algebraical symbol is frequently a symbol of another,
or other symbols, sometimes affectedl by the same, sometimes by the
opposite signs. For instance, we may have

&= -I- A

ora=—A;
hence, +a=4(+A), orfa=-4(—A)
—a=—(+4A), or —a = —(—A).

Product of The expressions of these two sets are manifestly
sigus, opposite, but 4 (4 A) is equivalent to 4 A; hence,
—(4A) must be equivalent to — A; again, 4 (—A) is equivalent
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to —A; hence, — (— A) must be equivalent to 4-A. Therefore, we
derive this general inference :

A double sign placed before an algebraical symbol, @s equivalent o the
positive sign, when the two are either both positive or both negative; il is
equivalent 1o the negative sign, when one of the two s positive and the
other negative,

But, suppose A to be a symbol of another algebraical symbol; for
example, - « or —e, we will have

A= (2)
or ++A=++(—2)
and, continuning the same process, we see that any number of signs
may affect an algebraical symbol, but the same signs may be easily
reduced to a single one. When, for example, & is affected by a num-
ber of signs, as follows:

2 Ehi i A
make first, -} — b = ¢, we will have
+—— b= ——e;

make again, — —e¢=4d, we will have

but 4+ —b=—5; hence, e =—15,
and ——c¢=-+}c¢; hence, e =4,
and consequently, =—b;

but d=4——4 —b;
hence, et —b=—b;

and in general, when the original number of signs contains an even
number of negative ones, the final sign is always positive; and when
the original number of signs contains an odd number of negative, the
final sign is always negative. In fact, no sign is changed from posi-
tive into negative, and wice versa, except by the influence of a preceding
negative sign; hence, the first negative sign determines a negative
sign for the symbol, the second ¢hanges it into positive, the third into
negative, &e.

The analogy between the mutual influence of signs when applied to
the same quantity, and the influence of terms affected by different
signs when multiplied together, has given to the final sign in question
the name of product of signs, although this result is altogether
different from that of multiplication.

Examples and §20 Let _21’) St m) + 35) _Sm) +f)
gt —2m) be terms to be added. In this example,
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the similar terms, — 28, = 80, and 4 m, — 8m, -} 2m may
be reduced to a less number, beeanse (9) 86 — 24 is evidently
equal to -5 or b, and m - 2m = 3m ; hence, m --2m —3m
—0; therefore, the sum of all the terms is given by &/
that is, — 264 m -+ 86—38m -+ f+2m=0b+ f.

Let the terms given for another addition be 16m) - 12¢)
— 47) +§) — 12m) — 18¢) — 8s) - 7) +-¢) —m) - Tr)
— 18¢). Select first the similar terms, and dispose them as
follows :

+16m +12¢ —4r - s
—12m —18¢ -+ r — 3Bs
— m 4+ e +Tr —13s
Sum -+ 3m 0 -4r —1bs.
And since the collection of the separtial sums gives the total
gum, we will have
16m -} 12¢ — 4» - s —12m —18¢ — 35 r |-c
—m -+ Tr —13s = 3m - 4r — 1bs.

From these examples it is plain, that the addition of simple
monomials consists in a bare reduction of similar terms, and
this reduction is performed by taking the sum of their co-
‘efficients when they are affected with the same sign, or by
taking the difference of the same coefficients when affected
with opposite signs. Let us now propose some problems to be
resolved with simple addition of monomials.

Twelve divisions of soldiers, containing each
92 soldiers, are in a castle when the enemy com-
mences the attack; 2 of these divisions take to flight during
the assault; 43 divisions perish in the conflict. The assailants
gain the battle, and their general with 8 divisions, cach con-
taining » men, enters into the fort when it is still occupied by
the defenders.

We ask what is the amount » of combatants in the fortress
after the entrance of the victorious general ?

This problem, besides giving another example of addition,

First problem.
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plify still more the relative signifi-

gives also occasion to exem
The quantity here

cation of positive and negative terms.
inquired is a number of men; considering, thercfore, as posi-
tive all that tend to add to this number, we must consider as
negative all that tend to diminish the same number, being
evidently quantities opposite to one another. Hence, the
terms given by the problem, will be as follows :

Twelve divisions of men, each containing 2n soldiers, give
the term, - 12. 2a, or o 24n.

Two divisions of men leaving the fort, give the term
—2.2n, or —4n.

Four and a half divisions lost in the battle, give the terms,
—4 .23, — u; that is, —8n, — 2. -

The general entering into the castle, gives the term, 1.

And the eight divisions containing each # soldiers, give
the term, }- 8. Hence, we have for the required amount

24n —dn —8n—mn -1 -4 8r;

which gives z=11n 41 -4 8.

Lettors used ~ We may here remark, that @, as well as y and
for unknown
quantities, 2 and some of the other last letters of the alpha-
bet, are usually employed to represent the quantities to be
found, or generally unknown quantities.

Numeriealap-  But to render the case more determined, sup-

plications of the -
problem, pose n==50 and »==80, we will have from

x=11n-}- 1 8r,

o =1191.
If, instead of n = 50 and + = 80, we take n — 80 and »= 60,
then we have = 1361.

General cha.  And so we eould resolve any number of cases
Tt &> by substituting other values for » and 2. And
tions. from this the learner may appreciate the general

character of algebraical questions.
Tour hunters agree to meet together at the verge

Problem 2. : :
"% of ariver after hunting. The first of them shoots
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n birds, the second, twice the same number, and 27 birds
besides ; the third shoots as many birdsag the first and second
killed together; the fourth does not shoot any, but seeing the
good success of his companions, takes the birds brought by
the first, and one-half of those brought by the second, and
throws them into the river.

How many birds remained after this? and how many birds
were brought by the hunters ?

Aus, to the first question:

z=4n48r.
Ans. to the second question :
y = 6n - 4r.
Suppose n=—10, » =9, then
€T = 67, y =96.

Suppose n =9, » =10, then
@ =60, y = 94, &e.

§ 21. SusrtrAcTioN.—To subtract a quantity &
from another quantity @, means, to find the difference
between the two quantities; and this difference, which we
will eall d, is such, that if added to the quantity &, the
sum will be a. Hence, we may briefly give the following
definition :

To subtract b from a, means to find out a
quantity d, which added to b gives a. Namely,

d-l-b=a.
Now let us add the term — b to both members of this equa-
tion, we will have d b —b=—=a —Db, that is
d=0a— b.
Suppose, again, b equal first to 4 ¢, and secondly to —g;
we will have, in the two cases,
mslmesil )
e

But in the second case, the value of & is oppo-

site to that of thi; same & in the first case, con-

Difference.

Definition.

Result of gigns.
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sequently, since — (- g) = — (g), or since in the first ca.sa
— b= —g, in the second we will have — b— - g; thatis,

—(—g) =+ g, which exactly corresponds to the doctrine
of signs (19); hence, with  — |- g, we have
d=a—b=—=a—4g;
and with b =— — g, we have
d=a—b—=a-+tg
In the first case we obtain the difference d, by adding to a a
quantity opposite to - g¢; in the second case the required
difference is obtained by adding to @ a quantity opposite to
—g; henece, follows this general rule :
The quantity b is subtracted from a, by adding

Rule for sub-
tractlon, to & a quantity opposite to b.
General ex.  Lhus, for example, — % is subtracted from #&,
Buples: by simply writing
h4- T,
and m is subtracted from n by writing
i — M.

These are the most general examples of algebraical sub-
traction of monomials. We will soon propose other examples
and problems, in which the difference can be expressed by a
single term.

Criterion of  222. Let us here observe, that when the difference
magmitude. n—m is positive, then n is said to be greater than m;
when the same difference is negative, then n is said to be less than m.
The difference, therefore, between two quantities, is the eriterion of
their relative magnitude; and since by substituting for n any positive
number or numerieal value, and for m any negative mumber or

Any positive numerical value, the difference is certainly always posi-
:r“'ﬂ:f: Joeal five, so it follows that any positive mumber or quantity
gative, relatively considered is greater than all negative ones.
Again, substituting for n and m negative numerical values, but the
absolute value of n less than the absolute value of m, the difference
is, likewise, always positive; therefore, the greater of two negative
quantities or numbers, relatively considered to a certain term, is that
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T which has a less numerical value. We may illustrate
tation of num- the same doctrine as follows: observing first, that num-
pers. bers are either considered as terms of comparison, or as
symbols by which one or more existing objects may be designated.
When we consider numbers under this last point of view, the only
cipher zero, which excludes all numerical signification, is and signifies
nothing, When we consider numbers as terms of comparison, zero is
a term to which we may refer all the others as to any number. So
it is evident that to say three units above zero, or two units below five,
conveys the same conception of the number three. Nay, the term

The term zero Z€ro is the central term between the ascending series of
m“ of com. Dositive, and the descending series of negative num-
parison. bers. This heing admitted, we observe, moreover, that
with regard to positive numbers, all agree that the greater among them
is that which is farther from zero, the term below all positive num-
bers; but zero is in an equal manner above all negative numbers, and
the more above, the more they increase in absolute value; referring,
therefore, to the same term, zero, negative numbers, we infer that
among negative numbers relatively considered those are less that have
a greater numerical value.

Examples and § 23. From 5b subti'act 4b H

i we will have the difference
b —4b=1.

From 44 subtract 50 ;

we will obtain 4b—b6b = —0.
From 55 subtract —45 ;

we will have 5b - 45 = 9b.
From — 55 subtract — 45

we will have — 5b 4 4b = —5b.
From — 4% subtract — 5b;

we will have — 45 - 5b =0

Ten men pull, with a rope, a heavy stone in a
Problem 1.

straight line from A towards B, and with a force
10n. Seven more men pull the same stone in an opposite
direction, namely, from B towards A, with a force 7n. What
is the difference = of the action of- these two forces?
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Ans. Tt is plain that, considering the action which moves
the weight towards B as positive, the opposite action must be
negative. Hence, the two terms in question are - 10n — Ta.
Now the second is to be subtracted froma the first, therefore,

=100 4 Tn = 177.

Suppose n =— 10 pounds, we will have
X==:170 s

Numerical ap-
plications,

Suppose n = 15 pounds, we will have
z=955...p.
Four workmen cut each m pieces of timber, and
three boys ent each » pieces. What is the differ-
ence between the two numbers ?

Problem 2.

Ans. x—4n— 3r.
Numerical ap Suppose 2 =50, r = 80, then
Pplications. R 110-
Suppose n =90, 7 = 40, then
xz — 240.

Let us observe, that when we merely intend to take the
difference between two numbers affected by the same sign, we
only attend to the numerical value.

ARTICLE TI.
Multiplication and Division.

Invwhatmue  § 24 ‘MurnrrenicarroNn.—To multiply a mo-
trliution ton' nomial @ by another monomial 4, means to find a
g i quantity p, whose numerical value is equal to the
product of the numerical values of @ and 5. The monomial a
is termed multiplicand, b multiplier, and both, factors. The
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Yarlous man- Q“a“t“‘y r is termed Prodwct, and thiﬂ product
ners of D™ i represented by the factors in any of the follow-

senting the pro-
e ing manners :
a.b, a X b, ab,
and each one of these expressions is read e multiplied by &, or
simply ab. .

Definition of 2 25. The definition and deseription of numerical mul-
numericslmual- . o, . £ 5 PR
tiplicafion. tiplication is frequently given as follows: Multiplica-
tion is the addition of the multiplicand repeated as many times as
thore are units in the multiplier. This definition (when we merely
consider the absolute value of the product) is correct so far as the
multiplier is a whole number ; but when it becomes a fractional one,
that is, when the multiplier is a fraction of unity or even contains
some units, but a fraction of unity besides, the given definition can-
not then be rigorously applied. A definition which comprehends the
object in its full extension, supposing, namely, the multiplicand A and
the multiplier B to be any two numbers, is the following: To multiply
A by B, is to derive from A through addition a number in the same man-
ner as, through the addition of the same element, the number B is derived
from positive unity. That is, the operation to which positive unity
must be submitted in order to give through addition the number B, is
the same operation to which A must be submitted to obtain the pro-
duct of the numbers A and B. Now, B represents a rational number,
(either whole or fractional,) or an irrational one. Let us examine
each of these cases, and we will have a complete explanation of the last
definition.

Case of the  Suppose, first, B a whole and positive number. The
maltplier. - simple addition of unity repeated as many times as there
and positive.  are units in B, is the operation to be made about unity
to derive from it B through addition. The multiplication, there-
fore, of A by B, consists in this case in making the addition of A
taken as many times as there are units in B, which accords exactly
with the first definition. From this we derive a consequence concern-
ing the sign which affects the product; a consequence applicable also
to the cases to be considered hereafter.

Consequence Since positive unity, taken as it is, forms by repeated
:ﬂ?nu::rrntil‘;g '::: addition the positive multiplier B, so A, taken as it is
duct. given, and repeatedi?:addad to itself, gives the product
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of A by B. Hence it follows, that when A also is positive, the pro-
duct is positive. But when the multiplier A is given negative, and B
ig still positive, then the product, being a sum of negative terms, is
necessarily negative.  Suppose now, B a whole negative number, then
B caunot be immediately obtained from positive unity, but we must

The multiptier first change its sign. But according to the definition,
nezative. to obtain the product of A by B, we ought to operate
about A as about positive unity to obtain B. So in the case of B
negative, the sign of the multiplicand A is to be changed ; then obsery-
ing how many units are in B, add A to itself, as in the pre;:eding
case, but with the sign changed, which, consequently, is the sign of
the product. Therefore, when B is negative, and A also negative, the
product is positive; when D is negative but A positive, the product
then is negative. Hence, the known rule, like signs give a positive
product; unlike signs, negative,

Case of the  When B is a fractional number, having, for example, n
multiplier frae- s : . .
tioual. for its numerator, and m for denominator, in this case,
to obtain B from unity, we must take, first, one m™ part of nnity and
add it n times to itself, because in this way only, throngh the addi-
tion of the same element, we can derive B from unity, Operating now

upon A in like manner, we will have first ’—t , which represents the
m™ part of A ; taking thon n times this element, which is expressed by
placing the coefficint n before ;—E, we will have the product ﬂ;}‘;. CorTes-
ponding to the factors A, ;:.

"mn:if 2‘1: In one of the following paragraphs we will dwell on
tors, irrational numbers. For the present it is enough to
observe that they eannot be expressed like rational numbers, although
we may conceive a series of rationals, continually and indefinitely
approaching to any irrational. HWenee, whenever an irrational number
is to be used for any purpose, we must necessarily make use of a
rational near it. Therefore, in the ease of irrational numbers, the
multiplication will be performed with rational numbers, and, conse-

quently, the foregoing remarks are applicable to this case also.

Arithmetical — § 26, Considering the numerical value and
rules applicable

toguantities.  sign of quantities, it is plain that the same
arithmetical rules are to be followed with regard to quantities
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for that which concerns the form and sign of the product.
The rule of signs may be derived indeed from the definition.
But sinee all agree in admitting that | @, multiplied by - 5,
gives a positive product, we may infer the same rule as fol-
lows :
sutuatinta.  The factors are mutually influenced in effecting
ence o factors:  he product, and this influence is twofold : the one
numerical, or of magnitude ; the other of sign. Suppose, now,
the numerical value of the factors - a, - & to remain un-
varied, and change the sign of either of them; this change
must necessarily affect the product - p, and this cannot be
done except by the change of the sign of the same product,
and so admitting
+ a X o b= ~+ s
we must admit, also, the two following equations :
+axX —b=—p;
—aX4+b=—p
Take again either of these two cquations, for instance, the
last, and change the sign of b; this will again produce an
equivalent change in the product, and we will have
Treating of the multiplication of polynomials, we will come
to the same consequence by another process; meanwhile we
may infer the general rule.
The sign of the product is positive when both

Rule of signs. . . . T
S fuctors arve affected with the same sign : it is nega-

tive when the JSactors ave affected with opposite signs.

In the practical application of this rule we usually say,
plus by plus, or minus by minus, give plus; plus by minus,
or minus by plus, give minus.

Yariousforms  § 27. Thus far we have considered the factors
of the mumerd in their most gemeral acceptation, and only two.
quantities. Byt the numerical value, which is the one taken

into account, specifies in some measure the quantities, because
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this value is either whole or fractional ; hence, four cases can
take place with regard to the factors @ and . We may first
suppose the numerical values of both of them to be whole
numbers ; secondly, both fractional ; thirdly, the numerical
value of the multiplicand a whole number, and that of the
multiplier fractional, and we may finally suppose the multi-
plier & whole number, and the multiplicand fractional.

The student being familiar with the numerical operations, it
is not necessary here to dwell upon them : it will be profitable,
however, to place before his eyes the general formulas of those
which concern our present question, leaving, if necessary, to
the teacher the eare of making numerieal substitutions.

Genoral for-  Suppose m, n, %, h to represent whole num-

mnrrinxiol' i T 3
;ﬁn}t,.l_’"n'w bers, and i fractional ones. With them we may

represent the above-mentioned cases; and calling p the pro-
duct of m by n, we will have

m.n=p

n &'—“'hand!‘i E—k.'.i

m' kT m.k k'm ™ k.m

h wm .l h h.m

f) m.}‘—:z A nndz.m_.-——k
E.h=“'kandfa.£=k'n.

m m e m

From these formulas we will soon derive a general and use-
ful consequence.

How thearith. & 28 Let us observe, meanwhile, that the arithmetical
;ﬂ;ﬂgﬁnﬁtﬁf rules expressed by the (f) eannot be arbitrary, and if
follow from the right, they must necessarily follow from the definition of
Srnuisen, multiplication. Examining (25) the case of a fractional

multiplier, we have touched this subject, which we will develop here,
h

And, first, suppose 3 to be the multiplicand, and ﬁf the multiplier,

which indicates that the n™ part of unity has been taken m times.

Hence, to obtain the product of % by E. according to the definition
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(25), the n™ part of z 13 first to be determined, and the same is then

to be taken m times. Now, the s part ofg is %‘. Suppose, in

Mechanical artl-  fact, n straight line divided into & equal parts, these
fice, showing the

h
?;:jﬂzfl_m" ofa parts may represent the & of the fraction & suppose,

besides, each one of these parts to be subdivided into m equal
parts, (which is the same as dividing unity into n, k parts,) the &
part of our line will then become f&.n, but each one of these is
equal to the (&.n)" part of unity; therefore, the %.n parts of the

. < h.n 3
line will represent the fraction e, but the same line represents

h .
also the fraction .‘i" therefore, i == H. Compare now together, the

h
fractions — £5 and e the first is n times less than the second, but the

.’t h
gecond is equal to % therefore, k-—- is n times less than Por which is

h
the same, T is the n'™ part of E' To complete now the multiplica-

h
tion of P by ’:—:, the n* part of the first fraction is to be taken m times,
which is evidently obtained by multiplying by m the numerator & of the

fraction J:.‘_'n' Hence, — Pt %, exactly as the rule preseribes; the
product of one fraction mu.lnplied by another is equal to another frac-
tion whose numerator is the product of the numerators of the factors,
and the denominator is the product of the denominators of the same
factors.

Let us now come to the cases of the multiplicand whole number,

and of the multiplier fractional, and vice versa. In the first of these

. i h m.h
two cases, reasoning as above, we will have m. E‘ = T; and in the
n.h

second, it is plain that — . h o= e That is, the product of a whole

number by a fraction, and vice versa, i3 obtained by multiplying the
numerator of the fraction by the other factor.

m:’;sg:;ﬁp}:;: §29. The product p of the first formula (/)

e it is given by m units, repeated n times. But to
er, and wvies % . « .

versa, without add s units » times, is the same as to add » units

affecting  the . L .

product. m times. We can see it by making use of a
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mechanical artifice. Range on a horizontal line a row of m

caso of the dots, and from each dot draw a vertical line;
factors : whole
numbers, range again on each one of these verticals = dots,
commencing with that already marked on the horizontal line.
In this manner we have m dots repeated » times, and conse-
quently the whole number of dots is the product of 22 by n.
But since, on each vertical line there are » dots, and these
lines are m in nuomber, we have also n dots repeated m’
times; that is, the product of # by m given by the same num-
ber of dots; hence, we may always write

m.n=mn.m.

Othercases.  Therefore we may write also n. k=% . n, and

B o Bom ot pedmar

m .k = k.m, and consequently

m.k  k.m
n.h n A k.n 2 n
second of (), we havem.kzﬁ'k’wdk — =
A & n
theref: S 45
ot 2 m k k'm

Reasoning in the same manner, we deduce from the remain-
ing formulas (/) that

m. « M.

el
Bk

Gomerst fns- Whatever be, therefore, the numerical value of
bralal factors.  the algebraical terms @ and b, we generally infer
that a.b="5%.a.

The proanet 9 o0. The same inference may be applied to
of soy number any number of algebraical terms a, b, ¢, &, e ...
sambwhatever  QObserve first, that if any number of quantities,
Yohich the B> having all a whole numerical value, bring the same
e product whatever be the order in which they are
taken; any number of algebraical quantities will bring the
same product also when their numerical values are fractional or
partly fractional, and partly whole numbers, whatever be the

order in which they are taken, since the operation is always
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performed upon the whole numbers of numerators and denomi-
nators. It is enough, therefore, to demonstrate here, that
whatsoever be the order in which whole numbers, or quantities
having whole numerical values, are taken, their product will be
always the same. Let three such guantities be a,
b, c. To multiply @ by b, is to take a as many
times as there are units in the numerical value of b; that is,
a+a--a- a-. Again, to multiply this product by ¢ is
to add the whole series of terms a -{- @ 4 a +- @ repeated as
many times as there are units in e. Now, & terms repeated ¢
times give a nmumber of them equal to the product & X e.
To multiply, therefore, the product @.b by ¢, or @ by the
product . ¢, gives the same result; hence, generally,
a. b ec=aXb.c;
and since @. b =1"0.a, b.c =ec.b, so we will have also,
bia o= eib = a.c X b,
and, in like manner,
a.e}b=¢.aXli=eXa.b;
and so on. 8o that we may evidently infer that three factors
multiplied in any order whatsoever, give constantly the same
product.

Threa factors.

Add now another factor, and make
aibicid=DPi

The first three may be changed at pleasure, and the factor
d will always multiply the same quantity ; but calling p the
partial product of the first two factors, the same product P can
be represented also by p.c.d, or by p.d.c; that is, resolving
again p into its factors,

But again, whatever be the order in which a, b, d are taken,
their product will remain unvaried; the factor d, therefore,
which was the last, can become the third, the second, and the
first, while the other three factors may be arranged from the
beginning in any manner whatsoever; but this evidently em-

Four factors.
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braces all the possible cases of combinations of the four fae-
tors; therefore, the product P made by four factors will be
always the same, whatever might be the order in which the
fuctors are taken., We may reason in the same manner when
the factors beecome five, because the first four may be changed
at pleasure ; considering then the first three as a single term,
the place of the fourth may be changed with that of the fifth,
which, together with the three preceeding, will always give the
- ... same product, whatever be the manner in which it is
combined with the others; the same consequence, therefore,
can be inferred with regard to five as with regard to four
factors, and the same with regard to six, with regard to seven,
and generally with regard to any number n of factors.
Sizntobegiven  § 31 It remains mow for us to see what is the
to the product of | "

sevoral fuctors. — 8ign to be given fo the product, when several
terms are multiplied. The factors are either all positive or all
negative, or partly positive and partly negative; in the first
case the product is evidently positive; in the
second it is positive likewise, if the number of
terms is even, because the first factor with the second mauke a
positive produet, which the third changes into another negative,
and this, with the fourth factor, makes again another product
positive; and so on. If the negative factors are three, their
product is negative; if four, positive; if five, negative; and
hence, generally, when all the factors are negative, their pro-
duet is positive, when their number is even; their product is
negative, when their number is odd. The sawe is to be said
when only a portion of the factors is negative; that is, when
the number of these fuctors is even, the total product is posi-
tive; when the number of negative factors is odd, the total
product is negative. In fact, the first negative factor after
some positive factors makes the whole product negative, and if
other positive factors oceur, the successive products will remain
still negative; but when another negative fuctor occars, then

Thres cases,
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the product beecomes positive, and such will remain until the
third negative fuctor comes; and therefore, the following
rule will determine the sign to be given to the total product
in all cases:

The sign is negative whenever the number of

Rul ; § S

U wegative factors is odd ; otherwise, it s always
positive,
proquctorthe 52, When different factors are given, it may

enme factors. paouy that some of the factors are repeated: in this
case, instead of writing, for example, a.a.a, we write a®; we
write, namely, a only once, and above it the number of times
the same quantity is taken as a factor, and this number is
called exponent. Of such exponential gquantities,
and of their reduction, we will speak more fully in
its proper place in the next article; however, we cannot omit
here adding a few remarks concerning this subject, inasmuch
as it is connected with simple multiplication. And first, if
two or more exponential quantitics, for example, 4% and &' are
to be multiplied together, their product will be represented
either by &°.04, or by b?; since the signification of these ex-
pressions is the same, that is, the sum 9 of the partial expo-
nents 5, 4, signifies that & is taken as a factor nine times in
both cases. Therefore, in cases similar to this, it is enough
to write once the quantity, and give to it for exponent the sum
of the partial exponents. Vice wversa, since the number 9
is equal to the sum of 5 and 4, or 6 and 3, &c. We may,
for the same reason, write 0% == B5. 0= 108. 0P —....; and
this also can be evidently applied to all similar cases.

Observe also, that, since the order in which the factors are
taken does not change the produet, (30,) the products a.a.b.b
and a.b.a.b are equal to one another. Now, a.a.b.b=
a®l?, and ab.ab = (ab)?; therefore, a*l® = (ab)?, and for the
same reason, if any number of factors having the same ex-
ponent are to be multiplied trgether, we may write once the

Exponent.



38 TREATISE ON ALGEBRA.

product of the simple quantities, and apply to this product
the common exponent; for instance, the product a®.%°.c9 is
equivalent to (a.b.c)%

ExaMrLES-

Examples and § 33. Given factors. Product.
problems.

(1) 8a, m.my —3}gy —Terens Jagrma.
() 16m, —12», — 13, {c,
—ydfy Sy e isiininnnen — mnbegdfhl.
(8.) 4ab, —2be*, —mad, &. . + 8(abed)*m. . d.
(4.) — Tabe, — Babed?,
abedet, — jabedef™. . . . — F(abedef ).
(5.) abede, — abed,
+ abe, —ab, +a.... | a*bcde.
(8.) a®h, —be*, +edt, —gf*. . 4 (ab)* . (cd)*. 9/ )*
(1.) gadbe, — b, - 4atbics,
—dadd - ad . ion s + (abedy. (abe).(ab).a.
(8.) 4a?, — bash, —8al?, 207, . 4 320(a.b)%.
9.) a%; —al®, + ¢, —d,
+ edy, — abed, - de. . . — (abed)t
(10.) 4am, —16be, + gm?,
—mn 4 Jbrf, —bed .. —mt.B.a.n.r f.d

A general, in order to exercise his soldiers, ranges
them on a field before the castle, and divides the
whole army in two sections fronting each other, the one under
the walls of the castle, the other opposite to it. During the
exercise the general rides up and down between the opposite
ranks, and when the exercise commences he rides, having the
castle at his right hand, and he goes » times up in this man-
ner, and returns # times to his former station. Xach time the
general rides from his first position to the second, g ranks of »
men pass from the left to the right hand of the general, and »
ranks, each containing p men, pass from the right to the lert
hand. When the general returns to his former station, each

Problam.
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time f ranks of s men pass from his left to his right hand,
and ¢ ranks of ¢ men pass from his right to his left.

We ask, first, how many ranks, and how many men go
towards the castle : again, how many ranks and men march
over to the other divisions from the castle during the n times
that the general goes from his first station to the opposite side
of the field ?

Ans.  Ranks...n.g
Men......n.g.v
Ranks...n.»
Men....n.7.p

2d. How many ranks and men go to and from the castle
the n times the general returns to his former station ?

Avs,  Ranks...n.q

} passing on the castle side.

} going from the castle.

} going to the castle.

Men......n.q.t
Ranks...nf "
Mol k. } going from the castle.

3d. How many ranks and men go towards the castle, and
how many go from the castle during the whole military
exercise?
Ans.  Ranks...ng - ng
Men....ngv - ngt
Ranks...ar 4 nf
Men....nrp -+ nfs
4th. What is the difference between the number of the
ranks and men passing to the castle side, and that of the
ranks and men passing to the opposite side ? -
Ans. Ranks... (ng + ng) — (nr 4 nf).
Men... (ngv - ngt) — (nrp - nf5).
Or, if (ng — ng) and (ngv - ngt) are the less numbers,
Ranks...(nr 4 nf) — (ng 4 nq).
Men.....(nrp -+ nfs) — (ngv - ngt).
Observe that, if we consider the passing from the
left to the right hand of the general as positive, we

} going to the castle.

} going from the castle.

Remarks.
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must consider as negative the passing from the right to the
left. But referring the movement of the ranks to the castle,
then when the going towards it is considercd as positive, the
going from the castle must be considered as negative. Again,
considering as positive the going of the general from his for-
mer station to the opposite end of the field, we ought to con-
sider as negative his returning to the same station. Taking
now the movements of the army first with reference to the
castle, and then with regard to the general, and following the
rules of signs, we will find in both cases the same resolution of
the problem.

A steamboat travels at the rate of n miles per
hour. How many miles does the steamboat run over
in m days, travelling 16 hours a day ?

Problam 2.

Ans. = 16n.m.
Suppose n = 15, m = 12, then
x = 2880.
Suppose n = 10, m = 20,
x — 3200, &e.

§ 34. Drvision.—To divide a quantity a by
another quantity 4, means to find out such a quantity
¢, which, if multiplied by b, ought to give a for product; a
is called dividend ; b, divisor, and ¢, guotient. From the
given definition it follows, that when the dividend is given, this
is considered as the product of two factors, one of which is
the divisor, and the ubject of the division is to find out the
other factor.

Alzebrient  The operation of division is designated as follows:

expressions of
vision.

Definition.

g, ora:b,
and each of these expressions is read @ divided by a.

The rule of signs for division must necessarily
i be the same as that for multiplication. Suppose,
in fact, first @ and & both positive, since the quotient ¢ multi.

Rule of siguns.
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plied by a positive quantity must give a positive product, ¢
also, in this case, cannot be but positive, that is,
Fo— it
Suppose both dividend and divisor affected by a negative
sign ; in this case also the quotient must be positive. Because,
— b multiplied by ¢ ought to give a negative product, which
cannot be obtained unless ¢ is positive. Therefore,
=i s
Suppose the dividend positive, and the divisor negative, in
this case the quotient must be negative, because b, a negative
quantity multiplied by ¢, ought to produce @ positive, which
cannot be obtained except with ¢ negative ; hence,

= A
7 i

The last case is when & is positive and @ negative, and in
this case also, the quotient is negative ; because b, a positive
quantity multiplied by ¢, ought to give the negative q,
which necessarily supposes ¢ negative; hence,

—
+—&: S,

We infer, therefore, the general

The sign of the quotient is positive when both
dividend and divisor ave affected by the same sign ;
the sign of the quotient is megative when the dividend and
divisor are uffected by different signs.

Some, for brevity’s sake, express this rule common to multi-
plication and division, as follows :—Like signs produce plus,
and unlike signs, minus.

Various mae  § 30, Observe here again that the numerical
mereal values. yalues assignable to the algebraical terms em-
ployed in division may be either whole numbers or fractional,

and consequently, the quotient g,

4%

Rule.

numerically considered, em-



42 TREATISE ON ALGEBRA.

braces four cases corresponding to those already comsidered
(27'f) for multiplication, and which we will re present here with
corresponding formulas, and according to arithmetical rules:

e
min——,

n
n b ak
m' k- m.k
ik
il e 7
T n
;';‘Zm_.h'

These rules for division are founded in the definition. In
fact, if we multiply the quotient or the second member of
each one of the preceding equations by the corresponding
divisor, the product will result equal to the dividend.

m m.n
— = == —=m,
n n "
n.k h___ n.leh n.le.h n Ich__ n
m.h'k mhk m.k.h m kh m
m.ke h_ m.kh kh
W TR O e ok N R
n n.h n kﬁ n
mAh T mh mh m
Numerial  §$36. The numerical values of each element of a

e O ome compound monomial sometimes are given separately.

i, In this case the ultimate reduction for multipli-
cation and division involves some complication. Let us here
examine the case of monomials, having the fractional form,

and suppose % and Eto be such monomials. Representing by
m, n, p, 1y 5, £, #, v whole numbers, let the numerical value
of a be represented by ™, and that of b by ?;”, that of ¢ by

Lk E- and that of d by g. And to commence with
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the case of multiplication, let. be the maultiplicand, and

the multiplier. Now,

m
a ;_m.P__m.?‘
5= p n'r  wp
”
8 .
c t__ s w_ 8w
b e iR G el X
v
¢ m.r 8.v  mrsv

Therefore,

|
|
|

mrsy  msrv mS.puw M8 0 ac
—_— 0k —.—:P_.—za.c:bd
S A

nptu  nipe  nt’rv =%’
t] a C (17
nsequently g
T yd W

The prodnct Whatever be the numerical value of each ele-

it d . -
’r’;;r,:.'lﬁf:.f';g ment a, b, ¢, d of the fractional expressions, or

-. T - .
B i valacs, algebraieal factors.

b @
Let us now come to the case of division, and let 3 be the

o ¢ AL
dividend, and - the divisor, we have, as above,

d
: M VS BT
Case of division. = Em—— ey
b np d -t
a.c m.r s,v mriu
therefore, =i — = 3
b'd~ n.p t.u mpsv’
mrty murt __ mu ps__m u. p 8 d:b ad
—= —i—= s—a.dibic=+;
apsv  meps v vt m v T be’
The quotient
isobtained and hence, (_I' . E Lk ﬂi -
sxpressed as for 4 b d be ?
whole  pum- . . P
Lers. as for simple numerical division, whatever be the

numerical values of cach element of the monomials %andﬁ
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Reduetion of ~ § 87. We must here add some remarks con-
tesults to a ¥ b . =
simpler form. cerning the reduction of the quotient, and in
general the reduetion of the result of any other operation to a
simpler form. And first, any quantity or number multiplied
by unity, gives a product equal to itself; for instance, a X} 1
—a. Secondly, any quantity divided by itself, gives a quo-
tient equal to unity. Because, the quotient, for example, of
a:a must be such, that multiplied by a it gives a, which is
none else except unity ; henee, it follows, that

] “ a.c a
and, consequently, since i
a b a@.c
and - =
T

: &t ‘o
we will have also, — — —,
.¢ b

Rule. That is, @ quantity having the fractional form %

remains unchanged, multiplying or dividing the numerator
and denominator by any other quantity.

Reduction to  1lence, any number of such algebraical quan-
the snme deno- a

minator. tities y ::_Z' }, .... may be easily reduced to the
same denominator like numbers; multiplying, namely, the
numerator and denominator of each by the product of all the
other denominators. So the above quantities, without being
changed, can be expressed as follows :

a.d.f b f eb.d

ba.f db.f fov.d
having all the same denominator.
JAwlicable to We may here observe also, that to obtain the
subtraction.  sum or difference of algebraical quantities having
a fractional form and the same denominator, it is enough to
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take the sum or difference of the numerators and divide it by
. o G

the common denominator. Hence, if the quantities ;7 are

to be added or subtracted from one another, we may ﬁrst re-

duce them to the same denominator, taking —b—; for E’ and

-—bfor b nnd in the case of addition we will have

d.b - d
ad b ad- cb
R S~ Rt~ iy > 2
in the case of subtraction,
¢ ¢ ad c¢b ad—ch

SRR Yt G S
exactly as for numbers.
st §88. Given. Answers.
ab
(1) ab:m, e
2.) abem:m, abe.
(3.) abe:ab, ac.
4) ae:be, "L_b
bt'd m2n?
(5.) e et o
mib? mihd ae
)% L =
) 3mpg 4a’h Qm“}?’_g
A’ 3m’P 16a%* "
mn
8.) mn o= bed.
9) —/fg: __{_j)‘
@) —fy:rs, =
b3 Sma
1 e P v
£ 0) m2b 3a’ 5
) 5 S e J‘”“M
(L) —g'm Wg b
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(12) — 30/ Satr S il
Sa’rs " dgqf Qabros?

4bdr 4mg® AT

(13') T-i'-',nga: e 145‘:%_;5’ S m”g“ :

L) Sr i md?s? gb’cgr‘-

. Tlegs: — 2rbeg® T far

(15.) Tmt | 21f%%gs .
Osgrifs " 278m*’ Joitges?

A certain number of balls is taken 2 times
from an urn. At the end, the amount of the balls
extracted is found to be m. How many balls where taken
each time ?

Problem 1.

Ans. W
n
Suppose m = 50, n = 10,
then =0,
Suppose m =56, n = 8§,
then & =1, &e.

Three messengers A, B, C leave at once the same
town. A arrives at a distance of n miles, B at a -
distance of » miles, and C at a distance of s miles, at the end
of the same number ¢ of days, travelling each one of them an
equal number of miles every day. How many miles did A
travel each day ? how many B? how many C?

Problem 2.

Ans. A travelled = :3 miles.
P G P N
g
AT e e
g
Suppose g = 15 and n =450,
m = 630,
s =420,

then o —30, o =42, o' =28,
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Accents or  When symbols are used to represent similar
. dashes: their S g 3 4
meaning. or analogous quantities, instead of changing the
symbol, we make use sometimes of the same symbol with one
or more accents above it, as in the preceding example, and

such symbols are read @ prime, x sccond, &e.

ARTICLE IIL
Formation of Powers and Extraction of Roots.

What a cer  § 30, PowErs.—Let m be a whole number,

tain power of a ' f 3
quantity s, and @ any algebraic quantity. To raise a to the

power 7, or to form the m™ power of a, means to multiply a
Root, expo- by itself s times. In this operation a is termed

nent,  degree, 2
power. root, m the exponent or degree, or index; the

power, (which may be called p) is expressed by a®, and this
expression is read @ to the m™ power, or simply @ tom. The
operation is the same as for numbers,

Formationot ¢ 40. Numerical relations are in all cases applicable
powers. embra- tn quantities, eince, as we have frequently observed,

cing all cases

ofl nunﬁ'riml whenever algebraical quantities are submitted to any
i $ e operation or comparison, their numerical value is taken

definition. into account.

Let #, n, p represent three numbers, and suppose p to be obtained
from ¢ through multiplication, as n is derived from unity {hrough
addition. Then p is the #*" power of /, and the expression of the
power being I*, we have I* = p. To raise, therefore, the root I to

. the power n, is to find out the number p. Now 7, a rational number,
and if irrational, represented by a rational one, is either & whole
d&mg{ﬁzﬁ: number or a fractiun: Suppose, first, n to be a whole
ber. number, it is then derived from unity through addition
by taking 14+141414....

n times ; therefore, the power p or I* is given by the product

(55748 %" <lll 7 ' SR
where /s taken n times, and this is the case considered in the pre-
ceding number.
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Cassofthein  SUPPOse, now, » to be a fraction having r for nume-
dex fractional. rator, and & for denominator. To derive from unity
through addition ; » it is necessary first to divide unity into s parts,
and take r times one of these parts, namely,

2 e TS B |
it e by

To obtain, therefore, p or i it is first necessary to determine a
quantity «, which, if multiplied s times by itself would give  in the

same manner as T added s times to itself gives 1. Then, since to

r
obtainz we take ;— r times, so the power /5 will be equal to

M aaMaXadX...,
where « is taken r times. And, consequently,

& = ",

Hence, we derive the following dofinition :—The power
of any given quantity a is the product of factors equal to
the same quantity a, or the product of factors equal to such an element,
which multiplied by itself a certain number of times produces the given

Apparent guantity a.  From this definition it follows, that when the
powers. index n of the power I* is either equal to 1, or equal to

Definition.

1
= the power then is merely apparent or nominal. Because, in the

first ease the root 7 is not multiplied by itself, but simply taken as it is;
and so, likewise, the element «, in the second case is not multiplied
by itself. Therefore, according to the given definition, neither of the

expressions 1

I = I, = o,

Cube  and i3 g power. However, as we term P the third power or
square: nomi-

nal powers. cube of I, and I* the second power or sguare of I3 so

1 h
by analogy we term 1! the first power of [, and & the (E)‘ power of I,

which last is so far in reality from being a power of /, that on the
contrary ! is a power of x, as we have scen, and we will better see
hereafter.

Powers of 4 4l. The signification of unity is either collective or
unity. simple. In the first case 1 is, like any other root, capable
of being raised to any power n, and consequently susceptible of cor-
responding modifications. In the second case 1* is again an apparent
power, since simple unity is incapable of being raised to any power
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whatsoever, or in other words, simple unity cannot be affected by any

Caseofsimple index, either whole number or a fraction. Suppose in
unity. fact, the index n a whole number, we will have then

I =1x1IX1X....,

but 1, multiplied by simple unity is equal to 1, and, consequently,
1" = 1. Suppose n a fraction, we must first find the element e,
which multiplied a certain number of times by itself gives 1, but this
element cannot be any except simple unity ; therefore, « in this case is
equal to 1. But in the present supposition, the power 1% is obtained
by repeatedly multiplying « by itself; therefore, in this case also,
1"=1. Simple unity, therefore, remains unchanged when raised to
any power,

Collective ~ But when unity has a collective meaning, then 1* or
unity. more simply 1%, 13, . ., have by no means the same value
and signification as 1. However, even in this case we write 12 =1,
P=1,.... 1" = 1, not being able to express these units of varions
orders with other symbols, But, whenever in mathematical investiga-
tions such units of various degrees oceur, we take notice of their
different meaning, or the exponent is left to indieate the order.

product or  §42. Let now m ¢ represent two whole num-

T xhonents bers.  We have seen (32) already that the pro-

e umbers duct of m |- ¢ factors, equal to a, can be expressed
fmerwol. by a™. @', as well as by a™*¢; nay, whatever be
the number of such exponents m, ¢, r, 5, ..., we will always
evidently have

ar. atve”. 8t Do ghtthr bk,

Fractionalex-  1f the exponents become fractional, (and supposing

ponents. them reduced to the same denominator,) we will have,
H 3 m r m t r
likewise, SRl s a7+.._+;+___

Because, for each factor of the first number of this equation, we must
first (40) find out & number which multiplied s times by itself gives a.
Let this number be y. We will have

m (]

LS WS G e R
and, consequently,
oAl

a'.ad.d. .. = =

SRkt
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mor ot .. mttdrd.
But also, ¢.+'+'+= o . =gmtehrd, s
L T e ot L. NN o e
therefore, G','_G;. ,‘_____¢,+,+.+ ’

Qeneralinfer.  Hence, we generally infer the following proposition
ence and rule. 414 yle :

The product of any number of powers of the same root, is this very
root raised to a power equal to the sum of all the partial exponents
whether whole numbers or fractions,

product of  §48. Let us resume again the whole number

e mme ex. m as common exponent of the roots a, b, ¢, ...

Rumber " ap. The powers a™, b™, c™, ... multiplied together,
B et il manifestly give a™ b™. c™. .. = (a.b.c...)™
since in both cases the same number of factors equal to a,
equal to &, &e., are multiplied.

. s But if the exponent becomes fractional, for instance,

Yomenk: ?; and, consequently, the preceding powers are changed
. )
into a*, 8%, ¢*, .... Let, as before, y represent the numerical value,

which multiplied s times by itself gives a, and let 3, 4, ... be the
numerical values or numbers, which multiplied, each s times by itself,
give 5, ¢, ..., we will have
" = =
a' =y, b = =, ...,
and consequently,
L. .
a' Bt =" =y SO
Now, since s factors equal tov.9..4. ... give @. b. ¢... the last num-

ber of this equation represents the power (a.b.¢.. .)"". Therefore,

al. b e ...=(g.b.c...)".
Generalinfer-  Hence, we generally infer, that
FRCH L ule The product of any number of powers of the same de-
gree, either whole or fractional, is equal to the produet of the roots raised
to the same power,
Powersofpow- 3 44. Let now the power a™ be taken as the

onentenhae oot of another power of the degree A. Sup-

i posing & a whole number, (a™)* signifies that the
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produet of m factors equal to a is multiplied A times by itself.
But this comes to the same as to take the product of m.A
factors equal to a, which product is expressed by the power
a™*; hence, (o) == a®-",

Fractional ex-  The same multiplication of exponents will take plm-:e
Iguenis; when they become fractional numbers. Suppose, in
fact, m to be changed into ?, and % into %, or the power ae raised to

n
the power A; And making again, as in preceding numbers a+ = ",
we will have
m A 8
(d')r = (r"‘)'. 'ty (0)
Let now 8 be another number which multiplied r times by itself gives
r; in this supposition, we have
r= @
and, consequently, ¥ = g™ = M7 = ("),
From this we infer that 2™ is a number which multiplied 7 times by
itgelf, gives y™.
Resume now, again, the second member of the equation (o). To
A

obtain the power expressed by the monomial (r"‘);. it is enough to raise
to the power &, the number which multiplied » times by itself, gives
¥™, but this number is g, therefore,

L =

but " = a“; hence,

my A
(o) = B e )
Now, since @ is equal to », we will have, also
L
but y #s that number, which multiplied s times by itself, gives a
therefore, gt =a;
that is, 4 is such a number, which multiplied r.s times by itself,

m.h

gives «. Hence, the power a**” is obtained by raising 2 to the power
m. h, that is, 1L m

Bwl.l e T o Y
Substituting, finally, this value in the second number of (o,) we have

m A m A mh
a)r
(a)z-a' r=¢";

AL
r
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Genoral infer. 88 for the case of exponents, whole numbers. Hence,
ence and rule. gcnemlly,

The power of @ power of any root is equal to the same rool, having for
exponent the product of the given separate exponents.

Simplification §45. We l.:ave seen already (37) howz.; quo-
?;;;;g‘;‘;‘f:;lo_ tient or fmeh(‘m-ms.y be reduced to a simpler
tients. form by the elimination of common factors. Let
us see here how in the same fraction we may change, in all
cases, either the numerator or denominator into unity.

Let us commence with the most simple case

First case. Ex-

ponents whols of the whole numbers m and 2, and the first
numbers, and

Blgher degren of greater than the second. The fraction :—_ may be
easily transformed in this case to the form of a whole quan- -
tity, because, calling d, the difference m —n, we have
at = a™~-", but (42), a® = a*~".a"; hence, a” = a*. 2",

- d L
a a.a'_-a‘:a{-_“.

a” a”
aﬂ
Bocond casa, . H ol
Migher Suppose now, the given fraction to be =N
nt nomi-
nator. will have then
a" Bt b o ek
@ a'ar a8 a

Similar modifications will take place with fractional

Third _ease.
Fractional ex- exponents. Suppose, in fact, ™ and = to be the expo-
ponents, and ] g
the higher in m n d m !) n m
the numerator. yonta, t.hon; = e, adale= s, & am 4® ; there-
4 =n i

m ..
fore, ¢' = a°. a’, and

-

Fourth case. 2
Higher degree If the given fraction is ?—, then we have
in the demomi- =

nator. a*
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" n

7 el violb)
e T st SR e
a’ a.d a' al

Fith aase.  Following the analogy of the preceding cases,
Equal expo- s g a™ : = 5
nents. the algebraic fraction = will give either a"—™,

but— = 1; therefore, a™~ ——1—;=1, or

or am-_m’ aﬂ-—
G = 1.

Yomtive ox.  Lxtending still farther the analogy, and sup-
ponents. 5 e

e v Hpeeay” i
posing in the quotients <= m > n, as above ;
aan
as from the latter, we infer e a"=" = a* so we represent

the former Z_“‘ by a*~™=a~% Aud likewise the former

B e T 1 1 :
raction gives —2 = ——— =3, 80 by analogy, we write
g g

mE Therefore the quotient =8 represented at

once by a‘, and by ‘, and the qtlutlent — by = and by
, or the expmss:ons

are considered as synonyms.

It is not necessary to extend here the same observations to the case

of fractional exponents, to which they could be as easily applied, as it
is evident.

Inerencee, Yo the said convention it follows, first, that
gfre % =1
Secondly, since the difference d between any two numbers
m, n, has the same absolute value, but different signs, accord-
5%
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ing as m is subtracted from n, Or vice versds it follows, that in
all cases we may write :

§46. Write in the upper or lower line all the
terms of the given fractions.

a® 1
1) ﬁ, Answers: a*be=2d %, orm.

Examples.

9 ath=* 3 —3F—3d—*=, or e B
@) g i A U
a™c" mn
@) o amc*d=re™ % OF pmm e
\ e 7 maiin —m 1 ._.__1_
(4.} —gu--J-‘_—-—, @ o d"-g f » OF an—nd—pg;_f'
i g —af— ___.1 -
G) g d==e"a"b™% OF

Write the following expressions all with positive exponents,
and reduce the exponential quantities according to the pre-
ceding rules : o

Given. Answers.
Q= H=1 8 :

©) i a~ ¥
@y e, e
@) =L, D
(10.) %—:—-—?, -(?j:?—r)?
tp-s @00

(al) ==

Sl
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S Answers.
gt e et g a*.b"
(12) am=m_ = (nt2m) (- mldu(m—n)! o= =
i ree Bl T B, s (e
( ). a_s.b—l_d—un—nqu_‘p“’ (f._p-q)r
Wy U o
( _) b—i'j«f.(f'r)"‘ ] Pc-l*t .
am . b—m—m b)im_fe
(18) 7= (o7 S
Vi | i ' (a™)t*
(16.) e ) T

There is also another modification of algebraic expressions
of this kind, Observe that the power of any fractional mo-

nomial, for instance, (:—t)“is equal to the power m of the
numerator, divided by the power m of the denominator ; since
:—.g. +. . 18 equul to the product of a taken m times, divided
by the product of b taken also m times. The expression then

(g) may be transformed into g;, or vice versa. So, for
example, we may write
a“.b.q Mo
= () o
e bg.r)t @ 5
() 4= g x (e
Te exte  §47. ExTRACTION OF Roors.—To extract the

tion of roots is f: "

theinerseope- .rfmt of a quantity a is to find out another quan-
log to power.  tity 7, which raised to a certain power, gives a.
Hence, the given quantity a is considered as the power of
another quantity », raised to the exponent indicated by the
root; and since the extraction of the root consists in finding
this r, the operation, therefore, is the inverse of raising to
power.
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Conventivnal 1 i i -l,' is indi
st s The manner in which this operation is indicated

meuclature. g by the expression

Va,
which is read m* root of @, and with generical terms radical
expression, or simply radical. So, likewise, 3/ is called
radical sign, m index or degree of the root, which is the ex-
ponent to be given to the unknown quantity r or root, to
Square ana ODtain @. If m is equal to 2, the root is called
cubical roots.  gouare, and in this case the index is omitted, so
that the expression 3/ without any number in the radical
sign, signifies square root of @. When m is equal to 3, the

1

root is termed cubical, 1/m, is also represented by a”, and

/@~ by a*,* fractional powers on which we may operate,
as on whole powers.}

Th tof
'i‘,,,"'"?":;m m; % 48. Suppose m n to be whole numl;c:rs, we say that
mrﬁlft'&’n'h;’n /am the nt root of am is equal to a". Because, let

mm:.b;r:g?p: « be the numerieal value which multiplied n times by

2:; same quan-  jigelf, gives a, we have
"

—_at
o™ = a" ;

min
and, consequently, (em)s = (a") = a™.
Therefore, «™ is that numerical value, which raised to the power n,
m

gives @™ ; hence, a™ is the n™ root of 4™, but «™ = @™, therefore,

. &
I am = an = (am)" ;
and sapposing m = 1, 1
E/E == a";
that ig, the n** root of a, is « raised to the power }‘, and vice versa, (40.)
Case of the Observe, also, that

fractional index. =
(‘m)u = a” :

# See the following number.
1 22 42, 43, 44, 45,
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Aradical hav-  consequently,
fng a fractional

index can be
transformed in-
to one havinga
whole number
for index,

7

o \4'

but «* = @ and o™ = a"; again, a" = }/a", %0
from the last equation, we infer

» "
T/az o = V” a%s

th th
That i, the () root of a is equal to the (™) "power of the

Q‘! l=

same 4, and equal to the n™ root of a™.
m:'trfueu of 449, Hence, (42, 43,)

Va. /e /e = o

= /T,

First vase. Becn.use,

o e s e 2 S
quantity. ﬁ.f/E.V;....=a'.a'.a'...
LT ST
= al I
L L e
=4a 2 3
= &e.

And, since fractions may be always reduced to the same numerator,
no less than to the same denominator, similar reductions can be per-

formed in all cases ; and, supposing in the preceding formulas s = 2,
we will have

LNy
T/;-. f/a. V;...- =YV g FERTE D
Socond esse,  INithe case of equal roots of different quantities, we
g roots of will have
nt quan-
thes,

x 4 L& K 3
Va. V5.5 c...=%Va.b.c...
B&cauae, = l/ B i

.;:/E‘.;:/b-.i Conw =a'.b7. ves

= (e.bae...)";

0
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and, supposing m = 1.

i L o AL e e

Rootof aroot.  Let now the root of a root be given, for instance,
L]

i 3
\/,’:/E we will find

v\'h

because, (44) :/l";a—_ \/a»- Lt (a') A

Supposing the denominators m and % equal to unity, then

L]
Va="%a
The indexof  Observe here also, that, since
- - m.k
quantity under /g™ — o" and 6" = a"* = Vam,

he radieal sign,
may be multi- 80 We have also

Elwdt;: divided o
same n/ Sk,
q{untity " =y e
" gt S
again, A (a" )‘ = "\la*; hence,

= e
i

Four cases em= é50. Let us now analy:a the formuln,
braced by a radi- i
cal expression. i'/’a i

Four cases may occur about this formula. First, n (which is sup-
posed to be a whole number) is either an even number = 2i, or an
odd number = 2{+4-1: again, with n = 2i, we can suppose a posi-
tive or a negative, and the same supposition can be made when
n=2i+4 1. Let us commence to examine the case of a
positive, and n = 2i. Since the formula VE = =z, sup-
poses a® = a, we will have

First case.

¢”=ﬂ.

But 4 2, as well as —a&, raised at the power 2i, give the same
positive product; hence,

(Fa)f=(—a)= a
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Therefore, in the first cage, we have

t/:F; =i w
that is, the (2i)® root of a is either positive or negative.

Let again a be positive, but the index n = 2i4- 1, or let
%+/ T @ = 2, we will have («)¥+! = 4 q, but «in this
case must be necessarily positive, because, 2¢4- 1, factors of the same
quantity, cannot give a positive product unless the same quantity is
positive ; hence, (a2t = aq
and N Fa=4a

Let now a be negative, and the index n still equal to
Third 4%, 9; 4 1. Since a negative product of the same quantity
multiplied 24 1 times, can be obtained only by a negative quantity,
g0 we will have, in this case
(—aftl = —aq,
end e

Becond case,

The last case iz that of a negative when n = 2i and
" expressed by }/—a. But neither among positive mor
negative numbers or quantities, any one is to be found representing
this root, because we have seen in the firgt case, that with a either
positive or negative, we have always &% — - a; hence the radical
expression ’l‘/__¢,

Imaginaryradi- 18 termed imaginary root, or radical or imaginary
alsorrools.  guantity or expression.

Although such expressions, considered in one point of view, are
paradoxical, yet they may be also considered as symbols of terms
heterogeneous to real quantities, that is, \/—a is the symbol of &
term not included in the category of real quantities, which term
being incapable of taking a real form, cannot be represented but by
an ambiguous or paradoxical form. These mysterious symbols, so
frequently met with in mathematical investigations, are uged and
profitably managed like real quantities.

Operations on 3 51, Let us then see here some of the elementary

magi
eyl operations about such quantities, and first, let ns take

:;m ﬁﬂ;,um the product of \/—aby /—b. Since —g and —3
and division.

4 are equivalent to a X —1, b X —1, and ./’-a, V=0
are equivalent to — ai, — bi’, 80 we will have

Fourth case
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ey SOV (Ll ol 1 gy i oo
R ey PRV | G L R e
Therefore, i f=b = S B (1)
but . b = Jab, (y/—1)* = —1; hence
St/ —F - — S
In like manner, we will have

—ay/—1 . b/—1 = a.b;

becanse —a.b=—aband (S=1) = —1
Again, the ratio ay/—1 : by/—1, gives
<
= b -
by/—1
Powers, Dinee (V—1)p = —1,

we will have, also

(W=1)= (=1 =+1
(V=) = (1P =—1,

and so on. And generally,

V=)= W=D = (—1)==x],
in which the sign is positive when ¢ is an even number. In an equal
manner, we will have

(VIR = =,

where, likewise, the positive sign is to be taken with ¢ an even number,
Beeause, (/—1)®+D = (,/—1)¥. /—1; hence,

(V=1)E ) e o1 ] = e /L

A corollary follows from this doctrine, applicable to the case of
real quantities. We have seen (50) that the »®* real root of a is either
double or only one or none; but if together with the real, we reckon
aiso the imaginary roots of the same quantity, their number is quito
different. So, for example,

(+2)% (=2)% (+ 2v/—1)% (—2/=T)%
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give all 416 hence, the fourth voot of 16 admits four different
values, two real, and two imaginary—namely,

V16 = 3
“rﬁ=:|:‘q\'f 1-

IrmtionalTadi- 2 52, It now remains for us to add some remarks
enls and guan- 3 ¥ + :
e congerning irvational radieals. These remarks ave con-

nested with other questions somewhat foreign to the subject of the
preceding numbers.  For this reason they have been left for the last
of the present article.  We will commence by illustrating the method
of finding the greatest common measure of two numbers,
rostest come Suppose M and N to be two whole numbers,
ol e op numerical values of two quantities, and M > N.
Let the whole number ¢ be the quotient of M divided by N
and R’ the remainder; or, in other terms, let M& be equal to ¢
times N plus R’, which is less than N. Dividing now N by
R, let 4" be the quotient and R the remainder ; dividing in
the next place, R' by R, let ¢’ be the quotient, and R” the
rewainder, &e , in this manuer, we have the equations

M=¢ N 4K

N —=¢' R 4R

R =" R 4 R & (o)

l{”: g[‘-I{m + I{lv

&e.

Now, if RY, for example, would be found equal to zero,
namely, if R divides exactly R without any remainder, we
say first, that the smiwe ¥ is an exaet divisor of M and N;
and secondly, this divisor is the greatest common divisor or
mensure of M aud N.o The first assertion is casily demon-
strated, observing that R eannot exaerly divide R, without
dmdmu also R, because, R” == = "R 4= R"; but by suppe-
sition, R”’._ g R t!u.mfur‘., B ==gltg R" -+ R'; that is
to say, R is equal to g ¢" 41 times R*, and for brevity’s

sake, ealling Q the sum, ¢™. ¢" 4-1: R” —QR¥, or :; —Q

6

5
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But, again, R cannot be an exact divisor of R” without
dividing also R. This remainder is equal to ¢””R"” +4- R", but
by supposition, R"” = ¢*R", and consequently, R” — QR";
hence, B’ = ¢" QR" - ¢"R'"; that is to say, R’ is equal to
¢"-Q+g' times R", and for brevity’s sake, calling Q' the

sum ¢"'Q + ¢, R =QR", or % = Q. Following the same

process, we find that IN and M are, likewise, multiples of the
same number R", which, consequently, is an exact divisor of
them. But the same remainder is the greatest common
divisor of the same number; because, no number—K for
instance—greater than the last said remainder, can divide both
numbers M and N.

To demonstrate this, observe, first, that subtracting from
both members of the preceding equations, the same number,
namely, ¢’N, from the members of the first, ¢”R’; from those
of the second, and so on, we easily deduce (16,) the following
equations

R =M —¢N
Rﬂ e N s QHR'
Rﬂf: Rf i Q{HR" (01‘)
Riv— R Q"Rm
&e.

Making now the supposition that K divides exactly M and
N, we must admit that it divides also R'. Beecause M, for
example, will contain exactly K two or three, or + times, and
N will exactly contain the same K, for instance, s times; then
M=K, N =3sK, and M — ¢/N =+K — ¢/sK, but from the
last equations, M — ¢’N = R’; hence, R’ = »K — ¢/sK ; that
is to say, R’ contains (» — ¢'s) times K, or R’ is an exact
multiple of R’. Reasoning in the same manner, since N and
R’ are multiples of K, it follows from the second equation,
that K must be an exact divisor of R” also, and for the same
reason an exact divisor of R’ and R™; but K is greater than
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R, and consequently, R cannot be divided by K; hence,
the supposition of K a common measure of M and N, and
greater than the last remainder cannot be admitted ; and we
generally infer, that when two numbers M and N are given,
the last remainder found in the above-deseribed process is
their greatest common measure.

Examples.  Let M = 189, N — 147, we will have

M 189 42

PRI ced T ST o —1.R =42
N = i 1—]—14? Namely, ¢/ 3 y
N_u7_, 2 ‘ r— 3 R" =21
Pes e g s B
R_42 “« "_—_9 R —
R"_ﬁ-2+0' ¢'=2R"=0.

The last remainder, therefore, is R” = 21, the greatest common
measure of the numbers 189, 147.

Let M = 154, N = 15, we will haye

W =510
At A 15 10......:91'
R = §] B =¢"
e Sl Sl
R" = 1] Bien =¢"
R(rz 0

In this case unity is the last remainder; hence, no number
Prime numbers ADOVE Unity, divides exactly both 154 and 15.
Woechotber.  When numbers have no common measure, execpt
unity, they are called prime to each other. But the numbers
of the present example are each divisible by other numbers
ahove unity, the first by 2, 7, and 11; the second, by 3 and
5. But there are numbers which, even separately considered,
cannot be exactly divided except by unity, sach as 3, 5, 7,
prime pun- 13, 19, 31, &o. These numbers .are termed

bers in them- i - .
selves. prime in themselves, or simply prime numbers.
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Having premised these principles, let us pass to demonstrate
the following proposition :

Howa prime ~ §.98: A prime number N which aceurately
T gy ivides the product MP, must necessarily divide
the product of 6 of the factors P, M. Suppose, first, N <M,
i and M not accurately divistble by N. With
regard to these two numbers we will have the same equa-
tions, (0), (o,) of the preceding mumber, and, besides, the
last remainder must be equal to 1. Multiplying now both

members of the equations (o,) by P, we have

PR' = MP —¢NP
PR’ — NP — ¢"R'P
PR"=R'P —¢"R"P ; (0,)
Pl{[' =T RHI)_ HIYR!HP

&e.

Now N, by supposition, divides accurately MP; and since

J P
number of the first equation (n,) is accurately divisible by N,
and consequently also the first PR’. Tn the second member
of the next equation, we find NP again, and PR/, both exactly
divisible by N; hence, the first member PR” of this equation
also is exactly divisible by N. In equal manner we prove
that the following produets PR, PR", ... . are all exactly
divisible by N. But in our present supposition the last re
mainder must be egual to 1; and consequently the last pro-
duct exactly divisible by N is P.1, or P.

Suppose now N > M, and divide N by M, and again, M
by the first remainder, and this by the second, and so on;
eall o/, ¢", 9", . ... the quotients, and p, p"”, p', .... the
remainder, the last of which must be as in the preceding
case, equal to 1, on account of N being a prime number.
With these elements we can easily form equations similar

— ¢'P, it divides also ¢’NP; thercfore, the second
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to the preceding, and those corresponding to the equations
0,), will be
e P/ — NP —¢/MP
PPH. sk M:P-—H“P'P
By — g — g2 [ )
&e.

Now N, which certainly divides exactly NP, divides by
supposition, accurately, MP; therefore, the second member. of
tho first (o,) is exactly divisible by N; hence, also, its equiva-
lent P/, Reasoning as in the preceding case, we will find
all the following products, Pp”, P, .. ... exactly divisible
by N; but the last p is equal to 1, and consequently the last
of those products exactly divisible by N is P. This factor,
therefore, is exactly divisible by N, when the other factor
M, either greater or less than N, is not divisible by the same
prime numbers. It is plain that in the same manner in which
we have demonstrated that P is exactly divisible by N, when
the other factor M is not divisible by the same N; so we
could demonstrate that when P is not divisible by N, then M
is certainly divisible by it; and we can generally infer, there-
fore, that when the product PM is accurately divisible by N,
a prime number, and one of the factors is not divisible by it,
the other is necessarily divisible by the same number N. We
may observe, that even in the case in which N is not a prime
number absolutely, but prime only to M; and N divides
exactly the product MP, P is exactly divisible by N. Which
thing is proved in the same manner as the preceding theorem.

Apimenume  Corollary.—We can now easily infer this

bor dividing a

yoduct, divides €OTollary:  When a prime number N divides
at least one of

fia Gichica. exactly the produet Q=R .M .K.H. ., the same
must necessarily divide at least one of the factors.
Call P’ the partial product M. K .H.. ., and P” the partial

product K.H...; P the product H...., and so on, we
will have the given

6%
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Q —R.P
P — MP”
P’ — KP"

P=HP*, &e.

Now R, and the first factor of each one of the partial pro-
ducts, is one of the factors of our product Q =R.M.K.H

.. ‘the number of which is filled by the last of those
partial products which contains the two last factors of Q.
Suppose now that noue of the first factors R, M, K, .... is
exactly divisible by N ; it follows first, that P is divisible by
N, and consequently the second product MP”; but M by
supposition is not divisible by N, therefore the factor P”
wust be a multiple of N'; and consequently the product KP™,
and the fuctor P of this product, and so on, till the last
factor of the last produet, which is one of the factors of Q.
If uone, therefore, of the factors R.M.K .... of the given
product Q, until the last, is divisible by N, the last must
certainly be divisible by it.  Viee versa, if none of
the factors of () is divisible by the prime number N,
ucither Q can be divisible by it. Tt follows, besides, that if
M or K are not divisible by a prime number N, neither M*
and K* are divisible by it; because n representing a whole
number, M* and K" are the products of n factors, none of
which is exactly divisible by N.

Crorullaries,

powersof frae- 3 04, Let us now take the fractional expression
tional  expres- g v 4 :
wons, B reduced to its simplest terms: that is, to such
simple elements o and &, as to admit no common divisor

except unity. We say that the numerical values of the powers
ot a? a* 4 3 % 3
R T necessarily fractional numbers, irreducible
Irreducible to 0 @ simpler form: that is to say, admitting no
asimple B oommon weasure except unity. Suppose, in
fact, that @* and & are exactly divisible by a number greater
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than 1; in this case @ also and b must have a common measure
above unity, which is against the present supposition. Before
we demonstrate this, let us observe first, that whole numbers
are either prime numbers or products of prime numbers; con-
sequently we cannot suppose a number divisible by another,
which is not prime, without supposing that same number
divisible also by some prime number. Because, let the
whole number N be divisible by the other whole number

P =m.n: that is, let the quotient -Pli = Q be a whole num-

ber ; sinee from this equation we deduce the other Q.P =N,
; N N

or Q.m.n=N, we will have also, —=Q.m, ;:Q.m;

that is, N is exactly divisible by the factors of P.

Let us now resume our fraction - 5" the supposed common
measure is either a prime number or not; in both cases we
must admit that some prime number is common divisor to
both a" and 1" ; but we have already seen that a" or §* cannot
be divisible by any prime number, unless @ and  are divisibie
by the same number. Therefore, when the fractional ex-
pression g is reduced to its simplest terms, any power :—‘ of the
same fraction is amother fractional expression, whose terms
cannot be reduced to a simpler form, and consequently it is
essentially fractional.

§55. We are now able to see how, among
the radical quantities, there are some whose
numerical values can never be exactly assigned, and are, con-
sequently, to be reckoned among the irrational expressions.
“It-::?s:ﬁ. Observe, that taking the squares, the cubes,
e the fourth powers, and so cn, of the natural series
1,2,38, 4, 5 of numbers, we have

Tremtional roots.
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1 5E00) 16y o
....... VALY B 2Bl B 0
Fourth powers. 1, 16, 71, 256, . ..., &e.

That is, the square root of 1 is 1, and the square root of 4
is 2; hence, the square roots of the numbers 2, 3 are between
1 and 2, or they are numbers of an essentially fractional form,
Lowever reduced to their lowest terms; but we have seen that
a fractional expression raised to any power gives constantly a
fractional result; mo number, therefore, between 1 and 2, if
squared, ean give for power either the whole numbers 2 or 3;
therefore the numbers 2 and 3 have neither their square roots
among whole numbers nor among numbers of fractional form ;
these roots, therefore, cannot be exactly expressed by any
nuniber either whole or fractional, although we may represent
them by numbers more and more approaching to their value;
the same roots, therefore, are irrational quantities. The same
is to be said of the square roofs of the numbers between £ and
9, between 9 and 16, &e.; the same of the cubical roots of
the numbers between 1 and 8, between 8 and 27, &e. ; the
same of the fourth roots of the numbers between 1 and 16,
between 16 and 71, and so on.  And generally, we infer, that
then whole numbers have not their roots amony other whole
aumbers, neither can they have them among fractional ones.

A serles of 356G, Let us see now how an indefinite series of
rational or as-

signable num- rational numbers can be conceived constantly approach-
:ﬁ;’;i\:"&y :‘:_’ ing to any irrational root .

m‘;}?"tﬁ ‘::E; Divide unity into any number of small equal parts,
irrational roof. which we will eall . Tt is plain, first, that & is a frac-
tion greater or smaller, according to the less or greater number of
parts into which unity is divided; secondly, not only a, but 2a, Ja,
4e, . ... are all fractions until we take the whole number of them;
thirdly, the difference between two successive terms of the series
2w, Ja, . ... 18 smaller in proportion to the greater number of parts
into which unity has been divided ; fourthly, representing by n any

number the difference between n 4 « and n 4 2w, is the same as that
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vetween tht simple terms o and 2o, Finally, if n represents a wnole

number, n -+ @, 74 2w, 1t 4 3a, aud so on, are all fractional numbers

comprised between n and n 4= 1, until we add to » all the parts & into

which unity has been divided. Bach one, therefore, of the numbers

i+ wy, n - Zu, 0 3w, veduced to its lowest terms, must have the
’

@ ; o
fractional form 75 none of them, therefore, raised to any power, gives

an exact whole number, Now the square of 2, the first tevm of the
series 204w 24 20, 24 80, ..., 241 (q,)

is 4, and the square of the last 241, i3 9. The squares, therefore, of
the included terms must be included between 4 and 9, and the square
of the second term 2+ @ is greater than 4, but nearer to it than the
square of the next 2 2w; the squave of 24 3w is still greater, and so
on, Butinereasing indefinitely the number of the particles a, the differ-
ence of the squares of the successive terms diminishes also indefinitely;
and in the same manner a8 by inereasing the tumber of these particles,
the square of the second term 2 4 & approaches more and more to 4,
g0 the squares of some of the following terms will more and more
approach to 5, to 6, to 7, to &, and the square of the term hefore the
last will approach more and more to 9. But, in the same manner as
this square, and that of the second term 2 &, never reach 9 and
4, however great may be the number of the particles &, <o none of the
squares of the intermedinte terms will ever reach the whole numbers
5, 6, 7, 8. Therefore, the radical expressions

VRV,
and the same we say of all similar roots, are numbers which cannot
be exactly expressed, and, consequently, neither measured ; for this
reason they ave ealled incommensurable ov irrational, and surd,

Beside these irrational numbers, other irrational quantities oeenr
ir. mathematical questions, and all are reekoned among trenscendentol
expressions.

Miseellaneous ~ § 7. Give the exponential form to the follow-
giamplis, ing roots: (See 47, 48.)

Vo, Va? i, 1/—_ ;/T"‘ \h}’ \)T'

Exponential }
form gvun to Ans. T .LI 3
L.y

roots. e OB o 2
'[/E — aE, ]/ﬂ;’ 232, l':/a = u"‘,'
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iy .
1 [ a™ i

r o -
Vo =, o = = Yo
a" a™
Give the radical form to the following powers:
Radical form ]
glven to powers, n " _.]:
a, —, a” bra a~ ™ a

™ bt
Observe, that a™ — aT, &e.

Ans. q;‘ = ,/a." (6) = o™

B a a
ol \/ 1R \/ e
LR e Reduce the following radicals to the same

::m“:ﬁae?}e. degree. (See §49.)

\/b’ \F Vampto?
Ans. \Ib, X g;, /G
v, g, v VT

v Ty, NS, v YT
V@b, yat, j/ab;
Ans. e/ G, tmn/ g Smn/Taly,
Maltipheation  ixamples of Multiplication. (See §§ 42, 43,

of radicals. 44’ 45’ 49.)
Given factors:

W) S5 v
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Given factors :

N = s
@) '\Jf:ﬁ: :.:f——_—.': \’f-’F" \[{—.’?‘Bﬁ
aB=n !‘_ [t
. {3) 4“ ; ,V‘;"b_" Vljb:_.
ORI
6) ¥ v/ Y
1

nt a“ ] bﬁ‘ iy
(6 ra ™ Vfa"‘" a’. ¥

Answers:

(1) \/———\u/% X VI =l

@) \}f-t—rt 4 \Ffﬂs 4 \’f’r" a

) " :" XV9~—=6—- X \/“_5 =§.
; (4) ypa* X \[_ a“c“-

() ./u* X va X ¥/ = at,

N, t:r"‘ X \}b—m‘ X3 as bR J

Nedueton of Reduction of the roots of roots to a simpler
ot form (8§ 44, 47.)

QGiven roots:

w {va @ \um

(6.)
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3 sﬁm 4 \{:}?

J\, I :'5'_‘5'_ Y

6.) I_rr;a
@ JRRG) * G < (G < (o)

Answers,
1) \/ Y= a ) \/ T — s,

(5} “_13 - — i
\/\ _& ! Sa=wb \g

|’_

'mln

G) %t (u ot POl i
( \r ()(J) (j) w i a\/—\}bfff

Grvn*‘--ﬁf-"‘-‘rl"f Let us add some examples concerning the

MO0 MEeasure O

tuuibers. greatest common measure of numbers.
Given numbers : b4 416,
Ans. 892,
Given 916 2201.
Ans, 31,
\ Given 1261 1079,
Ans. 13"
Given 1267 916.

Ans. 1.
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™~

CHAPTER IL

OPERATIONS ON POLYNOMIALS,

L]

ARTICLE L
Addition and Sibtraction.

§ 58. AvprrioN.—The addition of polynomials is sub-
stantially the same as that of momomials, since to add one
polynomial to another is nothing more than to add a number
of monomials to another number of monomials. And to add
together several polynomials signifies to add together as many
monomials as are those contained in the given polynomials.
All, therefore, that has been said (18) with regard to the
addition of monomials is applicable to the case of polynomials.
Hence, the addition of the polynomials

a® 4 dab - 8¢2 —d,
—3a® + ac —3ab+t-1,
Ta* 4 ab— 1 + d,
i obtained by writing in succession-all their terms, each with
its proper sign.

Retuetion o However, before making this operation, and in
fimilarterms. - order to obtain a simpler result, observe whether
similar terms, (10,) or equal, are to bc_fuuqd' in the polynomials.
Because, all such terms are expressed by a single term similar
to them, and having for coefficient the sumor the difference
of the partial coefficients. For example, the first of the given
polynomials contains the terms + a?, 4 4ab; the second, the
similar terms — 3a® — Bab, and the third polynomial, the
terms - Ta® + ab. Now, these six terms can be represented
by only two equivalent to them, since the sum of the similar
terms a? — 3a° - Ta® = Ha?, and that of the terms 4ab — 3ad
+ab=2ab. Again, the first polynomial contains the term
—d, and the third the term —|; d, which are mutually elimi
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nated, as well as the terms -7 and — 7, the first in the
second, and the last in the third polynomial. Hence, the
* sum of the given polynomials is
ba® |+ 2ab + 3c® -} ae.

o And generally, to obtain the sum of given poly-
nomials, write, first, any of them as given, then a
second, so that the similar terms shall fall under the corre-
sponding terms of the first, and so all the other polynomials.
Reduce then the similar terms, and annex those terms which

are alone.
§59. Add together the polynomials
s 8a%h + Th% — 9c'q — 18¢°,
1.) {v—-'?a’b -+ 8c%q 4 ¢°b — la,
— 8% - 6c%q - 8¢% + Bla.

Arranging these polynomials according to the preceding

rule, we will have
Bath |- Tle — 9% — 13¢%

— Tab 434+ ¢b— la
— 8b% - 6c%g -+ 2¢%b 4 Bla
Sum —d4a® — b% — 10420 + 2la.

Add together the polynomials
4atd - Bc2b — Ymn,
dmn + al® + 5% - Ta'd,
Gm2n — 53b - dmn® —8al?,
@) Tmn? - 6c* — bm*n — 6adb,
Teth — 10ab? — 8m?n — 10d4,
12a?d — Bal® - 2% -} mn.

And also
@ — B - Bath — Bals,
3a* —4da®h | 30® — Bal?,
@ 4 18 - Badb,
(3-) | 248 — 4t — bals,
Bab - 10al?,

— Ba® — Tath -+ 4al® 4 205,
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Answers :

@) Sum, 17a%d - 18¢% — 12mn — 23ab* + 1lmn?
— 10d* - ma.

(3.) Sum, @@+ b 4 a% + ab’,

§ 60. Susrracrion.—To subtract a polynomial B from
another polynomial A, means to find the difference between
the two polynomials; that is, another polynomial D, which,
if added to B, gives A for sum. Applying now to these ex-
pressions the reasoning made (21) with regard to simple
monomials, we may easily infer, that

The polynomial B is subtracted from A by adding
to this a polynomial opposite to B.

We do not need to prove that the polynomial opposite to B
contains the same terms of B, but with opposite signs.

Take B = 6m®b — da’t?® + L.
From A = 3m?2b -k 4mde — 6ol
The polynomial opposite to B is
— fimde - Ha®® —1.
Hence, A — B = 3m® - dm?c — 6al?
— Bmde - Hah® — L.
And D =3m* —2m% — a®P—1
Adding, in fact, this D to B, we will obtain A.

(1) {Tuke a2 ¢+ 5d
from 4a - 36 — 2¢ - 8d.
) Take — bab + T —19a* + 2m
from 12ab 4 3b* —17a® - 3m.
) Take 10m% - 10m?® — 10m?b?
from 10m® - 4m*h — Smsb2.

{
@) {Take —.a¥ 1 2ab —1®
{

Rule.

Examples.

F e
= ™

from a? 4 Zab - B2
Take — t%gg — r% -+ 12mn

¢ ‘
from 11s%s + 122 — 136%y.
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Answers:
(1) D=3a+4b—3c+438d.
(2.) D=17ab— 41+ 2a* -+ m.
(8.) D =bm**— Gmsb, (4) D=2a%-| 2%
(5.) D=12s% 4 12s*— 1289 | 12mn.

ARTICLE IL
Multiplication and Division.

§ 62. MurmrpLicatioN.—The multiplication of a poly-
nomial A by another polynomial B, consists like that of mo-
nomials (24) in finding the product P, an expression either
monomial or polynomial, whose numerical value is equal to
the product of the numerical values of the factors A and B.

Bat multiplying A by each of the terms of B, and summing
up all these partial products, the sum must be the product of
A by B. Therefore, to obtain the product of & polynomial A
by another polynomial B,

Tale the sum of the pmdrrd of all the terms of
A by each of the terms of B, or vice versa.

Taking A for multiplicand, and B for multiplier, or wice
versa, in both cases we will have the same terms to be added.
The product of polynomials is usually indicated by enclosing
them within parentheses, as follows: (A) (B).

§63. Let A=a—1%, B=¢—d, we will have
i A.B=(a—b)(e—d)=P.
And (@ —b)(¢—d)=(a—Db)e— (a — b)d
= dac—¢b— ad + bd.

This example may be also used to demonstrate the correct-
ness of the rule of signs.

Raloofsins 1D the preceding product we have followed the
demonsteated.  known rule of signs. But, making @ — b =— m,
¢ —d — n, we can see with another process that the rule to

Rule.
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be followed with regard to signs must be that already given,
(25, 26.) :
Add b to both members of the first equation, and d to both
members of the second, we will have (16)
a=m-Db
c=1"n + d } ('0’)
and consequently, @.c= (m + b)(n 4 d.).

The terms of these factors being all positive, their produet is
manifestly altogether positive; and consequently we will have
a.c=mn -+ bn -+ md -+ bd.

And since the difference bd— bd = o, the product a.c will
not be changed by adding this difference to if, and so it will be
a.c = mn 4 bn -+ md 4 bd - bd — bd.

Now the terms d - md, having d for common factor, may
be represented by (b 4 m)d, and likewise, the terms dd and
bny which have & for common factor, can be represented by
(d--m)b." Henee, making the substitution, the preceding

equation will become .
a.c = (b + m)d + (d + n)b + ma— bd,
but the first (0) gives (b -} m)=a, and the second (d -4-n)
=¢. Therefore, substituting again
a.c=a.d+t+cbfmn—bd
Add now to both members of this equation the trinomial
bd — ¢b — ad, we will have
a.c+b.d—ec.b—a.d=m.n,
but m is (a—b), and m is (c —d); hence, from the last
equation (@ — b)(¢c —d) = ac — cb — ad + bd.
Exactly as we have obtained, following the rule : like signs
give a positive, and unlike signs a negative product.
Remarkoncom. 1N the preceding demonstration we have men-
monficlers tioned and even separated the common factor
from some terms. When a polynomial is multiplied by a
monomial, this multiplier affects all the terms of the product
likewise, and for this reason th;:‘ multiplier is called common
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factor. And, vice versa, when the terms of a given poly-
nomial are affected by the same factor, the polynomial can be
considered as the product of another polynomial by that factor,
and may be decomposed accordingly. For instance, from
P = am?® - and |- rsa,
we infer P = a(m® -+ nd - 7s).
Nay, this decomposition can be performed with regard to a
certain number only of terms, and when some of the terms
of a polynomial are affected by one common factor, and some
by another; partial decompositions can be evidently made: for
example, from P — ma®b — ngd -+ ml - nrs,
we will have P = m(a® + 1) 4 n(rs — gd)
i of (1) { Multiply A = a* -} 2ab - &*
plicaBon, by B=a?—2ab|-1*
Write first the partial products of A by each of the terms
of B; take then their sum, or the product of P, as follows:

A.B = (a* 4 2ab + b)(a® — 2ab + %)

1st partial product... at - 2ath |- atl.
2d partial product... — 2a%b — 4ab? — 2ald.
3d partial produet... a2h? | 2ald - bt
(1.) =" — 2a%0? -+ Bt
@) { Multiply A — a®*-- 8a*? - Bab* +- 1
by B =—ab®—4a% | 24
Multiply A = 8a?/b -+ 8mp/c.af — ——— gt
(3) a"-y'b_

5( by B/ g
(4) {Mult:ply together
(a—b), (b—¢), (c—d), (d—¢e).
{ Multiply A = a® - 2ab 4 1?
by B=a—1.
{ u}.tlp!} A=—a-b
B—a—5b

(5.
(6.)
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Answers:

2.) P =2a%* + 26— Ha*l* — Ta’l® — a®l® - ab’.
P e BIMTE

(8) P=3a%— GEEW - Py

4) P = abed — bed— ac*d + be*d— abd* - V|- acd®
— bed? — abee - Ve + ac®e — bee -+ abde — bide — acde
L bde.

Or else, P = a[bd(c— e) + de(b — ¢)] + V[c(e — d)
+ d(d — €)] + ¢*[a(e — d) — b(d — ¢)] - d[a(cd — bd)
+b(eb —ed)].

(6.) P=a+ a% — ab®— ®) P=ao—10"

The following, examples deserve to be noticed on account of their
frequent and useful applications.

(1) {Multiply A=14:z42484... .+
byB=1—z
@) {Multipfy A=a4bs/—1
by B = a—b/—1.
®) } Multiply A = a- b /—1
by B = A4 k/—1.
(t) { Multiply A = a —b/—1
by B = A — ky/—1.
Observe, that the exponent n of the last term of A, in the first of
these examples, is a whole number, containing one unity less than the

number of terms of the same polynomial.
Answers ;

(1) P=1—zg+, (2) P=a"4t"
(8) P=ah—bk+ (ak4 bh)/=1.
(%) P = ah— bk — (ak+ bh)y/—1.
We may remark, with regard to the second of these products, that
in changing the fuctors a into %, and & into &, we would have had
P o 38
Singularpro- 3 64, We can demonstrate now a singular property of

g:;g of num- Vv . f
numbers, which is contained in the following theorem :
If two numhers M and N are such, that each one of them may be
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resolved into two squnre numbers, that is, M = o*} %, N = 4 %,
the product M. N of the same number may likewise be resolved into
two square :mmberq

From the last example (2) and its equivalent we have

(@4 )14 ) = [(a+0/=T) (e — 0)y/=D] [(h + ky/=T)

(h—E)/=1)]
= [(a4 by/=1) (h ko /=1)][(a— by/=1)
(h—ky/=1)].

Again, from the last examples (3) and (4), we have
(a4 ba/=1)(h + by /—1) = (ah— bk) 4 (ak + bh)/—1
(@ — bo/=1)(h— ky/—1) = (ah — bk) — (ak+ bh)y/—1.
Therefore, (a* 4 5*) (A 4+ ) = [(ah — bk) + (ak + bh) /—1]
[(ah — bk) — (ak 4 bR} /—1].
But we have seen in the preceding number that the product of
the sum by the difference of any two quantities, is equal to the

difference of the squares of the same quantities ; hence, the product,
or second member of the last equation, is

(ah — BEP — ( (ak -+ bE)y/=T)%;
that is, (a2 ) (I &) = (ah — bk)* — ((ak 4 bh)y/—1)*
But ((ak 4 bh)y/=1)* = (ak 4 bh)*. /—1)* = — (ak + bA)*,
hence, (a4 ¥)(A*+ P} = (ah— bk)*+ (ak + bh)*
That is to say, the product of two numbers M = (a® 4 &%), N
= (#*4- %), is equal to the sum of two square numbers.
For example, take M = 40 and N = 58, we will have
M= (0429, ¥ = (P+3)
and cunsequenﬂy, M.N, o
(67— 2.8 4 (6.8 42.7)8
= 36" 4 82
= 1206 4 1024 = 2320.

§ 65, Division.—To divide a polynomial A by another
polynomial B, is to find a polynomial, or even monomial ex-
pression Q, the guotient, which, multiplied by the divisor B,
gives for product the dividend A.

Polynomials 10 obtain the quotient, it is -expedient to
arrange both dividend and divisor, according to
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the powers of the same letter; that is, writing, in the first
place, the term in which the power of the letter is the highest,
then the term where the power of the same letter is the
highest of the remaining, and so on. This is the arrangement
usually made, although it would be equally profitable to
arrange the terms in the inverted order, commencing, namely,
with the lowest power and increasing in order to the highest.
Thus, for example, the prlynomials
A=a®-L 2ab - 13
B —=24% - 2a% |- al® -} 83,
are both arranged according to the decreasing powers of @, and
according to the inereasing powers of b.
When the polynomials are thus arranged, the operation of
division is easily performed. But to see better on what prin-
operation €iple this operation rests, let us multiply together
wpluined:  the two preceding polynomials arranged A and B,
marking each partial product, we will have

(a®4-2ab+4-1*)(2a*+2ab+-ab?-b%)
P et dath - 2atle,

RS T oty 2a3h- 4P 2atl),
R T 2 @ |-2a%F - abd,
Pl ey a* i -2alr - 13

pp" " = 2a5-L-6ub-+ Ta*b* - batlP+-Bal 15 = P

Let us now observe, first, that the product which rosults, is
arranged according to the powers of the lettevs of the factors,
and it is not difficult to see that it eannot be otherwise.
Secondly, the first and the last term of the same product are
merely produced by the multiplication of the first terms of the
factors, and by the multiplication of the last terms. Henee,
dividing the first term of the product by the first term of one
of the factors, the quotient must be the first term of the qther.
factor. Henee also, generally, when both dividend gn{l ch.vmm-
are arranged accordmg to the powers of the sape ktter, the
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first term of the quotient is obtained by dividing the first
term of the dividend by the first of the divisor.

Now, after having obtained the first term of the quotient,
we can have also the partial product p’ of the divisor by the
quotient.  For example, in the case before us dividing P by
the polynomial A, we will obtain the first term of the quo-
tient, that is, 2a%, by dividing the first term of P by the first
of A. Now, multiplying A by 2a°, we obtain p', which sub-
tracted from P, gives for remainder a polynomial P — p"
"+ p'; that is to say, the product of the same A by the
remaining terms of the quotient. Repeating the operation
with the divisor A and the dividend P’, we will obtain the
next term of the quotient, which in our case is 2a%, and,
in consequence, the second partial product p”, and so on,
Hence, the rule,

To divide a polynomial M by another poly-
nomial N, arrange, first, both according to the
powers of the same letter.  Then divide the first term of the
dividend by the first of the divisor, and mark the quotient.
Multiply then by this term the divisor N, and subtract the
product from M, and taking the remainder for dividend,
repeat the same operation until the end.

Rule.

R, Divisor. Dividend. Quotient.,
b+ Iy B2 - hle — bz — &z (h—=

1st product....... 2 - Ll

1st remainder.... —hz— ez

2d product....... — hz — k2

2d remainder.... 0

The product may be taken with changed signs, and so the
remainders may be obtained by simple addition.

When the dividend contains many terms, it is not necessary
to write each time all those which belong to the remainder,
but it is enough to write as many terms as there are in the
divisor, as in the following example :
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In like manner, divide
A — a* —4a®h - Bal? —4al® - 1
() by
B = a® — 2ab -} 12

A=l
(@) { b

7
A = a5 — Ta*b - 12a%0% - a*lP — 13ab* | 682
(32 by
B = a® —4a% — 2al* - 81,

A=t faty gy
“) by

B=a®} ayt~
Answers:

(L) Q=a*—2ab - b~
2.) Q=8 —hk | i
(3.) Q= a®—3ab 4 20
“4) Q=a*'—axy-+
Remark con.  The arrangement of polynomials according to
f.,‘:’ﬂ“;l;}gﬁu'r:;“";} the powers of the same letter, is not an indis-
polynomials.  pensable requisite to obtain the quotient. This
can be also obtained without such an arrangement. Nay, this
must necessarily be done when the polynomials canvot be
arrange®.  Such is, however, the nature of the process, that
" the same quotient will be obtained with different arrange-
ments, although the disposition, the form of the terms, and
their signs may appear different in the quotient for different
arrangements. '
Tor example, dividing the same polynomial A, differently
arranged, as follows : A —a® - 2ab - 1?
= 2ab -}- a® - B*
by B=a-b.
With the first arrrangement, we have

Q: G—I—zl.
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With the second, Q=2b-ta—10b
—a- b
Qo likewise, let the dividend be :
A — 2abl -+ mal +gl + 2abr + mnr -+ gr -+ 2abs + mns—+- gs.
And differently arranged,
A — mar+ gr- 2abr - mans -+ gs |- 2abs | mnl 4 gl -+ 2abl.
Divide it by B=1I+4r-+s
With the first arrangement, we will find

Q = 2ab -+ mn - q.
With the second,
2abr  mns | gz 2abs

mur . qr
M B e ok o ey B icho g
- mn + g + 2ab
mnr mns  gr g5 2abr 2abs
ST T e Rl A

which is manifestly equal to
: 2ab -+ mn -+ g,
as for the first arrangement,

In order, however, to diminish useless labor, it is always
expedient to arrange as much as possible the given poly-
nomials. So, for example, the following dividend and divisor,

A — abed -+ cdm - mn - abmn — m*n 4~ 3a% + 3abm

B =m - ab,
may be arranged in this manner :

A = 3a%b + abed 4 abmn - 3abm - edm + mPn - mn

B=ab- m.

- And we will find
T
Q = 3ab -} cd + mn 4 (Tb-{—_ﬂ;
mhedivitena 3 00 In this last example, after having found
not sxactly & the first three terms of the quotient, the remain-
R der to be divided is mn, which cannot be divided
by B; we add, therefore, as tga last term of the quotient, a
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fractional expression having the remainder for the numerator,
and the divisor for the denominator.

This case takes place whenever the dividend is not the
exact product of the divisor and the quotient. Let us give
another example. Divide

A — I3+ 3Kk 4 3k*h 2/ by B=h -k,
3

we will find Q = + 2kh + Vi + m-

The correctuess of the process to find out the quotient in all cases,
can be demonstrated also in the following manner :

Call ¢, ¢/7, t#/7, . .. the first, the second, the third term, &e, of the
quotient obtained by dividing A by B, and call o/, #//, v/, ... the
remainders corresponding to each term of the quotient, we will have

" = A—t'B

! = A—t'B—t"B=A— (/4 t/)B

Pt A — (/B /B — //'B = A — (' + /- t/")B, &e.
And r = A— B 1)

Suppose now, that after having obtained the 2™ term of the quotient, -
we stop the operation. The polynomial 1
T o L T AL TR T
represents the quotient, and ™ the last remainder. Now, from the

preceding equation, we infer

A=DBt 4t/ 4t/ 4. . 1) i,
But the quotient of A divided by B, must be such a quantity, which,
if multiplied by B ought to give A, or, which is the same, B(¢/ 4 ¢
4777 4. .o 4 ¢™) 4 #®), but this product is evidently obtained by

‘)
multiplying (4t . 4 1) 4 %

by BB. Therefore,
A ! r™
ﬁ — £;+fﬂ+;rﬂ+ b __+.;-~!+ 5
These remarks, as we have observed, are applicable alike to all
cases, whatever might be the form of the dividend and of the divisor,
and even of the terms of the quotient.
Tt may occur that some, and even all the terms of the quotient have
a fractional form. Dividing, for example,

A=at+d+ad by B=10bt+ab,
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a8 ok ad
55 Tt

Number of 4 67. In this example, the remainder zero cannot be
ltl‘:fott‘i::?tgiifﬁ:: found, and consequently, continuing the operation, the
nite. number of the terms of the quotient becomes indefinite.
And in ecases similar to this we may add the remainder, with the
divisor for denominator, either after the first, the second, the third

term, &c. of the quotient. Let us see another example :

wo will find e g i

Divisor. Dividend. Quotient.
B M '
h4 k) &3 =7 i 5

Ji
£ R fl_
e
T

I3 5

tith

s

T

g

2

I
— %
&I
s

Suppose now the operation to be interrupted after the first, after
the second, and after the third term of the quotient, &c., we will
have the following equivalent equations

s
7 B ook B B.E
AR & Atk h R+E'N
pris e ke
TEET R TR TR
oo ) B e B P
A+k—a_&%+ 3R R
and generally,
7 I Fnte BoOR
f“)fa+k=1_ﬁ+ﬁ_“‘t OBl B AT

From the simple inspection of the order in which the signs of the
preceding equations follow one another, and from the uniformity of the
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process to obtain any number of terms for the quotient, it is plain
that the npper of the two signs placed before the last terms (a) is to
be used when n is an uneven number, and the other when n is even,

With regard to the formula (@), three different cases can happen.
That is, we may have h =k, or h <" %, or h > k:

in the first case, g= 15
in the second, %)1;
in the third, §<1.

In the last of t.!lte'm cases, by inereasing indefinitely the number of

the terms, and consequently, # in the formula (), the factor ,%-"- of the
last term will more and more approach to zero, and consequently

likewise the whole term
J3 Jen

:l:m.ﬁ.... (9’).

But if, by increasing the number of the terms in (), the last of them
constantly approaches to zero, we may say that the polynomial

E ] Jn+2

TR + iy
which contains all the terms of (a) with the exception of the last, is
such that by inereasing the number of its terms it constantly ap-
proaches to the determined yalue of the first number of (a), namely, to

Py LR (#).
We call this fractional expression (s), to designate that it is equal to
the sum of all the terms

- ¥ormE e R
@)= PR TR
of the series indefinitely protracted ; that is,
s kﬂ &
rr — e
T f;“+ i A

The term (r) here omitted is called residual term, or residuum, after
the a™ term.

k
In the other two cases of = 1 or >> 1, this residunm cannot be

omitted, because when E =1, (r)is constantly equal to Z=-—— i + ¥
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and when E > 1, the value of (r) constantly increases by adding
units to n.

From the formula (a), dividing first both members by 43, and making
then & = 1, we deduce the two following useful equations:

8 B A SR T g R

ooy LR BEBRR LT e TR
1 ’ ot kn
m:l-—k-‘-k—...ik’ :‘:m.

The remarks made with regard to the general formula (a) are
evidently applicable to the last two, and their residuums can be

k
amitted whenever 7 <C 1. With regard to the second of (a’’/), the

fraction E cannot be < 1, unless k itself is < 1; that is, unless &

be a fraction ; beecause, sinee in that formula k = 1, the expression

k ’ .
7 is nothing else but k. Supposing, therefore, k to be a fraction, we

3 1
will have m:l—k-{-?c‘-—-iﬁ-l— .....

an indefinite series.
The quotient 3 68. When the imaginary expression a4 by/—1

of tha same form

as the imagin- s, 3so8 . ¥ - —
aty expressions 2 divided by another imaginary expression ¢ 4- ey /— 1,

divided by one the quotient or fraction
another,
a4 b/—1
oA A
remains unaltered when its numerator and denominator are multiplied
by the same expression; for example, by ¢ — ey /— 1. Effecting this
multiplication, the numerator (63) becomes
ac 4 be 4= (cb — ae)y /—1;
and the denominator, 4 &
and, consequently,
atby/—1  ac{be c&—ae\/_r
¢+3J__1_c‘+s“ P T o A

: ., ac - be 2 ch— ae
Calling A the real quantity m, and B the coefficient E"‘:{?

—%7
likewise real, of /— 1, the same guotient will be represented by

A4 B/—1
L]

8
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That is to say, the quotient, no less than the product of two imaginary

cxpressions of the form o= by/— 1, is another imaginary expression of
the same form.

ARTICLE TIIL
Formation of Powers and Extraction of Roots.

§ 69. Powers.—There is no difference between the forma-
tion of powers of monomials and that of polynomials, since
the same operation, which in the former case is to be made
about a monomial root, is to be made about a polynomial
in the second. All, therefore, that concerns this operation
with regard to monomials (Chap. I. 39) is to be applied
to the case of polynomials. Hence, when the positive ex-
ponent m is a whole number, the operation to be performed
to obtain the power of a given polynomial, or root A, is to
multiply that same root by itself, as many times as there are
units in m. Let us take, for example, the most simple case.
That is, let the given root be the binomial 1 4 2, and let us
take in succession for exponent m=—=2, m =3, &e., we will have

gxampies, [ (12" = (14-2) (14-2) = 14-2z4-2°
(@) (1420 = (142)¥(1+42) = 14-824-322 2
(42 = (142" (14-2) = 1442462244242,
&e.

Observe now, that

1422420 — 1422 +2(2 =D,
18-t Bt = 1484 20D BEDCED,
144246244242 — 1442 +4(4 s 4(4-—21)&4._2)

4 4DE—2)4-3)
2.3.4
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Therefore,
(I+2p =142z -|—2(2 el |

—1 i
(42 = 1484 20— ) 368 ;)ga 2).,
A+2r=1+44z -5-4(4_2_1)244_ G ;)(34—*2)

4(4—1)(4—2)(4—38
A e

From the uniformity observable in these evolutions of the
binomial 1 4 2, we could infer by analogy a general law, ex-
tending alike to all positive and whole powers, so that the m*™
power of (1 - z) would be given by the formula

@) (o = 1fme Dy AR L2,

GERESR R
m(m—1)(m—2)(m—3)
i 2.3.4 e
containing (m - 1) terms in the evolution, because, were they
m -2, the last of them would have among its factors
(m — m), which renders the whole term equal to zero. The
same factor (m —m) would be found also in all the follow-
ing terms. Therefore, the said evolution of (1 —-2)™ cannot
contain more than s -1 terms, and consequently, three terms
when m =2, and four when m =3, &ec., as we have seen in
the preceding examples.

It is moreover plain, that in the same evolution of (1 -} 2)",
the highest and last exponent of z is equal to m.

formula.

Newtonian L_et us now make z:%, and, subst.itut.ing this

value in (a'), we will have
o —1) 2 m(m—1)(m—2
(142) = 1 2D £ =R X D)

but (1.{.3’) (CH_/) ~ <~ multiplying then both members of
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the equation by x™, we will find
©@-..(+y)"=z"+ma""y +’§-(4"32—_—1)w“"’y'
m(n—1)(n—2)
2.3

s

The form and the order in which the terms of the binomial
(z+y)™ evolved, succced one another, was first discovered
by Sir Isaac Newton; hence, this formula (¢) bears the name
of its discoverer.

By mere induction, however, the correctness of the evolu-
tion is not demonstrated. A rigorous demonstration of it may
be seen in the following number. Let us now observe, first,
that the formula

-

m(m—1)(m—2). ...(m—(p—1) Bz

12.34...p v
represents the (p—1)™ term of (¢). Substituting, in fact,
1, 2, 8, 4, &c. instead of p, we will find the second, the third,
the fourth term, &e. of the evolution. Hence (¢') is called
the general term of the series.

o ”,’“(m_‘l)mm—zys m(m—1)(m— 2)3;1,_“_,3}s

max™ . Ty, —— - gmTSs ..
s e 2.3

General term. (G”) o

Secondly, substituting 2 and 3, instead of i, in the formula
(2), we have

(z+y) =222y +9*

(x +y)* = * -+ Ba%y + Bay* - y*
Just as we would obtain from the first and second (), substi-
s o sy tuting in them * justead of z. Hence, the square
binomial. y
of a binomial is given by the square of the first term, the
double product of the first by the second tc*rm, and the square
of the second term.

The cube of a binomial contains the cube of the first term ;

the triple product of the square of the first by the simple
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second term, the triple product of the simple first term by
the square of the second, and finally, the cube of the sccond
term.

Binomial the- 3 70. Let us now resume the formula (a’). We say
orem  demon- 7 el "
strated. that when m is a whole and positive number, the evoln-

tion of (14 z)™ is exactly represented by the second member of (a’).
Observe, ﬁrst that (a”) X (1 +z) or

(1 4metp 20Dy ) (149

m(m

gt —1) 2 m—‘l)(m—r2) 7 e

+ 24 wm 2°+1’Mza+...
And, adding together the similar terms,
(@) (2) = 14 (e Vet (P e D (5= 41)
1—1}za+

A, W e o i el AN

That is to say, (¢/) 4 (14 2) is equal to a polynomial which containg
m<-2 terms, one term more than those of (a’), and this is easily
proved in the same manuer as we have demonstrated that the number
of terms in () do not exceed (m - 1).

Now, substituting m == 1 instead of m in (¢’), we have

1+(m+1)z+fm-§1)m (m+1)m(m_1) A

that is, the product of (e’) by (14 z2). Thcrcforc, whatever be the
whole and positive number m, the product of (a’) by (1 2) is
obtained by changing in (a/) m into m--1. We may now proceed to
demonstrate the theorem as follows :

If the polynomial (a’) is the exact evolution, for example, of the
third power of 14z when m = 3, it will be also the evolution of the
fourth power of the same binomial, making m == 4; but if (a”) is the
exact evolution of the fourth power of 14z when m == 4, it must
be also the evolution of the fifth power of 1 2, making m == 5, and
go on. Therefore, whatever be the number of units in m above 8,
provided with m = 3, the polynomial (a’) gives the evolution of
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(1 - z)3 it will give the evolution also of (14 2)™, so that this power
in our supposition is exaetly represented by the polynomial (a’).
But, indeed, (a’) is the evolution of (1 z)% (14-2)% when we make
m = 2, m = B, which may be easily verified, comparing (a”) with the
formulas (a). Therefore, when m is any whole and positive number,
the evolution of (1 z)™is given by the polynomial (a/). And since
we have seen, that making in (a’) 2 ,—_E, the same (a’) is changed

into the Newtonian formula (¢); the evolution, therefore, of the binomial
(=)', according to the known law, is also rigorously demonstrated,
whatever may be the whole and positive value of m.

Sienlarpro- 8 71 The coefficients of the formula (¢) have the
Perty of the £ singular property of representing the numbers of com-
formuls (7). binations of m different quantities. Hence, before we
speak of the extraction of roots, we will dwell here upon this suhject,
as well as upon the use of the preceding formulas, in order to find out
some numerical properties.

Lot a, b, ¢,8; o wihe vepresent m different symbols.
The first a taken in succession with each ome of the
following &, ¢, d, ... will give us (m—1) binaries ab, ac, ad, .. . .
But, joining in equal manner the second symbol b with all the others,
we will have again (m— 1) binaries; and let the same be said of the
third, fourth, and so on. In this manner we will have a joined to b,

Pormutalions.

and aga'n b joined to @, a joined to e, and also ¢ to a, &e.; for this
reason this arrangement of symbols is termed permutation. But for
ench symbol the number of permutations of the letters taken two and
two is m—1, and the symbols are m in number ; therefore, the whole
number of permutations of m letters taken two and two is
m(m—1).
Again, the binary ab joined in succession with each one of the remain-
ing symbols, will give us 7 — 2 fernaries ; and the same we must say
of all the other binaries. Now the number of permutations of m
symbols taken two and two is m(m—1); therefore, the number of
permutations of m symbols taken thres and thres, i3
m(m—1)(m—2).
It is now easy to see, that the number of permutations of m symbols
taken four and four, is
m(m— 1)(m—2)(m —3),
and generally, the number of permutations of m symbols taken p and
p, is mim—1)(m—2).... (m—(p—1)).
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But if to the preceding binaries, ternaries, &c., we would add all
those which come out from the repetition of the same symbols—for
example, aa, bb, . ... aaa, aab, ... bbe, ... to the number m{m — 1)
of the terms taken two and two—iwe must then add m more binaries ;
and since m(m —1) 4 m = m?
the number of permutations of m terms taken two and two, with the
repetition of the same symbol, is

ma,
We would find in a similar manner, that m® gives the number of permu
tations with the repetition of the same symbols of the m terms taken
three and three. But let us investigate the subject, assuming it in &
more general point of view.

permutations % 72. Suppose m letters to be taken p—1, and p—1,
with repetitions. in ]l possible manners, without excluding the repeti-
tion of the same terms.

To obtain the same m symbols taken pand p, it is enough to add
in succession the m terms to each of the coliections of the same terms
taken p—1 and p — 1, and make the addition in the last place.

To demonstrate this proposition, let f be one of the m symbols.
Among the terms taken (p—1) and (p—1), there must be some
colleetions in which f does not enter at all, others in which f enters
only once, others in which it enters twice, &e. The same must be
with regard to the symbols taken p and p; but all those colleetions of
terms taken p and p, and excluding f, must certainly terminate with
any symbol exeept f. To obtain, therefore, all the collections of
terms taken p and p, with the exclusion of / it is enough to add in
guceession to each one of those eollections, taken p—1 and p—1, and
which exelude £ all the m symbols except f; but adding to the same
collections also f, we will obtain all those taken p and p, containing
f onee, and in the last place.

After the collections of symbols taken p — 1 and p —1, and exclud-
ing f, come those which contain f only once, some of which must have
f for the first, some for the second, some for the third term, and so on.
Now, ndding to the end of each one of them the m terms, one after
another with the exelusion of f; we will evidently obtain all the possible
collections of m terms taken p and p, and in which f enters only once,
either in the first, second, or third place, and so on, except those
which contain f in the last place; but we have seen how they are
obtained in the first addition, and now if to the same terms take p—1
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and p— 1, and containing f only once, we add f once more for the
last term, we will have those collections of terms taken p and p, in
which f enters twice, with one of them, however, constantly at the end.
If now to each collection of terms taken p—1 and p—1, and
containing f twice, we add in succession all the m terms with the ex-
ception of f; these, together with the last mentioned, will give us all
the collections of terms taken p and p in which f enters twice in all
possible ways. It is now plain, that adding, likewise, to all the re-
maining collections of terms taken p —1 and p—1 all the m letters
in succession, we will obtain all those taken p and p, when f enters
three, four, five times, &ec., in all possible ways. ' But whatever is
demonstrated with regard to the symbol f is evidently applicable to
all the others. Hence, adding in succession the m terms to each
collection of the same terms taken p.—1 and p—1 with all kinds of
permutations and repetitions, we will obtain all the same permutations
~ with the repetitions of the terms taken p and p; and the number of the
collections of the terms taken p and p is evidently m times as great
a8 the number of collections of the terms taken p —1 and p— 1.
Let us now call N the number of collections of the m terms taken
#—1land p—1. The number of collections of the same terms taken
pond pwillbe givenby = N.m.
But supposing p = 3, and, consequently, p —1 = 2; as we have
seen in the preceding number N in this case is = m2.  Therefore, the
number of permutations with repetitions of m terms taken three and
three is m?. m = md

Bat if the number of collections of m terms taken three and three is
N = m?, it follows, likewise, that the number of collections of the
same terms taken four and four must be m®. m = m!, and o0 on;
and consequently, we generally infer that the number of permutations,
with repetitions of m terms taken p and p, is

N = mr.

How thesame 473, We are now able to infer again the' general
E;?c:;ﬁ‘él,:ﬁﬂm formula of simple permutations. Suppose the permu-
filnﬁz‘t“'f:i'"t'ﬁ tations of m symbols taken p—1 and p—1. Each

pe .
tiors. gymbol enters only once in these collections, and the
symbol £, for example, in some of them will be the first, in others the
second, in others the third, and so on, till the last. To all these f
eannot be added to obtain the permutations of symbols taken p and p;

but adding other symbols we will obtain the terms taken p and p eon-
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toining f in the first, second, and third place, and so on till the
last, exclusively. Hence, to all the other permutations of terms
taken p—1 and p —1, and excluding f, this symbol cannot be added
exeept at the end. The same thing ought to be said of any other
symbol: if the symbol is already in the permutation containing p—1
terms, it is not to be added; if it is not in it, it must be added only
at the end,

Now each permutation contains by supposition p—1 symbols.
The number, therefore, of symbols to be successively added at the
end of each one of them is m— (p—1),
and so we will obtain all the permutations of terms taken p and p.
So that, calling v the number of permutations of m terms taken p—1
and p—1, for the number of simple permutations of the same m
terms taken p and p, we will have

s[m—(p—1)]-
Let us take for example p = 3, and, consequently, p —1 = 2. In
this case we have seen (71), that y = m{m— 1) ; therefore, the num-
ber of simple permutations of m symbols taken three and three is
m(m— 1)(m —2).
And if the number y of permutations of m symbols taken three and
three is m(m—l)(m—?), that of the same symbols taken four and
four is m(m—1)(m— 2)(m —3),
and so on. And generally, the number of permutations of m terms
taken p and p, is that alveady found (71), with another process—
m(m—1)(m—2).... (m—(p—1))

Taking p = m, we will have the number of permuta-
tions which may be obtained by the collection of all the m
symbols. But observe, that in this case the last factor (m— (p—1))
of the general formula becomes (m —m -+ 1) = 1, and, consequently, .
the factor before the last is 2, and the preceding one 3, &e. Hence,
the number of simple permutations which can be formed with all the
m symbols is mim—1)(m—2) ....3.2.1,

This same formula gives us, besides, the number of permutations
which can be obtained from the same two, the same three, and the
same p letters. So that, if we wish to know, for example, how many
permutations are made by the first five of the m symbols taken five
and five, it is enough to substitute 5 instead of m in the preceding
formula. Calling now, vy v, « .. e 1y, the number of permutations

Corollary.
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formed with any two and the same symbols, with any three ., .. with
any p, we will have

pn=2.1 = 2
Be=8.2.1 suui.v. =2.8
p=pr—1)....2.1=2.8,...(p—1)p.

It is now easy for us to determine the simple combinations of m given

symbols.
% 74. In the simple combinations we exclude all the

colleetions of terms in which at least one symbol is not
different from the symbols of another collection. For example, the
gymbols @ and & can be combined with ¢ d, ... but after having taken
abe, abd, we exclude all the per mutations which can be formed with
the same terms a, &, ¢, or a, b, d.

Call now n, the number of simple combinations of terms taken
three and three. From that which we have just observed, and from
the preceding formula v, it follows first, that the number of permuta-
tions- of any three and the same symbols is 2. 3, and, consequently,

n+ (2.8)
is the number of permutations of all the m terms taken three and
three. But this same number is expressed also by m(m —1)(m—2);
therefore, == (2. 8) = m(m—1)(m—2),

—1 —2
and, consequently, o, = m(ﬂ?——) (n} }

Combinations.

In equal manner, calling n, the number of combinations made with
m symbols taken p and p, and multipyling n, by », we will obtain the
number of corresponding permutations n, 4 (2. 3. .. p), but the same
number is also given by m(m—1).... (m—(p—1)); therefore,

mpt (2.8....p =m(m—1)... (m—(p—1)),
and, consequently.
e Mm—=1)(n—2) ... (n—(p—1))
"= 208, 4 P o

Now, this is the general formula of the coefficients of (¢), and making
init p =2, = 8, =4, =, &e¢., we obtain the coefficients of the third,
of the fourth term, and so on, of the same evolution. But at the
same time, making p = 2, = 3, =, &e., we have the numbers of com-
binations of m terms taken two and two, three and three, and so on;
therefore, the coefficient of the third term of the evolution of the
binomial (x4 »)™ gives the number of combinations of m symbols
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taken two and two, the coefficient of the fourth term gives the number
of combinations of m terms taken three and three, and o on.
Onsomepro- 3 75. Let us now make use of the formula (¢) to find
perty of num- s s
bers. a certain property of numbers.
The formula (¢) may be changed indefinitely by giving different
values to ¥, to z, and to m. Let us take instead of the exponent m,
the number % prime in itself and make z = hand 4 = 1; the evolu-

tion (e) will become
(A1)} =R T+ f&:.l_)mwz.k ﬂ-_*;)(%‘_z)m—%, &e.
Mk—1)(k—2)...3.2
25 '(2.3.)4(1...(.3;:1)‘ Ry
and consequently,
(A1 — 1 —1 = k"4

k(k—1)...8.2
2.8... (k1)
We may now pass to demonstrate the following theorem :

If the whole number N ds not exactly divisible by the
prime number K, this aumber k will certainly eractly divide
Nek=1_-_1.

All the terms of the second member of the last equation contain
the factor k; the whole member, therefore, is exaetly divisible by k&,
and, consequently, also the first member (h=+1)k— &*—1 in which
h may have any numerical value. Make, therefore, successively

— 1, = 2, = 8, &e., the trinomial will become successively

p_1—1, S—2_1, 81, &,
and always exactly divisible by %, and, consequently, the sum of the
first two, or three, or four, and so on, will also be divisible by &.
Now, the first of these trinomials is equivalent to

ME—1),
e iy

h.

Theorem.

o — 2,
and consequently the sum of the two first-is
»—3,
and the sum of the three first
4 —4,
and o on. So that N being any whole number, the binomial
Nt—N

is exactly divisible by k. But
; Nt — N = N(Nt—1—1).
Hence, whatever be the whole number N, the product N(Nt—1—1) in
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always exaetly divisible by the prime number k. Consequently if &
does not exactly divide N, it must necessarily (53) divide N*—1—1,

Evolution of % 16. We had (67) the following equation :
the binomial

when the expo- —=1—z 22— P e
nent is nega- 142 + + i '
tive. where z must have a fractional numerical value, that is,

less than unity.
But change in (a’) (69) m into — 1, we will have
(42 1=1—z4 =P dat—. ...
with the second member indefinite. Now, (14 2)—! =
1
142z

value of 2 be a fraction ; the formula (a’), therefore, besides the evo-
lution of the binomial 1 4 2z raised to any whole and positive power
i, gives also the indefinite series equivalent to (1 4 z)— !, changing m
into — 1, ‘with the condition, however, that the numerical value of 2
be less than unity.

Nay, more, the numerical value of z being such, changing in the
formula (a’) the sign to m, it will give us an indefinite series, and
equivalent to any whole and negative power of (14 2). Because, from

A4+ '=1—z42—2F2—254....
we have, also
(42 ™= (1—z422 -4zt —25L. . )"
Call 8, for the sake of brevity, all the terms of the indefinite series,
with the exception of the first, the preceding formula will become

(14 2= = (14 8)™.

1
o and

is really equal to the indefinite series, provided the numerical

Now,

(m—1), , m(m—1)(m—2)

A4+8m=1+4mS4 " s S+ 8 R
And with
=—z4+2—24.. . =—zl—zt22—.. )

we have, also
8= (1l — 22—, ) = AL —2(—2 .. ) (2 — 2. )T]

= —Bl—zt . P= — 1 —Bz—R .. ) +..]
Bl (l—at?—. ) em [l —d(z—2F.,.)+...], &e
And, consequently,

mB = —mz(l —z4 22— ...)

m(m

2_1)5!= "“mg_l)zm_zz_;. 82— 42 .. .)
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m{m—1)(m — 2} m(m — 1)(m—2)
-—T':s*—— 0= — _._,2,-_3__.26{1 —3z.. .), &e.
Or else, S = —mzf mB—mP ...
mm —1), mm—1)
2 Wi, 2

2—mm—1)24 ...

m(m—l}[m—2) m(m—1)(m— 2)
.~ e

And therefore,
1 + mS 4

=1 —m;z+ [m+ ﬂ-‘_——l)]z‘
— [m-l—m(m -1+ M]:ﬁ-{- o
4 ’7’(’3'2"'_1)5:._ %ﬂﬂ_k doa

( l)sa m(m -‘21]gm = 2)33_'_ A0

=1—
That is, (14 8)™, or its equivalent
(o 1 o MDY, W E NV D

which is precisely the formula 1mmedin.tely obtained from (a’) chang-
ing m into — m.

Taking now z = E with @ >y, this value may be substituted in the

last formula, which will become

m{m-4-1 i m—1 ) (m—2
(z4y) "= xm—mzm—ly+-wg2i‘)d"'ay2— -(—2-1(5—-—}z"'4y’+
which is the binomial formula extended to the case of the negative
exponent, in which, however, the first term z of the binomial must be
greater than the second y.

But 2+ y = y 4 z, and, consequently, (z 4y~ ™ = (=)™
Arranging, therefore, the terms of the evolution as above, and in such
2 manner that the greater of the given binomial be the first, the
above formula is applicable to all cases without exception.

The extrae  § 77. BExrRACTION OF Roors.—The m™ root
tin of ol ¢ 4 polynomial P is another polynomial R, which

the wme % raised to the m power gives P. To find out the

of mots of o000 R, s to extract the m!™ root of the polynomial
L ES
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P, m is called index or degree, and the radical sign used is the
same as for monomials (47).

The process of the operation is to be inferred from the
opposite one of raising to powers, which may be done in two
different ways, either examining the most general case, and
thence deriving practical rules for particular and determined
cases, or commencing with the simplest case. The first
method is unquestionably superior to the other. But the
second, beside being easier, affords us all that which may
conveniently find a place in the present article.

The root of  -xDd it is first to be observed, that the square or
:npff,{:,m},’g,j: cubical root, or more generally the 7' root of a
Ty polynomial, must necessarily be another poly-
nomial ; because a polynomial raised to any power preserves
constantly a monomial form, and therefore, in the equation

B i=R
R must be at least a binomial, for example, @ - & ; then P,
which is the square of R, is equal to the product (a +)(a +-5) °
= a® -} 2ab + 1*; that is, the square of the first term of R,
plus the double product of its two terms, plus the square of
the last term.

In this supposition, therefore, P must be a trinomial, and
one of its terms is the square of the first term of R. Hence,
taking the square root of this term, we will have the first of
R. The two remaining terms of P are the double product of
the first by the second term of R, plus the square of the
second.  Now, dividing the double product by the double of
the first term of R already obtained, we will evidently obtain
the second and last terms of R. This process will be better
understood with an example.

Let the given polynomial be
P = m*® + ¢* -+ 2migs

In order to have the square of one of the terms of R in the

Example.
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first place, and the double product in the second, arrange the
polynomial according to the powers of a letter. Thus, we
will have

P R
m*rd —+ 2matg® + ¢t ( mr* 4 ¢°
— iy?
v, = 2mi*g? + ¢*
— 2mtg — gt
e 0,

for the square of the first term of P is mr% and, consequently
mr* is the first term of R. Subtract now the square of ms®
from P, the remainder 7, contains the double product of m#®
by the other term of R to be found for the first term. Divide
then this term by the double of s, which gives ¢* for quo-
tient, the second term of R. Subtracting now from #, the
product of the second term just found by the double of the
first, plus the product of the second term by itself, the second
remainder », must be equal to zero, if P is really the square
of the binomial R, as it is in the present example.

But the polynomial P, although a perfect square, will not
always be the square of a binomial. Still, whatever might
be the number of terms in R, the process of the operation to
derive R from P is always the same.

The process Let, in fact, the root R he a polynomial composed of

to find the Ty et
&iniro roct.of MY number n of terms e 4-54-. .4 z... We will have

?;tynq::}g};m-;m then E = (a+bted..42.)2
sune, and VP =R =atbdtet.....
Culling now A, the same polynomial R, with the exception of the first
term, and A, the same polynomial with the exception of the two first
terms, and so on; and calling #, the two first terms a 4 &, &, the first
three a -} &+ ¢, and so on, besides .
Re=atbtet.....

we will have, also, R=a-t A

R =1, + A,

R 1, Ay &o.
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And consequently since P = R?,
P = (-‘1’ -|_— Al)‘ = {l’ﬁ-{— A:)! = (f,-]— A,)! f—

or, which is the same, P = a4 2aA, 4 A2
24 264, 4 A2
(34 264, 4 A2
faeit b Qto_yz 428
in which last member, #,_, représents all the terms of R, with the ex-
ception of the last, and z the #'® or last term of R. Supposing, more-
over, the whole number p to be any number between 2 and n—1
inclusively, the general expression equivalent to P, will be

P=2 24,4 A2 (9):

and, consequently, T =1,4+A,.

Now, tp = tp_a4 7, 1 n-uuely, commencing with the first term of R,
contains one term r more than #,_,, but from ¢, = tp—1+ r, We have,
also f =t 24 2 4,
which value, substitated in (g), gives

P=t, 42, 44+ 26,4, 4+ A2
but in (g) we may change at pleasure p into p— 1, in which case

P=t 242634, +A, 2

Henge, taking the second member of this and of the preceding equa-
tion, we will have another equation, as follows :

b2 A A P =t 2y r 264, 4 A,
from which, taking #,_,% which is in both members, we will have
2paByid Ayt =2+ A, A2
in which it is to be observed that r is the first of the terms of A,
Substituting now in this formula, instead of p, the numbors 2 8

4, ... n—1 in succession, observe, that ¢, = a, the first term of R,
and A,_, = z, the last term of the same R, we will have:

204, 4+ AP = 2ab 4 12 4 [26A,4 A7)
A+ A2 = 2?,#-}- 24 [2."‘&4 + An*]
264, 4 AP = 2td+ @ [2A, + A3]
" &e.
2z 42" =2y _z4-224 0.
That is, the last binomial within the brackets of the first equation is
the first member of the second equation; the last binomial within the
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brackets of the second equation is the first member of the third equa-
tion, and so on. Making, therefore, a continual substitution, we will

have 2aA, 4 AP = 2ab 4 824 (2t &) 4 (20d4 d7)
R ol A o
Now, P = a®*4 2aA, 4 A*; therefore,

(/) P = (a2 2ab4 1) 4 (20 + ) + (A4 P)
 IRREPRY S0 TR T 1P 8

Observe, that in the supposition of the polynomial R arranged
according to the powers of a letter, the two first terms of P must con-
tain the two highest powers of the same letter. Again, a being the
first term of R, is also the first term of 1, of #, &c. Hence a enters
as factor in all the following terms 24¢, 24d, .... and since, in the
supposition of the polynomial R = a4 b4 ¢~} d ... arranged
according to the powers of the same letter, this power diminishes
gradually in ¢, in &, &e. So, also, after the trinomial «2 + 2ab 4= &2,
the highest power of the letter is in the first term of the product 24¢,
and after the hinomial (24,4 ¢") the highest power of the same letter
is to be found in the first term of the product 2td, &e.

General rale e may now proceed to give a general rule for the
for the extrac- extraction of the square root of any polynomial P,
tion of squuare . A %
roots of poly- Arrange the polynomial accovding to the decreasing
bl powers of a letter. The gquare root of the first term of
the polynomial thus arranged will be the first term a of R, then sub-
tract ® from P, and divide the second term of P and the first of the
remainder 7, by the double of the term already obtained, namely, by
2a ; the quotient will be the second term b of the root. Now multi-
plying & by the double of the first term and by itzelf, and subtracting it
from r,, the remainder r, will contain the terms [24¢ 4 *]4....In
which ¢, #, ... are again resolvable into other terms, as we have seen,
Now divide the first term of this remainder r, by 2, the quotient must
be the third term ¢ of the root; multiplying now by e the double of the
two preceding terms, that is, 27, and ¢ itself, and subtracting this pro-
duct from r,, the next remainder », will contain the terms [26,d - a*]
=+ . ...; and following constantly the same process, we will manifestly
obtain all the terms of the root. The same rule can also be com-
pendiously expressed as follows:
Take the square root of the first term of the

arranged polynomial P, and subtract the same

Rule for prac-
tice.
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first term from P.  To obtain the following terms, divide the
first terms of all the remainders by the double of the first
term of the root. The first remainder is the given polynomial
P, less dts first term ; the suecessive remainders are obtained,
by subtracting from the preceding one the double product ¢
the term of the root last obtained by all the preceding, plus
the square of the same last term.
Let the given polynomial be

Examples. g @88 - 4a%h? 4 batht 4 4a%5 - alh,
we will have R
aPh? -+ 4ast? - Bl - 402 + a*bS(a®h - 2402 +- al?
—atl? 4
r, = daslp |- Garlt + 4020 + a®b®
— 4adlp — 4a’lt
g == 2atlt | 4a?lP |- aclP
— 2atht — da3h® — a®d®
vy 0,

So, also, from the given polynomials,

(L) P = afb* 4 4adl? | 6a'l? |- 4a% + 20°0*m 4 o
+ 4a*bm -+ 2am - m.

(2) P =a%*+ 227 | 32 | 2285 - ayp

(3.) P = 4a®®— 12a¢°0 4 13a%* — Gal® +- 1"

(4) P =49m* — 8im:n? | 36n4,
we will find

1) BR=al"42a* +a+m.

@) R=atyt oy +aty

(8.) R =2a%—Bab*4 1.

4.) R=Tm*—6n%
S phit §78. The practical rule given in arithmetic
numbers, to extract square roots of nmmbers, contains the
same process of operation as for polynomials, and we may
demonstrate that it must be the same, although in some re-
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speets, apparently different in its application. The rule is as

follows:
Practicar  Separate the given number into periods of two

rules: Fitst. fioures, each beginning with units and tens. Ex-

tract then the square voot of the last period, thus

obtained, whether it contains two figures like the
others or only one, and if this period is not a perfect square,
take the root of the greatest square number contained in 1t
Subtract then this same square nwmber from the
said period, and anncxing to the remainder the
Jirst figure of the next period, divide the whole number by
the double of the root obtained. The quotient will be the
second figure of the rootf. Annex now to the re-
mainder the second figure also of the next period,
and subtract from the whole the product obtained by multi-
plying by the second figure, the first figure of the root re-
doubled, with the sccond annexed to . Annexw
now to the second remainder, the first figure of the
Jollowing period, and divide the number by the double of the
root already obtained ; the quotient will be the third figure.
After this annex the second figure of the period to
the same remainder, and subtract from the whole
number the product, which will be obtained by multiplying
the two first figures of the root redoubled with the third
annexed to them, and repeat upon this and the following
remainders the same operation as above.

The same rule will be better understood by an
example. Let the given number be
N = 155393064,
which will be, separated into periods, as follows :
N = 15, 58, 93, 64,

Now the period 15 is not a perfect square, but 9 is the
greatest square number contained in it, having 8 for its root.
And according to the rule, we will have

Third

Fourth.

Fifth

Sixth.

Examples.
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N R
15,63,93,64(3942
B%@’, =9

1st divisor, 6 ......... 653
B89 X2 —621...(=—69X9)

2d divisor, T8......... 320'3

894 X2 —3136.....(=—T84 X4
8d divisor, 788 ....c.... 1576
LR (— — 7882 X 2).

So, likewise, from the given numbers :
(L) N = 539725824.
(2.) N =.567009.
(3.) N = 127449
(4) N = 56821444,
we will find,
1) R =23239,
(2.) B =T7563.
(4.) R =T538.

sig:" }:: rule 2 79. But let us see more clearly how the process of the

extraction of operation to obtain the square root of a number, is the

gﬂ?;gnm:’ E': same as that to be followed in the extraction of square

gs“ﬂ‘gﬁ:cﬁﬁ roots of polynomials, And for this object lét us re-
of myuare roots mark, that

of numbers. G 4
EERR 1st. A polynomial form can always be given {o any

eumpoul;:ed compound whole number.
;‘:,":?w:;s“:nk: We call here a compound number any whole number

the form of & which contains more than one figure; as for instance,

polynomial.
L} 2 g 1 .
Stmple whole all the N* and R* of the preceding examples; and a

numbers. simple number, a whole number of only one figure, as
2, 3,9, Let now A be any simple number ; the produet
A . 10==D

will be a compound number, containing m figures, of which, com-
mencing to reckon from units, A is the m*, and the only one different
from zero. Let, likewise, each of the symbols B, C, D, .. M,N re-
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present a simple number, or even the cipher zero. The compound
number y=ABCD..... MN,

which we suppose to contain m figures, and in which N represents
units, M, tens, &c., can always take the form of a polynomial in the
following manner :

A T0m=—1 L B1O"—*4 C10"—34.... 4+ M.104 N.
Beeause, ns A. 1071 contains m—1 zeroes after A, so, also B.10%—*2
contains m —2 zeroel after B, and C.10™—* g¢ontains m — 3 such
geroes after C, and so on.  Therefore,

A.10"-1L£ B.10" 24 C10™—*... 4+ M.10+4 N

= A000D . .. 00
-1 BOOO . . . 00
B coo . . . 00
- Do... 00
N T v e B
- MO
- N
= ABCD . .. MN =

Second remark.  Let us now observe,

ﬂ:,‘;p’l.‘?,“,ﬂ{i‘ff.,?. 24, The square of v can neither contain more than 2m
Efrn :1“:;{;:‘;::\‘; figures, nor less than 2m — 1.

than the double  In the present supposition, v contains m figures.
of the ficures in i FATS o
the root. Now, 10m—1 is the minémum among the numbers, which,
like v, contain m figures, as 10™ is the mindmum among compound
numbers of m - 1 figures. Therefore, v cannot be less than 10m-1,
and must be less than 10™; henee, also #* cannot be less than
(101 = 10*—% and must be less than (10m)* = 10*. But
10%%=2 is the minimum among the numbers which contain 2m —1
figures; »*, therefore, which cannot be less than 10°" =%, must contain
at least 2m —1 figures.  Again, 10*™ is the minimum among the num-
hers which contain 2m 4= 1 figures; 3, therefore, which is less than
this minimum, cannot contain more than 2m figures. Now, a number
containing 2m figures may be separated into m periods of two figures
each, and a number containing 2m — 1 figures may, likewise, be
separated into m periods, each of two figures, with the exception of
the last, which cannot be of more than one figure. In both eases,
however, the number of periods of * is the same as the number of

figures in the root y. Hence, when a square number is given, hy
10
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separating the ciphers into periods of two figures each, we may im-,
mediately know what is the number of figures in the corresponding
root. It remains now for us to see how these figures of the root may
be found out from the periods in suecession, through the same process
with which the terms of the root are found out from the square poly-

nomial.
Polynomial ex- Let us first observe, that the first period commencing

r&fxﬁr:t;,:ﬁ with units has no ciphers after itself; the second has

bar, two, and the third, four figures #fter them, and, gene-
rally the m' period has 2m— 2 figures after itself. Representing
DOW DY PP P oo sie Pum—1y Pums these periods, the square of y will

be evidently expressed by
(1) P =pul0t—2i p 10—t ..+ pI0 4 p,10°F p.
But W= [A.10%=1L B 10"~2f .. .. 4 M.104NJ*;
and (77) the square of any polynomial is expressed by the formula
(/) from which, in our case, we have
= A% 10°—2| 2AB . 10% -2} B2, 108 =44 (24,C. 10™—4-C=, 10*=-9)
4 (26D.10" 4 D 108=%) |- . . .. 4 (2 _ N} N9),
where o= A.10"-1| BB.10%—2
Ty == A.lﬂ’“_r‘-l- B.10m-24L C.10"-3, &e.;
and, consequently,
26. C.10"—2 = 2AC. 10°~—*- 2BC, 10"~
26,D.10m~4 — 2AD, 10*"~* J- 2BD. 10*~9 1. aCD. 10™=-7, &o,
Substituting now these values in the preceding formula, we will have
(f1) = A%10°"—21-2AB. 1025 B3, (=%
JAC.10°—-2BC. 10™-5] (2, 10—t
+42AD. 10754 2BD1(F-*
-+, &e.

Both formulas (/) and (/) give the same value of y2 with a differ-
ence, however, which is to be remarked here. Suppose, for example,
A=3 and B=4. The first and second terms of the square of y
given by (f77), taken separately from the rest, will give us

AL 102 2AB. 1073 = 9. 1022 | 94 1023

= 9.10*-24 (2.104- 4)10*

9.108-21 3 102 4, 10
= 11.10°*2 4 4. 103

I
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It appears from this reduction, that some units of the second term
2AB. 167 join the units of a higher order, and enter into the first
term. The same thing occurs with regard to the following terms, and
the difference between the formulas (f/), (f7/) is that in the first the
periods p, P._1, . ... contain all the units which may possibly be
reduced to their respective order; in the second, some of the units of a
higher order form part of the successive terms. But when any square
number is given, its periods are as in (/7), in which the terms of the
root do not so distinetly appear as in (77/)." We may still safely say,
that A2. 109 =2 or the square of the first term of the root, is altogether
included in the period p,, and the double product 2AB . 10**—* of the
first and second term of the root does not go beyond the first figure of
the following period p,,_,, and the square B 10*=—% of the second
term of the root does not go beyond the same period p, _;, and so on.
Let us observe, also, that comparing, for instance, the number

2AB. 1000 4 B2, 10w —4,
or, which is the same, (2A.10-4 B)B. 10%~4
with (24.10 4 B)B,

the only difference to be found between the two numbers is that in
the first, the product (2A.10 4 B)B is followed by 2m—4 ciphers;
in the second, the same product is followed by no cipher. In the case,
therefore, in which the ciphers indicated by 10*"—* would not be
taken into account, the number (2A. 10 B)B may be used instead
of (2A.10+4 B)B. 10%n—%,

We may now proceed to see the reason of the operation to be per-
formed and expressed by the rule, in order to extract the square root
of any given number,

We must commence by taking for the first figure of the root the square
root of the last period, or rather the square root of the highest square
number contained in the period. Then, after having subtracted the
same square number from the said period, we will obtain the second
figure, by dividing by the double of the number already obtained for the
root the remainder as far as the first figure, inclusively of the follow-
ing period p,._,; since the second figure of the root, multiplied by the
double of the first, is within these limits. In this manner we have the
part of the root which is obtained and expressed in separate terms by
A. 10+ B, although, rigorously speaking, the same terms should be
expressed by A.10-1-L B, 10™; since A is the mh, and B the
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(m—1)™" figure after units in the root; but in (/) we have the terms
2AB. 10°~* 4 B2 10*=—4 or their equivalent (2A. 10 - B)B. 10*—4,
which are contained within the period p,,_, of (), and having no
consideration for the following ciphers, as we do with regard to the
figures in the root; thisis the product of the double of the first cipher
A, obtained for the root, plus the second cipher B, multiplied by B,
which being subtracted from the remainder, as far as the whole period
Pm—1s Will give for the next remainder 2AC. 10*»—4 4L 2BC.10*~ -5},
&c., or2(A. 104 B)C.10°"~%4 &e. Hence, taking this remainder as
far as the first fizure of the period p, s, we have in it the product of
the double of the root already obtained, multiplied by the third fignre to
be yet found ; to find, therefore, this third cipher, we divide the remain-
der as far as the said figure of the period p,_a by the double of the
root obtained. The number then thus far obtained for the root is ex-
pressed by A.10°4 B. 104 e. But taking the whole period p,._.in
the remainder, we have in it 2AC. 10*—*4- 2BC., 10*=—5 4 2, 10°~-%,
or (2(A.10°4 B.10) 4 C)C. 10*»=% and having no consideration for
the following ciphers expressed by 10°™—% the said remainder eon-
tains the product of the double of the two first fizures of the root,
plus the third figure, all multiplied by the same third figure; and this
product being subtracted from the remainder will give us another re-
mainder, which taken as far as the first figure of the following period
Pm—3 contains the product 2(A.10*°4-B. 104 C)D. 10*~7, which,

having no consideration for the following ciphers, is the product of the
double of the root obtained by the figure to be next found, Dividing,
therefore, the last remainder as far as the said limit by the double of
the root obtained, we will have for quotient, the fourth figure, &e.

It is not necessary to go on farther to see on what prineiples the
rule given to extract square roots of numbers rests, and to see also,
that the process of the operation is identically the same as that of the
extraction of roots of polynomials, although somewhat more compli-
eated, on account of the units of the squares of each fizure of the root,
separated in different orders and periods.

o Bxtraction of §80. In the rfame manner as the rule to ex-
polynomials.  tract the square root from polynomials, is inferred
from the formation of the square power, the rule to extract
the cubical root of a given polynomial is deduced from the

formation of the corresponding power.
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Cutieal power  NOW the cubical power of a binomial contains
Shavtany iy (69) the cube of the first term, the triple product
Kppnisl, of the square of the first by the simple second
term, the triple of the product of the square of the second by
the simple first term, and finally, the cube of the second term.
But a polynomial can be at pleasure divided into two parts,
considering each part as a single term. In this manner the
evolution of the cubical power of a binomial becomes applica-
ble to any polynomial, and the rule to extract the cubical root
inferred from the formation of the cubical power of a binomial
is likewise generally applicable to the extraction of a cubical
root of any polynomial. This will be better scen with an
example. Let the given polynomial be

P = a4 3a%h -+ Ba*l® + a?l® | 3atb%c - Sabe?
+ & -} Batc - 6atbe - Bac?;
which, arranged according to the powers of @, gives us
a’-3a*b - 3ath? L a?lP-L-3atlée-8abe? ¢
P { -8Bate--6atbe}-3a’c? (aﬂ-ab—{—c } .

Examples,

c—=nb

) { 3a’b--3a*l 4 aflP-3a*be+3abe*4c?
: +-3ate--6atbe{-3ac?
~—-3ab—3a‘h?—adl®

() { Ba‘c|-6a*be-3a2bic-+3abc*
+-3a%
—3ate—6atbe—Baic—3abc—
—8a%2
(r3) 0

The operation proceeds as follows: We extract the cubical
root of the first term a% which root is a2 and «? is the first
term of R, namely, the first term of the root of the given
polynomial. Taking then from P the cube of a2 we will
have the first remainder (). Dividing now the first of (7))
by 3at, that is, by the triple Iljg;)duct of the square of a?, the



114 . TREATISE ON ALGEBRA.

quotient ab hevce resulting is the second term of R. Taking
then from (r,) the triple product of the square of @® by ab,
plus the triple product of the square of ab by a?, plus the
cube of ab, the remainder (r,) resulting from this operation is
cqual to P, minus the cube of the root (a®-ab) so far obtain-
ed. Therefore, dividing (ry) by the triple product of the
square of (a2 ab), the first term resulting from this division
is another term of R. Now the triple product of the square
of (a4 ab) is 3a*+ 6a%b 4 8a®l?; and performing the
division, we find ¢ for the third term of R. Subtracting now
from (r,) the triple product of (a*--ab)? by ¢, plus the triple
product of (a® 4 ab) by ¢, plus ¢ the remainder (7,) will be
equal to P, minus the cube of {a® 4 ab+-c), but (r,) is found
equal to zero; therefore, the cubical root of the given poly-
nomial P is R = a®+ ab 4 c. The process of the operation
is wholly founded in this, that the part of the root obtained
is regarded as a single term, and the part to be obtained as a
second term.
In similar manner, from
P = m® -+ 8mn 4 Om*n® + Tm*n® 4 6m®nt 4 3mn® 4-n',
we will find p'P; or .
R = m*- mn 4 n*
And from P = 8a" -} 12a% + Ga'l® + a3,
we will ind 9P, or R =2a-ab.

Extractionof 2 81, The same proeess is applicable to the extrac-
cubical roots of
numbers. tion of cubical roots of numbers. And recalling to
mind that which we have already remarked (79) with regard to the
extraction of square roots of numbers, it will be easy to see the identity
of the operation with an example. gieg

But let us first observe, that the cubical power N of a number y of
r figures ABC. ... cannot contain more than 8m figures, nor less
than 8m —2; therefore, dividing the given power N into periods of
figures taken three and three, the last of these periods will either con-
tain three figures like the others, or only two, or even one; secondly,
the number of periods of N will be equal to that of the figures of its
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cubical root r. By observations similar to those previously made (79),
we find, besides, that the cubical power of the first figure A of v is
entirely in the last period of N, and the triple product of A*by B
does not go beyond the first figure of the following peried, and the
cubical power of (10A 4 B) is entirely within the same period, &e
Put let us see an example :

Let the given power or number N be 34012224, or separating it into

periods, let N = 34,012,224,
v or ﬁ/ﬁ must then contain three figures, and we can represent it by
v = ABC,
The operation to find out these ¢iphers proceeds as follows:
N v
A=3 34,012,224 (324
A = 27 —27 _
N =3.9=2T,B=2 " (r) 70712
A(10°A)*B 4 3(10A)B* + B = 5768 —5 7 68
8(10A 4 B)* = 3(32)" = 2187, (r.) 12 442724
—12 442 24
C=4 (r)) G ¥

3(10°A 4 10B)*. ¢ + S(10°A - 10B)¢* 4= ¢8 = 1244224,
The highest eubical power contained in the period 34 is 27, and the
corresponding cubical root is 8, therefore, A = 3, and A3 = 27,
which being subtracted from the last period of N, we have the first
remainder T; to this remainder we join the first figure 0 of the follow-
ing period and divide 70 by 3A% that is, by the triple of the square of
the root obtained; the quotient is 2, and therefore, the second figure
B of yis 2. Now, joining to 70 the two remaining figures of the
period 012, subtract from 7012 the triple product of the square of 30
multiplied by 2, plus the triple praduct of 80 multiplied by the gquare
of 2, plus the cube of 2, that is, subtract 5768 from 7012, Add then
to the remainder the first figure of the next period, and divide it by the
triple product of the square of the root 32, obtained, namely, by 2187 -
we find 4 for the quotient, and then repeating the operation as ahove,
we will find zero for the last remainder. And applying this rule te
other cases, we will find from N = 1870080004,
: PN =R —1284;

from N = 658503,

lg/l\_' = R = 87, &c.



SECOND PART.

ALGEBRAIC THEORIES.

CHAPTER I
EQUATIONS.

Divisionofthe  § 52- THE present chapter will be divided into
A four articles: The first treating of the equations
of the first degree; the second, of the equations of the second
degree ; the third, of some general properties of determined
equations; and the last, of the resolution of the equations of
the thind and fourth degree.

The limits within which this treatise must be necessanly
confined do not allow uvs to dwell much on this subject, which
coutains one of the best parts of analysis. We will treat
briefly each article, without, however, leaving untonched such
discussions as may afford a sufficient idea of the theory in
question.  But, first, let us here elucidate the general deduction
inferred in the introductory article (16), namely, that the
members of an equation equally modified form other equations.

Let a given cquation be

-mx—{— i Rt £ (RO (a).

Taking from both mcmbers the same quantity or quantities,
the remainders will form another or other equations. Let us

e 5
subtract it from both members, we will have

h h h
s B I IRE P el e o H
116
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h
that is, mx:w—t—i—m—t—g ().
Let us subtract from the same (a) » — ¢, we will have

I
mx—]—é—g—-a--|—t:r-t—r—[—f,

} I
that is, ml‘--|—;:—~g—r+¢={] ).
Comparing (0) and (&) with (a), we see that
the terms {land q of the first member of (o) are

Practical rules,

in the second mcmbcr of (b) with changed signs, and the
terms = and ¢ of the second n;ember of (@) arc in the first
member of (%) likewise with changed signs. We infer, there-
fore, this practical and general rule .
The terms of an equation can be transposed

First rule, . 3

Jrom one to another member, without destroying the
equality, provided their signs be changed.

Dividing or multiplying both members of (a) by the same
quantity, the products or quotients will form another equation,
and dividing first both members by m, we will have

q r t
o m m m’

t]mt-is x-{———i: -—-E.((;)

-
am m om m
Multiply now both members of («) by #, we will have
h
' mny -} n_;: —ng = —nl;

that is, max 4+ h—mng =nwr—nt ... (d).

Comparing now (¢) and () with (a), it is easy to see that
the coefficient m of the term mz in (1) is not to be found in
the corresponding term of (), but it divides all the others.

Again, the denominator n of the term 2 in (a)is not to be -
n
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found in the corresponding term of (¢), but it is a common
factor of all the other terms. Hence,

Any term of a given equation may be cleared
of its coefficient by dividing all the other terms by
the sume coefficient.

Any term of a given equation may be cleared
of its denominator by multiplying all the other
terms Ly the same denominator;

The last of these rules is contained in the first, when the
denominator is considered as the denominator of the coeflicient
of the term to which it belongs.

Applying now the preceding rules to the follow-
ing examples:—

(1) ma*4-g=m—2b,

. i/ .
(2.) In"j: =p—h

Second rule.

Third rule.

Examples.

(3) =t g=1—h,
m
we will have-
_ m—qg—b
() = oA
2) y=mp—mf=m(p—f).
@) mndog—h),
Known and  § 83, Equations commonly eontain known or
unknown guan- ; T .
tities. given quantities, and unknown quantities o
quantities to be found: the known quantities are generally
expressed (20) by the first letters a, b, ¢, ... of the alphabet,
the unknown quantities by the last .. .. », @, », 2. Hence,
in the cquation ar®+ b—z=c,
we would consider a, b, and ¢ as given quantities, = and z as
quantities to be determined.
Resolutionof L be determination of these unknown quantitiesis
equations. — cqlled the resolution of the equation; thus, for in-
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stance, to find out 2:_? or the value of z, which makes the first

member of the equation
8z —4 =16,

equal to the second, is to resolve the same equation.
b by Now, when an equation contains only one un-
nate equations. known quantity, it is called a determinale equa-
tion; when it contains more than one unknown quantity, it is
called indeterminate. 'The reason of such an appellation is,
that an equation which contains only one unknown quan-
tity, has either only one or a determinate number of resolu-
tions; and an equation which contains more than one unknown

Roots of equa-quANYILY, has no determinate number of resolu-
e tions, The value of the unknown quantities are

termed also roats of the equation.

ARTICLE I
Egufta'ons of the First Degree.

Degresorthe  § o4 THE degree of an equation is given by
ejations.the highest exponent of the unknown quantity or
quantities. Thus, for example, the equation

' a? —ax =,
in which the highest exponent of the unknown quantity @ is
2, is an equation of the second degree, and the equation
y—otagr=m+y,
in which the highest exponent of the unknown quantities =
and y is 3, is an equation of the third degree.

Equations, therefore, of the first degree are all these in
which the exponents of the unknown quantities do not sur-
pass unity ; such, for instance, are the equations
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ax -+ b =g, ay +bxr — q—z, &e.;
and generally,
axz® —by*  abx" ' — gyt f =1,
is an equation of the n*™ degree.
Genaral for-  § 99. Any determinate equation of the first

oot degree may always be reduced to the simple form

tha first degree. x— A (O:

because it cannot contain other terms except known quantiies,
and those in which the only unknown quantity x is either alone
or affected by a coefficient; as, for instance, in the equation

a.::—}—b—-c—i—d;r:%:r—z-{-j:

Now we may first transpose all the known terms to the second,
and the remaining to the first member, and have the equation

axr —k—d.z:——})a: —ec—b—14,

and again, (a-|-d—:12).t=.c—b—l+_f.

The known terms (a,*t—d_;-) can easily be reduced to a

single term C, and likewise the terms —b4-c—1-f to
the single term K, so that the same equation can simply be

written as follows : (0 =8 (O
The unknown « being cleared of its coefficient, we will have
K
L= E,

an equation of the same form as (7).

Resolution of  NOW (%) is a resolved equation. Therefore, to
onmation of e Tesolve any determinate - equation of the first
first degree. dcgrce,

Transpose all the known terms to the second
member, and all the others to the first; reduce
each member to a single term, and clear the unknown quantity

of its coefficient.

Rule.
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Resolve the equations

Examples. 1
(1) 2:::—3—}—;m=6.
(2.) Ty—T7 =13y —26.
3.) 2z—-4-|———z—4z.
k8
4) é:.c +12 =10
() ay+b—ec=my—f
Answers ! 2
1) o= @) y=73
3. z:é () =48
& b—f
9 g G
S §86. Equations can be profitably used in the
roblems.

resolution of problems, since the conditions of any
problem can be expressed by one or more equations. Let us
see some examples :

What number is that which first multiplied by 2,
and then divided by 7, gives 13 for the difference
between the produet and the quotient ?

First,

Ans. The product is 2, the quotient is ;, the difference

is 20 — 7 ; therefore, the equation is
&

2 —; =13,

-F

which, resolved, gives ... z=17. Thatis, Tis the number
required.

There is a certain number of apples to be dis-
tributed among another number of boys. If we
give to each boy three apples, there are nine wantzng ; but if
wegive only two to each, then there are two remaining. How
many are the apples, 'md how many the boys?

11

Becond.
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It is plain that after having found the number @ of the
apples, the number of boys is also found ; because, dividing
x by two, we have the number of boys, plus one; that is, the
number of boys is @

5 1;
the unknown quantity of the problem is then only z.

But adding 9 to », and dividing -9 by 3, we have
again, according to the condition of the problem, the number
of boys; that is, :5—5-9_:5_1

Bl A
An equation which, reselved, gives
@ = 24 ... number of apples;
.nd consequently,

;-— 1 = 11, number of boys

What is the number, which multiplied by 3 and
divided by 7, gives a product and quotient whose
lifference is 20 7 Ans. x =T.
Find such a number that the sum of one-third,

Third.

o one-sixth, and one-twelfth of it shall be equal to 21.
Ans. o= 36.
i A soldier receives every day twelve cents; but

when he is engaged in the service, the first time in
the month he receives twice as much; the second time three
times as much ; and the remaining days of service four times
as much. At the end of a month of 30 days he receives five
dollars and four cents. How many times was he engaged in
the service? Ans. ¢ =8,

Tudeterminate  § 87. The preceding examples and problems
equations of the i
first dogree.  show that the value of the unknown quantity in
determinate equations is determinate; namely, only one. But
this is not the case with indeterminate equations. Let us
‘ake, for example,

ax—bty=g—ax—y,
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in which « and  are both unknown quantities; hence, the
equation may be resolved either with regard to = or with re-
gard to . Liet us resolve it with regard to 2 ; we will have
b+q c+1
s g it
Now a depends on the value of y, and giving, for example, to
4 a numerical value equal to 1, the corresponding value of z is
btg el
(s P e
and giving to y a numerical value equal to 6, the correspond-
ing @ is b e+ 1

- i a{f e
Unless, therefore, the value of y be determined by some con-
dition, the value of x also remains undetermined, depending
on any arbitrary value given to y.

But if two equations are given, containing each the same
two unknown quantities & and y, then the value of both can
be determined; nay, more generally, when a number of
different equations is given equal to the number of the un-
known quantities contained in them, all the values of the un-
known quantities can be determined.

§ 88. The determination of these unknown
quantities can be obtained in different manners,
as we may see in the following example:

Let each of the equations—

az+dy+d'z+ad" =0
} (o)

Equations con-
taining several
unknown guan-
tities.

bz+bfy+bff$+bfffzo
cz+cdyt+dz4+ " =0
contain the same unknown quantities z, y, z; and observe,
that any equation of the first degree containing three unknown
quantities, can be reduced to the form of the equations (0); so
that the different methods applicable to obtain the values of
the unknown quantities contained in (o), are applicable to all
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similar or equivalent cases, and generally to any number of
equations containing an equal number of unkvown quantities.

Diferent me-  Resolve, first, each equation with regard to the
thods of resolu-

tions. same unknown quantity; for example, z, we will
have
First method. a’ Wt a'l
Elimination by L --—-—.yI Do el s L
eomparison. a a a
Y b o' ;
B el —— e T — o).
cf (_H d"
=l — —r— —
GJ C «

In this manner, since the first member of each equation (o) is
the same, and, consequently, the second members are all equal
to each other, we have

ﬂ’ aﬂ aﬂ! 0 b)‘ bﬂ' bﬂ!
ity el « et . e v,
af aﬂ aﬂl’ c' clf c’ﬂ
Toa iyt L sk A

And, consequently, by transposing the terms to the second

member, we have
ne b’H

e (f_g) _|_(“_'.”H-’. _|_3.__b .

AR e A
And makmg

u"ﬂ' I
L D—a G- (L),
aﬂ'.’ c,h‘f v
E-H-1 -8 E-D=r
dy 4+ dz 4 d’" =0 y
oy + 0w 4 8" =0 } (o).
Now resolving each equation (0”) with regard to y, we have
sy Ay it a’
 Fe ot
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(i o
Sl S
and consequently,
d' d’ ¢ o

S e et i .

from which C:’.E_ g—r)m + (:%‘-'— :::) =0,

and making

i _ e L
(d d ) ) i
D -+ D' —0} ("),
which resolved, gives a determinate value of x; namely,
i

P = ——

D

Now this value substituted in one of the preceding (0'"), gives
us an equation containing only the unknown quantity y,
whose value, therefore, can be obtained; and this, together
with @ substituted in any of the given equations (o), gives us
an equation containing the unknown quantity z alone. This
method of elimination is called elimination by comparison.
Let us pass to the second method.

Eiiminationty 1€ second method consists in resolving one of
substitution. — tha oiyen equations (o), for instance, with regard
to z, and then substituting the found value of z in the other
equations. Thus, we obtain two equations containing only
the unknown quantities @ and y, to which the same method
of elimination can be applied, in order to obtain an equation
with only one unknown quantity. But let us see the process
of the operation. Resolve the first equation (o) with regard
to z, we will have

’
a a H'J'

z-———y—r-x—"—l(m

a

This value of z, substituted in the second and third (o), gives us
11#
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a a' al’
(_EJ__;!_Q:____)+Bry+brrI+bffJ .
" a’

(—Zy— Lo ) Lty y et =,

(2]

from which we deduce the two equivalents

0~y (e (=)
(=T (= Tyt (=) s,

and making
(v— %‘i = o —%) =a, (b — Ii") =,
(c’——— ) (c"—-"-fif —. (c"" : — o

we will have dy-dz | d" =0 .
8y +-d'z 48" =0 }(P)
Resolve now the first of these two equations with regard to

y, we will have 44 im a’
V= d _I?

and this value, substituted in the second, gives
d &
"(“*;‘g’*"‘— I) + x4 0" =0;

from which we have

=St (=) =0

or making 6'—8—3’._~D 3" —-%:D’
D+ D=0} (")
: D
from which, T =—5-

This value of x substituted in one of the preceding (p),
gives us an equation with the unknown quantity y alone, and
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substituting @ and y in (p), we obtain the value of the third

unknown quantity z.
Biminstion  The elimination by addition and subtraction in

Nbimetion. some cases is preferable to the two preceding.
This method of elimination consists in giving the same co-
efficient to the same unknown quantity in different equations,
and then subtracting one equation from another if the terms
affected with the same coefficient bave the same sign, or
adding the equations if the terms affected with the same co-
efficient have different signs. Let us resume the equations (0) ;
and first to reduce the unknown quantity z to the same co-
efficient in the first and second equation, multiply all the
terms of the first (0) by the coefficient of z of the second, and
all the terms of the second (o) by the coefficient of z of the
first, we will obtain the following equations:
baz 4 ba'y -+ ba"x + ba"' = 0,
baz + aly + ab''z -+ all" =0,
which, subtracted from one another, give
y(ba'—al') + x(ba"'— ab") 4 (ba'"— ab"") = 0.
In equal manner, reducing to the same coefficient the first
term of the second andsthird (o), we will have
cbz - cb'y + 'z 4 b = 0,
bz 4 by 4 bd'z + be" = 0,
and, consequently,
b —be') L a(cd'— b et — by —
makin.;':(nuw g e g b
(ba'— oty = d, (bd"—ab") =, (ba’""—ab'"y = d",
(@ — b)) =38, (V'— ") =¥, (B"—be") =&\
The obtained equations will become
dy+dz4d'=0
By 48wt & —0 }(9')-
Reduce now the first term of both (¢') to the same coefficient,
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we will have doy - d'éx 4 d's =0,
doy +4-did'x - dé'' =0,
which being subtracted from one another, give
a(d'd —dd") + (d'é — di"y = 0,
and making 6 —dd'=D, d'6 —dé"=1D,
the same equation becomes
Dz 41 =0 }(g"),
from which = — I—]il’,
a value which substituted in either of the preceding equations
(¢), enables us to find out the value of z; and substituting
both = and y in any of the given (o), we obtain an equation
with the unknown quantity z alone, which is, consequently,
casily determined.
AT we i § 89. E-['he methods of elimination just described
toallcascs.  are applicable to any number of equations con-
taining an equal number of unknown quantities. But if the
number of the equations is greater than that of the unknown
quantities, the resolution may be then impossible; and such
Tneompativle ©quations are then called incompatible. Such,
S ions, for example, are the equations
2c+3y+4 =0,
4r— y—6=0,
S+ y+2=0,
which no values of « and y can resolve. Because, adding
together the two last equations, we find

Do =4;
that is L= g;
and consequently, from the same two last equations,
38
Yy =— -g-'- <

Now, these two values of = and y to fulfil the first equation,
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must make 2z - 8y = — 4; but, making the substitution,
we find ¢
8 114 106

2m+3y=§——T=-——9-;
hence the three given equations are incompatible; but if the
first equation should be

9z — 18y — 80 =0,

then the equation would be fulfilled by = zg and y = —E:TB,

but this equation is then superfluous for the determination of °
the values of z and y. We may generally say, therefure, that
the number of equations must not be greater than that of the
unknown quantities, nor less than the number of the same
quantities; although in some instances, with a number of
equations less than the number of unknown quantities, we
may be able to determine their values. For example, from
the equations dx — y—2z2= 6,

6.1?—[—4y+ 8= 20,
we may determine the values of the three unknown quantities
x, y, 2, as follows: Multiply the first equation by 4, and
then add together the two equations, we will have
22 —44 ;

and consequently, a2,
Now the value of = being substituted in both the given equa-
tions, we obtain two equations and two unknown quantities,
which, consequently, can be determined with any of the pre-
ceding methods. We may observe here, also, that many ex
pedients suggested by practice render the resolution of equa-
tions containing various unknown quantities in several cases
more or less speedy. The general rules, however, given for
practice, and deduced from the foregoing processes, ure—

Ralsandex.  For the method of climination by substitution,
amples. Find the value of one unknown quantily in any
of the given equations, and substitute it in the others.
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For the method of elimination by comparison :
Find the value of the same unknown quantity in each of
the given equations, and form equations with these values.
For the method of elimination by addition and subtraction.
Glive the same cocfficient to the same unknown guantity
in all the equations, and add or subtract as the case may
require.
Examples, or given equations :
2z 4 8y + 42 = 29,
(1) { 3z |- 4y }- 5z = 38,
bx — 2y + 2z = 12.

g
gy —16 =0,

@) 4 X

2r 4 3y -4z =16,
3. {31:—{—23;—543.—_- 8,
5z — 6y + 3z = 6.
bx — 6y + 4z = 15,
(4) { Tz 4 4y — 8z — 19,
2z 4 y - 6z = 46.
Answers :
(1.) 3’;:2, ‘?/23, z2=4.
(2) ==20, y=—3.
[8:)edee=3, =2, 1.
(4) x :3, y=4, z2—06.
Sometimes, not all the unknown guantities are to be found in
each of the given equations; as, for instance, in the annexed

example : azr + a'y —=a”
be 4 Vz =10"
ey + dz=<¢".

But from the first and second we can eliminate the unknown
quantity z, and have an equation containing y and z, which,
together with the third, will give us the values of the same
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unknown quantities. In a similar manner we will find the

values of the unknown quantities contained in the following
examples:

Given equations :

2z — 4y 4 8z = b4,
(5.) {123/——73+8 =. 0

4r—36 = — 3.
2z — oy -} 22z = 18,
4v— 22 = 80.
©) 4y + 22 = 14,
Sy + 8v = 32.
@+ y = 36,
(7.) {x+z = 49,
¥+ z = 83.

Answers :
(5.) =38, y=4, z=28.
(6.) :c=3,3/=1,z=5, b‘=9.
(7) 5\‘::16, y:QO, z—2_883.

§91. Problems frequently contain more than one
unknown quantity. In this case the conditions of
the problem must commonly contain as many equations as
there are unknown quantities to be determined. The skill
required in the resolution of the problem consists in knowing
how to give the algebraical form to the equations proble-
matically expressed.

Practice and natural aptitude, rather than any rule, facili-
tate the resolution of problems. We may, however, observe
that the difficulty in the resolution of problems
is greatly diminished by this general rule:

Separate first the unknown quantity, and then modifiy
and combine them according to the conditions of the problem.

An application of this rule may be seen in the following
example :

Problems.

General rule.
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The three ciphers of a number are such that their
sum is 14 ; the sum of the first and last divided by
the second, gives 6 ; and subtracting 594 from the given num-
ber, the difference contains the same three unknown ciphers,
disposed in an inverted order. 'What is the number?

The three figures of the number are the unkunown quantities
of the problem, which we separate from the known quantities
contained in the problem, calling them «, , z.  Now the first
condition is, that the sum of the figures is equal to 14,
Hence, the first equation

st y+z=14 (1)
Another condition expressed in the problem is, that the sum
of the first and third figures, divided by the second, gives 6
for quotient; hence, the second equatio : Zo e 6, or
x4+ z = 6y (2).
The last condition is, that subtracting 594 from the unknown
numbers, the remainder is the same unknown number taken
in an inverted order. The equation contained in this condi-
tion is mot so obvious as the preceding; to deduce it, observe
that the number 594 may be decomposed, as follows:
594 — 500 - 90 - 4
=100.5+10.9 4 4;
henee, the number also, whose first cipher is z, the second y,
and the last z, is likewise resolvable into three ; namely,
100.2 4 10.y + z;
and therefore, the inverted number is
100.z2+10.y + .

Hence, the equation contained in the last condition is
1002410y 42 —594 =100.z2 4+ 10.y + =,

or 99z — 99z — 594
which is easily reduced to
x—z—8 (3)

Problem 1.
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Thus we have obtained as many equations as there are un-
known quantities. To have them resolved, subtract first equa-
tion (2) from equation (1); we will have

y= 14— 6y;
that is, y=2,
which value of y, substituted in equation (2), gives
+2=12

Subtract now from this, and then add to the same equation
(8), we will have
Ui O el o= 1B

ﬂ]ﬂtiﬁ, 223, ﬁ:=9,
the required number, therefore, is
N =923.

We have, in fact,
e4+y+2=9+248 =14
x+z 943
SR
923 — 594 = 329.
What two numbers are those whose difference is
9, and sum three times as much ?
Ans, =18,y =9.
What three numbers @, y, = are those whose
sum is 34 ; the sum of the last, and twice the first
18 80 ; and the sum of the first and twice the second is 267
Ans. =06, y=10, z2=18.
The weight of four globes A, B, C, D is 340
pounds, and the weight of A - D is equal to that
of B4 C; C is ten pounds less than B; and the weight of D,
plus one-third that of B, make the weight of A. What is
the weight of each globe ?
Ans Calling z, y, v, z the respeetive weights of A, B, C,

D, we will find e =100, y =190, » =80, 2="T70.
12

=

Problem 2.

Problem 3,

Problem 4.
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In a mixture of wine and water, one-tenth of the
Problem 5. hole, plus 10 gallons, is water, afd one-half of the
whole, plus 30 gallons, is wine. How many gallons are there
of each ? Ans. z=280, y =20.

Divide the number 144 into four such parts, that,
if the first be divided by 5, and the second multi-
plied by 5, the third diminished by 5, and the last increased
by 5, the quotient, the product, the difference, and the sum
are all equal.

Ans. Calling =, y, v, z the first, second, third, and fourth
parts, =100, y =4, v=25, 2=15.

Problem €.

Three persons A, B, C have each a certain sum
of money: one-third of the money of A and C,
minus 6 dollars, is the sum of B; one-half the money of C,
minus the money of A, and minus 9 dollars, give, again,

Problem 7.

the sum of dollars of B; the sum of C, multiplied by g, gives

twice the sum of A. What is the sum of each?

Ans. Calling x, y, = the sums of A, B, C, we have

e=18, y=>504, s=162.

Five wheels A, B, C, D, E are so combined,
that while A performs z revolutions, B performs
¥, C performs 2, D, w, and E, z. Now ten times the revo-
lutions of A, plus three times those of B, and four times
those of B, give the same number as 9 times the revolutions
of D, plus the product of the number of revolutions of C

Problem 8.

multiplied by :;’—g; twice the revolutions of A, plus twice those

of C, give the same number as the revolutions of D, added
to one-fourth of those of E; the revolutions of D and E, plus
ten times those of B, are equal to seven times the revolutions
of C; the revolutions of A, plus five times those of B, give
the revolutions of C; and the revolutions of K, minus three
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times those of C, give 20 revolutions, How many revolu-
tions does each wheel perform in the same time?
Ans. .‘B:IG, y=2, 1.’:20_, Wﬁ40’ z=280

SEg W -
Problem 9, What fraction is that whose value is =, if we add

3
1 to its numerator, and i, if we add one to its denominator ?
z 4
Ans. 2=

el There are two horses and two saddles: the best
saddle costs 40 dollars, and the other only 6; placing
the best saddle on the first horse, and the other on the second,
the first horse costs 6 dollars more than the other ; and chang-
ing the saddles, the second horse costs three times more than
the first. What is the price of each horse?
Ans. =25, y =53,

ARTICLE IIL
Equations of the Second Degree.

Genoral for-  §92. ANY equation in which the highest ex-
mula of the de-

ferminatoequa- ponent of the unknown quantity or quantities is
second degree. 2, is (84) an equation of the second degree.
Hence, the general formula of the equations of the second de-
gree containing only one unknown quantity, is
2+ Az=B (h);
because all the terms to be possibly found in this class of
equations are either known quantities or terms containing the
simple unknown quantity «, and terms containing the square
of @ ; as, for instance, in the equation
ma? — n& -+ pad —q = x -} ra?— fr | g,
in which ¢ and g represent known quantities, like the coefficients
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m, n, p, v, f; the terms na, x, f contain the simple unknown
quantity «; and the remaining terms the square of . It is
now easy to reduce this equation to the form of the preceding
(), because, through a simple transposition, we can first write

ma? + pa* —ra —ax —ao 4+ fr=q+ g;
thatis, (m+p—r)* + (f—n—Dr=gq+y,

from which 2?4} f_n—lmz ¢+9 !

mEp—r  mAp—r -
an equation of the same form as (4). Hence, the resolution
of any equation of the second degree is the same as the reso-
lution of the general equation (%); and the first operation to
be made when aun equation of the second degree, containing
only one unknown quantity, is given to be resolved, is to re-
duce the given equation to the form of (4); hence, also, the
first and general rule :

Transpose all the known terms to the second
member, and all the others to the first; reduce to
a single term all those that contain the square of the unknown
quantity, and likewise all those which contain the first power
of the same quantity ; then clear the square of the unknmen
quantity of its coefiicient.

It is to be observed that equations of the second
degree do not sometimes apparently contain terms
with the square of the unknown quantity ; as, for instance,

in the equation n
4 ar—b=-;
o

General rule.

Remark.

but the same equation is reducible to the following :
ar® — br — a.
In cases similar to this, before proceding to resolve the equa-
tion, a similar transformation is to be made.
The given equations being thus prepared, we may pass to
see how the general equation (/) is resolved.



EQUATIONS. 137

Resolutionofthe  § 93. Two cases can take place with regard to
Brotes """ the first member of (h), according as the co-
efficient A is either equal or not to zero. In the
first case the equation is simplified, and becomes
@=B (I),
which is easily resolved, because, from (%7), we have /23
5= =3/ B or =B
That is, the value of the unknown quantity z is the positive
as well as the negative square root of the known quantity B,
or the second member of (A'). We have, in fact,
[ e I/B]S = + B,
[—vEBl=+ B;
both values, therefore, -+ /B, — /B, fulfil the equation
(#). When, therefore, the given equation, reduced to the
genewal form, assumes that of (A'), the double value of the
unknown quantity is immediately found, as follows :
Ruleand ex-  1ake the positive and negative square root of
gl the second member.
The equations, for example,
(1) 82"—38 =6 —2z9,
(2.) 4a*—36 = 22°—4,
3.) 2ax*— a4 b=aa®—z- 8
reduced to the general formula, give

First case.

(l.) ok,
207 ot =16,
@) =2,
and resolved,
(1) 2= =41/F==8.
2.) z2=+yTo=1+4
(B.) fe=rt
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But when A is not equal to zero, the equation
(h) cannot generally be resolved without being
modified, as we will presently see.

Observe that (69) (z 4 y)® == a*+2xy + ¥, and the
second term of this evolution is the double product of the two
terms of the binomial; so that the last term of the same evolu-
tion can be easily inferred from the first and the second,
by dividing, namely, this by the double root of the first, and
squaring the quotient. For example, a® |- 2ma, representing
the incomplete evolution of the square of a binomial, it will

Second ease.

: T 2 L
become complete by adding m® to it, hecause QL: gives m
for quotient; and consequently, m? for the last term of the
unfinished evolution. In like manner, §2 |- ¢b, representing

another unfinished evolution, by adding to it the term ;’ it

will become complete. That is, to render 4* - cb a perfect
square, add the square of half the coefficient of &.
Now, the first member of the general formula (%), or

x% 4 Aux, has the form of an incomplete square, which is easily
2

finished by adding %—, the square of half the coefficient of .

But in order to preserve the equality, if we finish the square
in the first member, we must add the same term to the second
member also. This addition being made, we will have

A3 A
or, since a? -+ Ax 4 %—’= (.;c_i—.g'.—).;
A2 A3
(e+3) =B+

A 2
from which Z 5=k B+ T
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and consequently,

A f A3
g e = B+¥ (K",

the values of a, which resolve the equation (%) given by the
known quantities A and B. We say the values, because,
when we take the upper sign,

A [
-3='—§+JB+71'3

when we take the other,
A A?

Realsndimag  Lhese values of z, or roots of the equation (%)
e will be either both real or both imaginary; and
again, when real, both positive or negative, or one positive and

one negative.
B Aﬁ
Let us here examine all these cases. When the binomial B 4- e
under the radical sign, is a positive quantity, the radical, and conse-
quently the value of z in both equations, is real. But when the same
binomial is negative, then (50) the radical is imaginary, and the values

; A : Aalests
of z contain the real term —g plus or minus the imaginary root;

and, therefore, both values of z are imaginary, because neither a
positive nor a negative real term or quantity can ever represent the
difference or the sum of two expressions, the one real, and the other
imaginary. X y ;
Suppose, first, the binomial B 4 T to be a positive quantity ; in this
2
supposition B is positive, or if negative, less than %- When B is
positive, one of the values of z is positive and the other negative;
when D is negative, the values of z are either both positive or both
negative. We have, in fact, in the first case,

517 >4l3(=3);
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and, therefore, we may write

r\ﬁ1§=i{%+ﬂ;

hence, from (k’??), if the coefficient A in (%) is positive,
A A
—5+3td=4
A A

————d=—A—

z - — 2 9
and if the coefficient A in (%) is negative,

r= 45t d=Atd

t=+7 373 —d = —d
Hence, When in the equation (h), that is,

2+ Az = B;
B is positive, one of the roots is likewise positive, and the other negative,
whatever be the sign of the coefficient A.

First eriterion.

In the second case, when B is negative and less than i, we have

\F+ =5 ATAﬂ 4

that is, B+T=2é—d;

therefore, if the coefficient of z in (%) is positive, we will have from
(}'fff} Zalsy b é A 13
9 + 2 ey & " d,

A
: z=—3—[B+

both values of z being negative.
In the same supposition of B negative, if the coefficient A of z also
is negative, we will have from (A//7)

x=~—-|- B-—i—--;—,

A_A
r=5—5+d=+4

both values of z being positive. Therefore,
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Second eriterion. ./ hen in the equation (h), B is negative and less than
L]
T and A is positive, the roots are both real and negative.
With the same B and with A negative, the roots are both real and positive.

3
Let us now suppose B negative, and equal to %—- In this case,

> /B+_:'i =0;

and consequently, both values of z from (%7//) are equal to each other,
and have the same sign. That is,
3 . ; Az
Third criterion. W hken in (h), B is negative and equal to T both values
of the roots are equal to 3 positive, being the coefficient of x
negative, or equal to %negatfue when the cogfficient of X is positive.
The last case is that of B negative, and greater than %z, in which

A2
case the binomial B~ >3 is necessarily a negative quantity, — 4; hence,

: fnf’% =g,

an imaginary expression, Therefore,
When in (h) the value of B is negative, and greater
2

; Al
SEwl criterion. than T the roots of the equation are both imaginary.
The preceding criterions applied to the equations—
(1.) 224 Tz =12, (5.) #2412z = —36,
(2.) 2?— 15z =18, (6.) 22— 8z= —16,
(8.) 224 162 = — 40, (7.) 224 14z = — 50,
(4.) 22— 20z = —90, (8.) 22— 6z = —18,

reduced already to the general form (%), show that the roots of the
equations (1) and (2) are real, and affected with different signs; the
roots of (2) are also real, and both negative; the roots of (4) are real,
and both pogsitive; those of (5) are also both negative, and, besides,
equal to each other; those of (6) are hoth positive, and equal to each
other. The roots of the equations (7) and (8) are imaginary.

pramplesana 94 Liet us proceed to resolve some equations.
pobloms. Given equations :
(1) 2%+ z=2a°+4 54 —2a.
2.) 2*—a=>56.
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Given equations,
(3.) 22 —4zx —9=2+ 2z —17.
(4.) 162* —4x 4 36 = 142* — 322 — 60.
(5.) «*—ab -+ ax = ba.
(6.) @+ mn — nx = mz.
(7.) 2% 4 cx — @ = — 2ex — 3L
(8.) a*+ 26 =4= - 13.
) a*—2az + a*+ ¥ =0
The first of the proposed examples is easily reduced to the
general form (%), as follows : g
a2 3 = H4,

¥
and adding the term (g) in order to have a complete square
in the first member, we have

z’+3x+%=54+3,

T

“ and consequently,

22D 15
Kb g N T
» hence, the double value of =:
b g A 4y 1p
B = o P
) R L
.’E——gv—-—‘j—-:—g.

The process is the same for the other examples, and is con-
tained in the annexed practical rule :
Reduce the given equation to the general form,
Rule ] 7
finish the square of the first member, extract the
root of both members, and leave the unknown quantity alone
in the first member.

In this manner, the remaining examples, being resolved,
will give :
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r= =9
(2-){x=_s (3'){224.

= —06 LA, ;
(4'){9::—8 (5){x:+b
@) oy QF Qg
3 x=2+31/:'1 ) zﬂaﬂ-bl/—I
('){m=2-—3]/:-_1- . {xza—bi/j

AR When the conditions of a problem, whose resolu-

tion is reducible to that of an equation of the second
degree, are such as to exclude, for instance, the negative sign
for the unknown quantity, and the equation resolved gives
the values of the unknown quantity affected with opposite
signs, the positive alone resolves the problem.

s The square number of my dollars added to 180,
" gives 27 times the number of my dollars, How
many dollars have 1?7 Ans. 'z =12, or x=15.

I have as many dogs as he has cats. All my
dogs, plus four of his cats, multiplied by the whole
number of dogs and cats, give 12 times the number of dogs,
plus 160. What is the number of my dogs ?

Ans. The equation resolved gives . — —8, 2= 10; the
first value is to be excluded. Hence, = 1

Find a number whose product by 5, minus six
units, mutiplied by the same number added to 1,

gives for product seven times its negative square.

Ans. x:—i—%, a:-:——;.

The product of a certain number by 7, minus 75,
is equal to 95, plus the quotient arising from 125
divided by the same number. What is the number ?

Apns. © = -} 25, . —= —

Problem 2.

Problem 3.

Protlem 4,

~i o
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An army commencing battle, contains an equal
number of men in each rank, and it contains
as many ranks as there are men in one rank. During the
battle, the first three ranks and 350 men beside are killed.
The army after the battle contains 2000 soldiers. Find the
original number.

Ans. z — 2500, each rank containing 50 men.

With regard to equations of the second degree, containing
more than one unknown quantity, the same methods of elimi-
nation given in the preceding number (88) can be applied.

Problem 5.

ARTICLE IIL
On some Properties of Determined Equations of any Degree.

preliminary 4 95, Several discussions of the present article rest on
theorems. some general theorems, useful for other investigations,
no less than to find out the properties of equations of any degree.
We commence, therefore, this article by demonstrating the same
theorems. And, first,

Let the coeflicients @, 8, ¢, . .. & . of the variable and real quantity
z, and the last term & of the polynomial

ar bV et ke (P
be all real and invariable quantities.. We say, that if by changing the
value of z, (p) assumes a positive and then a negative value,

There must be some value 2., of =, which substituted in {p),
makes this polynomial equal to zero.

To demonstrate this proposition, let us suppose the value of z to be
changed in such a manner that the difference between any two such
values, taken in succession, be capable of an indefinite diminution.
In this manner the polynomial (p) also will be changed by degrees
capable of indefinite attenuation. But by supposition, the polynomial
( ) may be changed from positive into negative; so that, making, for
instance, z = 2z,; the polynomial assumes the positive value (4 ».):

Theorem 1.
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and making z = z,, the polynomial becomes negative, that is, (—p,).
The difference, therefore, between the two values of the polynomial
(p), is (Pa)+ (Pa)s

which may become smaller and smaller either by 2z, approaching to
24 01 2, 10 2,, Or both of them to each other. Suppose that leaving
2, unchanged, 2, approaches constantly to z,, the difference (p,)
+ () will mdcﬁmtely approach to zero, and by degrees capable of
indefinite attenmtmn that is to say, the said difference is capable of
assuming all the values contained between ( p,) 4 (p,) and zero; now
(p.) is one of these values; therefore, among the values which the
difference (p,) + (p,) will take by 2, approaching incessantly to z,
is also (p,) ; and since the difference ( p,) -+ (p,) cannot become (p,)
unless () becomes zero, therefore, the value of (p,) constantly
changed with 2z, will once become zero. Call z, the value which
makes ( p,) = 0, we will have

azt bzt et L R = 0.
When the decrease of the variable z in (p) is carried to @
certain limit, the polynomial vetains from that limit con-
stanily the same sign, equal to the sign of s last term.
The polynomial ( p) without its last term is
azt bt et L L gy
which evidently approaches to zero by constantly diminishing the
value of 2. Now it cannot uninterruptedly approach to zero without
hecoming smaller than any fixed value different from zero; hence,
by diminishing constantly in ( p), the value of 2, all its terms, with the
exception of the last %, will finally become a smaller quantity than
the same k. And, consequently, from this limit, whatever might be
the sign of the rest, the sign of the whole polynomial (p) will be that
of k if k is positive; (p) also, from that limit, will be constantly
positive; if k is negative, ( p) from the same limit will be also negative.
When 7 in (p) is increased do a certain limit, the poly-
nomial from that limit will constantly retain the sign of its

Theoram 2.

Theorem 3.

Jirst term.
The pelynomial () is manifestly equivalent to the following produet:

z“(a+§+::,+....+zﬂi_f+%).

Now, by constantly increasing the value of 2, each term within the °
parenthesis, except the first, appronches constantly to zero, and, con-
13
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sequently, also the sum of all of them. Hence, the same sum, when
z is increased to a certain value, will be equal to and then become
smaller than the fixed quantity a. If now, for the sake of brevity,
we call 8 the sum of the diminishing terms, we will have

(p) = #(a+8).
In which, when z is increased to the said limit, and much beyond
that limit, 8 is smaller than «; hence, from this limit," the sign of
a8 must be the same as that of a, whatever be the sign of 8; hence,
algo, the sign of the produet 2"(a - 8), that is, of the polynomial (p),
is the same as the sign of az", which is the first term of the same
polynomial.
When two polynomials, such as
Thadeed & a+ a7z 4 a4 .. Fa"
ottt eat ...t f B0

remain equal {o each other, substituting in them n1 different values of z,
the two polynomials are identical.

Let 2, 2, %, .... 2, represent the n-1 different values, which,
substituted in succession in the polynomials, make them equal to each
other ; that is,

ot ezt az’4 ... F et =0t cn et .z
ot ozt azi4. . a2 = 6+ 2+ ozt F o2, G
Hence, also, calling p,, p, ps . ... the first members of these equa-
tions, we will have
a‘,+a,;,—|-a,z§+-..+a.z,"_—_.p. )
a\)+ alzl+ mlzl"*- b + -:r.z"' =N
aytaz ozt .o aar =g, F(A),
@+ a2+ az 4. .. 442" = p, )
and likewise,
Gt et ailt. ooz =p, )
ezt 6224 62l =p,
Gttt ezl ..ot eat=p (O

R L e R '—_'PnJ
Now the values of a,, a,, @,, ... a,, inferred from the n-+ 1 equations

(A), are evidently the same as the values of ¢, ¢, ¢, ... ¢, inferred
from the # 41 equations (C). Therefore, from the supposed equality
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of the polynomials (P), when substituting in them n-4-1 different
values of z, it follows, that

dy =G Oim &y Gum=Gy5 <o /lhs; =0 TCA):
Now this equality makes the polynomials (P) identical.

Hence, when the polynomials (P) are found to be equal
to one another in whatsoever manner the variable z be
taken, we must necessarily infer the equations (4). :

General for- 296, Let the coefficients A, B, C, ... H, and the last
mula of & de-

termined equa-  terms K of the equation
tiom of any de-

gree, [e] =4 Az»—'4-Bz"—*+4,.. 4+ He4+EK=0,

of the n' degree be real quantities. If taking for z two real values,
the one makes [¢] positive, and the other negative, the same [¢] is
resolvable with at least one real root; that is, there is at least ome
real value of z, which makes the first member of [¢] equal to zero.
To prove this, it is enough to apply to [e] the demonstration of the
first theorem of the preceding number.

Corollary.

Equations re- 1€t us now see how one of two values of z makes [¢]
l’:l::b?n‘;“:‘u:;' positive, and the other negative. When the degree n of
root. the equation is an uneven number, the sign of the first
term 27 is the same as the sign of z; but when z has a sufficiently great
value according to the third theorem of the preceding number, the
sign of the whole polynomial [¢] is the same as that of the first term;
hence, positive if z is positive, negative if z is negative. When,
therefore, the degree of the equation is uneven, the first member of
[#], by the substitution of one certain value of », can be made positive,
and by another negative; hence, the equation in this case is certainly
resofvable with at least one real root.

Equationsre- W hen the degree » of the equation is an even number,
salvable withat and the last term [ is negative, the equation is then re-
roots. solvable with at least two real roots. Because, taking
a very small value for x, the sign of the formula [¢], according to the
second among the preceding theorems, is the same as that of its last
term K ; that is, negative. And taking a sufficiently great value of z,
then the sign of the polynomial ig the same as that of the first term.
But the sign of the first term is positive, whether the value of z be
positive or negative: therefore, a value of = between one very small
and another large afd positive, will make the first member of [¢] equal
to zero; and again, another value of z between the same very small
value and another large and negative, will make the first member of [¢]
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equal to zero.  When, therefore, the degree of the equation [¢] is an
even number, and its last term K a negative quantity, the equation
[¢] = 0 can be resolved with at least two real roots.

When equa- 297, We have seen that when the degree of the equa-
tions eannot be | 2 A
resolved with tion [¢] =0 is an uneven number, the equation is
real roots the¥  always resolvable with at least one real root; and when
;ul‘; Unfmn:-l‘: the degree n of the same equation iz an even number,
nary roots. the resolution may be obtained with two different real
roots, provided the last term K of [¢] be a negative quantity ; but if
K should be positive, and » an even number, we would then be unable
to demonstrate the possibility of resolution of [¢] = 0 with real roots,
Because, although [¢] involves a function of x, and always of the same
real form, and consequently in the equation [¢] = 0 the variable =
is necessarily a reciprocal funetion of A, B, C, ... K, that is,

2 =f(A, B, ... H, K),

of a determined and unvariable form, it may occur that the change of
the sign of & changes the real value of z into an imaginary one. For
example, the real value of the expression

= A} D, :

in which A and B are supposed to be positive, becomes imaginary
when B, being greater than A, has its sign changed.

But whatever be the value of z, ecither veal or imaginary, it is
certain that by substituting in [¢] = 0 instead of z the function
J(A, B, .. H, K) the equation is fulfilled ; and, therefore, when the
degree of the equation [¢] = 0 is an even number, and the last term
K is positive, the equation is resolvable, at least with an ii'n&gi‘nary
root.

Tast supposi-  Lhe last supposition which ean be made with regard

ra to the last term K of the general equation [¢] = 0 is,
that the same term be equal to zero. In this supposition our equation
becomes equivalent to the following one:

2Z[Ar* '+ Br =4 .... + H] = 0,
or (making Az* '+ Bz ~*-.... 4 H = [¢’]) equivalent to
x[ef] = 0.
It is now plain that any value of Ix which makBs (¢”] = 0, makes

also z[¢/] = 0. That is, any root which fulfils the equation [¢/] =0,
fulfils also the equation [¢] = 0. But [¢/] is a polynomial, having
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the game form as [¢]; and we have seen above, that the equation
[¢] = 0 adwits always at least of one root, either real or imaginary.
Therefore, the same equation is likewise resolvable when K=0.

Any n‘:tl;: 2 98. We may now pass to see that the number of
of m;q ﬁugln_-a roots of any determined equation is always equal to the
::ln";?"nﬂ;_s 43 degree of the same equation.
ill!awThomdl;;:.rltt'z We have seen that the equation [¢] = 0 admits in all
oftheequation. cases of at least one root; call A this root, and from
[¢] = 0, we will have

I A= BA 2. ...+ Hi+ K= 0;
and consequently,

K= —/i*"—A"'—Bi*r—2—....—Hh
Substituting now this value of K in [¢], we will have

o] = 2+ Az"= 4 Ba* 24 ... 4 Hz— I* — AA*~'— BAi* e
— . — Hh,

or,
[[] = (& — W)+ A — =) L B2 —hr—*) - ... - H(z — k),
in which » may have any value.

Now we have scen (63), among the last examples of multiplication,
that (14-z4-224 ...+ 2")(1 —z) = 1—z"*!, from which, by
changing the signs of both members, and taking 7 — 1 instead of n,

weinfer M—1= (1+z2424...42""")(z—1);
or, substituting iinstcad of z,
(1= (i @+ )G
and from this
L J— Wl e n=1
B ()l (e G
or 2 —I = (x— k)1 - 2L 2,

Inverting the ovder of the terms of the last polynomials, and then
substituting in suceession n—1, n—2, n—3, .... instead of n,

we will have

— = (x— i)z b Ba-3...4 At

=t =l = (z— A)(r R R + 4%
= (=) (" Ir:la:;;‘-[- PS4 AP, &e,
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Making now, a substitution of the values of these binomials in the

expression of [e] last obtained, we will have

[)= =)@t it )4 A—h) (2= k=74 ..)
+ Blz—h)(z"—*. .. )4... 4+ (z—Hh)H;

or else,
[(] = (z— W[z~ + (k4 A)pn—2 - (B Ah 4 B)ro=o4 ..
=+ (=t A2 B2 =L L H)];
or more simply,
[(]=(Ez—M)[z'4 B+ Ca"—+ ...+ Hz 4 K]:
making, namely, 44+ A =B, #*4 Ah4 B = C, &e.
Represent now the last polynomial by [e,], that is, make

=l Bar e Oz L 4 Hz 4+ K, = [];
then we will have [e] = (z—1) [&],
whatever be the value of z.

Therefore, & being a root of the equation [¢] = 0, the polynomial
can be decomposed in two factors, one of which is z — %, the second
another polynomial [¢] of the same form as [e], but of a degree one
unity lower than that of [e].

Now, resuming again [¢] = 0, or its equivalent

(z—Hh) [a] =0,
it is plain, that not only by making z equal to £, we will have the
equation fulfilled ; but also, any value of @ which renders [¢,] cqual
to zero, fulfils likewise the equation; that is to say, any root of the
equation, [4] =0,
iz a root also of [¢] = 0. Now, [e,] = 0 admits certainly of at least
ene either real or imaginary root, which we may eall i3 and applying
to [e] = 0 that which we have said with regard to [¢] = 0, we will
have [o]=(z—i)[z"*+Ca"—*+.... 4+ Hz+ K]},
and making O K = [a]

[e] = (z—1)[a];

" and since [¢] == (z—4)[«], also
[(] =(E—HE—i)[a]

But the polynomial [4], like the other two [¢] and [e], can be de-
composed into two facters, the first of which having the form (z—1),
and the second the same form as the preceding polynomials [e]s [&]s
[=], with this difference, that the highest degree of z in [¢] isn; in
[#]n—1; in [&], n—2, in the following polynomial [e,] is n—-38.
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Continuing the same process, we will finally obtain the polynomial
[¢] decomposed into n factors of the first degree, and of the same form.
That is, the polynomial [¢] will become equal to a product of n factors
in the following manner :

ﬁ+Ar-‘+Bx“—’+ o He 4+ K= (z— k) (z—i)(x—1)
(z—10).

From tho suppasltmn, therefore, that the polynomial [¢] is equal to

zero, it follows that it may be decomposed as above. Now from the

Inst formula it is evident that substituting for z any of the n values &,

f, &y . . .« £, the equation [¢] = 0 is fulfilled. Hence, the roots of the

equation of the n't degree are n in number.

Connection be- 299, The product of n equal factors of the form
tween the roots . -

and’ the coefi- (2— k) i8 (69 i0)

:.u?ﬁ?:ﬁ :{1:; (x— A)* = 2" — nhan-14-

.

In the last equation of the preceding numhel‘, we have a product of n
binomials: in which, however, the second term ig different in each
of them ; but since the first term z is the same in all, the product of
those # binomials with regard to x, must be equivalent to that of n
" factors, all equal to the same binomial z— k. That is, z will com-
menee with the highest degree n, and orderly diminish it till the lowest
possible degree,  The difference of the two products must be in the

coefficients of z, which, when all the binomials are equal to z — A, are

?-(n—l)iz“z"*’ P 1 A

1h, -—@——-I—‘L‘t . But the coefficients of the various powers of z,

as well o8 the last term of the produet, are formed in the same manner
in both cases. That is, when the term subtracted from z is the same
& in all the binomials, it is repeatedly used as a factor as many times
and in the same manner as the different terms A, 4, I. ... in the other
case. It is, besides, to be observed, that when the terms subtracted
from z are all unequal, each of them must have an equal share in the
formation of the coefficients and last term of the product.

We may now institute an analytical comparison between the co-

efficients — nh 4 1:[:; ]h*, ... together with the last term ", when

the factors are all equnl, and those which are produced when the
terms subtracted from z are different in all the binomials.

The first of these coefficients — nh shows that — & is used »n times
as a factor of z»—1. But when the subtractive terms are all different,
no term can be found in the product multiplied by — % more than
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once, but ali the same subtractive terms eoncur in like manner to form
the coefficients ; therefore, the coeflicient equivalent to — nh must he
in this case — (A i4- I+ .. .. {); that is, the negative sum of all
the roots of [¢] = 0. The next coefficient, or coeflicient t:lf(tha th}ird

n
!

term in the supposition of all the binomials being equal, is -

which is ———~ BlE = T i £ times the squave of . Now in the case of the

terms taken from z, being all unequal, & ean never multiply itself,
and /* must be necessarily changed into the product of two differem
terms, for instance, Ai; but again, all the terms taken from z, con-
cur in an equal manner to the formation of the coefficient; and as in
the cocfficient ﬂ(_’.‘_;_‘_l_l.&‘ the square of 4 is taken ot | - i =1 times,

the products of the terms, taken two and two, ought to be as many
in number; and in fact, the nu.mber of combinations of n symbols,
taken two and two, is {:4] 1)-. Hence, the coefficient of the
third term is (Ai4- W4 .... -}-M—]—l‘f—l—... it} ....); that is, the
positive sum of the products of all the roots of [¢] = 0, taken two
and two. Itis now easy to see, in the same manner, that the co-
efficient of the fourth term is the negative sum of the products of the
same roots, taken three and three; the next, the positive sum of the
products of all the roots, taken four and four, and so on. And the
lagt term is the product of all the roots; a positive product if n is

an even number, and a negative product if » is an uneven number.
Our equation, therefore,

A=t L Bt L K= (z—h)(z—1)....(z—1)
is equivalent to :

P AP 4 Bt K=t (i e
el (0 R SO S SR S e U T DA AT O
in whatsoever manner z be taken. TBut (95, Th. 4, cor.) when two
such polynomials are found equal to each other with any value of z,

the corresponding coefficients of the same z are respectively equal to
each other. So we will have

A=—(4itli+...49
B= (Mithl4....dbtdidd....did....)
C=-—-—(ﬁn’£—|—ﬁr§r-§-....+hﬂ+?a.’y+..+o’lu+....) ().

Ca
i s = TS RN T

e
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That is, the coefficient of the second term of [¢] = 0is the negative
sam of all the roots of the same equation; the coefficient of the fol-
lowing term is the positive sum of the produets of the roots taken two
and two, &e. f
4100. From this mutnal connection between the roots
and the coeficients of the equation [¢] = 0, we infer

some corollaries :

Corollary 1. If one of the roots should be equal to zero, the last

Ry term K of [¢] must be also equal to zero ; and if two of
or more roots the voots are equal to zero, the coefficient I also of the
oqual 02619, 4o before the last is equal to zero, for it containg the
products of all the roots taken (» — 1) and (n — 1), In each one,
therefore, of these prodiets, there must be at least one of the roots
equal to zero, and the whole coefficient is consequently equal to zero.
Let the same be said of the coefficient preceding the two last terms,
when three roots are equal to zero, and so on.

Corallary 2, By changing the signs of all the roots, the sign of the

Signs of the second term of [¢] will be also changed ; that of the
roots changed, third will remain unvaried; the sign of the fourth will
be changed: that of the fifth will remain as it is, &o. The reason of
this ig, that by changing the sign of all the factors, thoe signs of the
products will be changed only when the number of factors is an un-
even number.
Corollary 3. Multiplying each one of the roots 2, 4 & .... ¢ of the

equation [¢] = 0 by the same quantity a, the coeffi-

cients A, B, C, ... I, and the last term K of [¢], will then become

eA, a?B, aC, .... "=, a"K. Hence, vice versd, if the terms of
the equation .

AV B4 .. - He kK =0,

be orderly multiplied by the terms of the series

Carollaries.

B P S ke T o
Roots multi:  that is, the first by the fivst, the second by the second,
Plied. &e., the resulting polynomial
7™+ aAs"=14 @*Br—f4 . ...} 4" 'Hz 4- oK,
made equal to zero, will be resolved with the same roots of [¢] =0,
each one of them heing multiplied by a.

Denominators  Hence, also, if the coefficients of a given equation
eliminated, contain denominators, they may be all cleared of them
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without giving any coefficient to the first term. Suppose, in fact,
that the different denominators are & ¢, 4, .. . Multiplying the
terms of the given equation by the terms of the series 1, (be...),
(be...)% ... the coefficients will be evidently all cleared of their
denominators, while the first term of the equation remains unchanged.
The roots, however, of the equation thus modified to be reduced to
those of the given equation, must be divided by the product (b.¢...)

The fourth corollary deserves to be particularly noticed,
on aecount of its use in the resolution of the equations of
the third and fourth degree.

In the equation [¢] = 0, that is,

"+ Ar—'4+Br-*+4...+ Hc}+ K =0,
z stands to represent any of the n roots A, 4, ... of the equation,
which roots depend on the coefficients A, B, ... in the manner above
seen. Let us now suppose another equation of the same degree and
form as [¢] = 0, whose roots are i 4 a, i 4 a, &e. ; that is, the same
roots as [e¢] = 0, but each inereased by the quantity a. We may
represent this new equation as follows :
zr 4 Al Bt L. 4+ H+ K2 0

z/ standing to represent any of the roots A4-a, i+ a,.... and a8
the coefficient A of [¢] = 0 is the negative sum of all the roots &, i,
I, . . . of that equation,

No=—((h 4 a) 4 (i @)+ oo (4 ),

Corollary 4.

Or, AM=—(htidld.... 4 t)—nq,
But —(htid14... 4+ 1) = A,
therefore, A — A —na.

In other words, changing the roots of [¢] = 0 from z into 2/ =z
-+ a, the coefficient A’ of the second term of the new equation must
be changed from A into A’ = A — na.

Let us now suppose a to be taken equal to i—k; in this case A = A
— A = 0. That is, when the roots of the equation [¢] = 0 are
changed from z into 2’ = z 4 a the new equation must be without

the second term. And this equation being resolved, it will be enough
to subtract from the different values of 2’/ or roots the constant

A
quantity = to obtain the roots of the former equation.
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Eiho sums of 4 101. Call §, the sum of all the simple roots of [e]
;ftt?:g:: :;f = 0, 8, the sum of all the squares of the same roots,

}’ﬁn:‘g“‘;’""' L8, the sum of all the cubes, &e. We will have

e G K Al ke oty
known, S,=i¢’+iu+£n+”“+‘,,

S, =M+ +P4....+ 8 &e
Now, although the roots A, 4, , . . ¢ may all remain unknown, yet the
qums §, §,...may be made known by the coefficients A, B. .. of
the equation.
With regard to the first, it is well known that the negative sum of
all the roots is equal to the coefficient A of the second term. Hence,

S, =—A.
But to demonstrate the proposition with regard to all the sums, ob-
serve, first, that (98)
[e] = (z—%)[e]s
But [(]=2+ Az"— 4+ Brr—*4... 4 He 4+ K,
(@—h)[e] = 2" + (B, — h)a"—' 4 (C, — Bz =2 4 .. 4 (K,
— kH,)z — kK,
Now, since the two first members of these equations are equal to each

other for any value of z, so also are the second members. Hence,
aecording to the fifth theorem (95),

A=B,—hB=C—1B,.... H=K —iH, K= — K,
From which we infer
B,=A4h
0, =B-} 1B, — B} hA 4 43,
D, = C 4 AC; = C 4 AB -+ #2A 4 13,
&
B =H4 G ... AtA L an-t
But from [¢] = (z — h)[~] we have z[ﬂ = [e] and (98) [e]
=1 LB ... 4 Hz 4 K, Hence,
z%l — o] =214 (A4 h)er=t 4 (B + hA 4 #)e—3 4 (C
LB RAF B HE G A A
And since what we say of & may be equally said of any other root, we
will have in equal manner,
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L o p (A et B A et 4 i

+ A + ;"‘—'A..].. =1,

and so on.
Now the roots of [¢,] = 0 are the same as those of [¢] = 0, with
the exception of %; hence, the roots of = l':? = 0 are the same as

the roots of [¢] = 0, with the exception of A. Hence, also, on ac-
count of the well-known dependence of the roots on the coefficients of
the equation,

— (At ) =iti4....4+s4t}e)
Reasoning in the same manner with regard to the equations L‘]_;

[ S—
=0,....x[e—]‘=0, we will have

—(A+f)=h+l+....+a+t} )
- v . . . . ¢)-
— A+t )=h4id.... 4

The coeflicient B in [e] is equal to the sum of the products of the
roots, taken two and two. If we suppose one of the roots wanting,

for instance , the products of the remnining roots, taken two and two,
will be given by B—A(i +1-+....4¢). Now the coeflicient of

the third term of x['] 5= 0 is equal to the sum of the products of

the roots of [¢] = 0, with the exception of #, taken two and two.
Hence, B hA 4 A =B — (i 14 ... 0)](cs).

In like manner from the equations ;‘ﬁ; =0.... #z-_— 0, we have

B+iA4P=B—ih414. ..+f}}('J
- . . . - . . ).

BL WAL =B—th+id...43)
The products of the n roots, taken three and three, are given by — (;
that is, by the coeflicient of the fourth term of [¢] taken with an oppo-

site sign, But supposing the root 4 to be taken from the number of the
»# roots, the sum of the products of the remaining roots, taken three

and three, will be —C —A(il 4 .. 24 .. st). Now this very
* sum is given by the coefficient of the fourth term of = (g W taken with
an opposite sign, Hence,
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— (C B 12A 4 1) = — C— (il 4 .o it oo o 8) }(e):
[‘9]‘=0 -,E]_ 0,

And from the egquations T

(OB A ¥ =—C—i(MF..+ M+"+80}(¢:,)
— (O B PAF 6) mim O t(hi o e B oe ) '
&e.

Now the sum of all the first members of (c,) is — nA — 8,; the sum
of the first members of (c,) is nB 4 AS, + 8,5 the sum of the first
members of (c,) is — nC — BS, — AS, —8,, &e... But the sum of
the first members is equal to the sum of the corresponding second
members; and with regard to the second members of (e), observe,
that if to each one of these second members, we add one of the n roots
in this manner: % to the second member of the first equation, i to the
second member of the second, and so on, and finally, ¢ to the second
member of the last or n' equation, this addition will make the
second members contain the sum of all the roots of [¢] = 0 or — A,
and all the n second members equal to each other, and their sum
equal to — nA ; if, thercfore, from this sum we subtract — A, we will
have the sum of the second members without the above addition,
which is — nA 4 A or A(l —n). And therefore, since we have
found — nA — §, for the sum of the corresponding first members,
—nA — 8, = A(1l —n), or
8, + nA = A(n—1).

The second members of the following (e,), (e,) &ec... contain two
parts; the first of which gives evidently for sums, nB, — 2C. ... To
obtain the sum of the latter part with regard to (¢,), remark that each
of the n roots i, 4, . . .« f, is in the second members successively a factor
of all the others; therefore, when k is a factor we have hi, A, ... ..
and when i and I . . . . are factors, we will have ¢h, Ih ... .; thatis, in
the whole sum of the latter part of (c,), each one of the products of
the n roots, taken two and two, will appear twice. Now B gives the
sum of the products of the n roots taken two and two; therefore, the
gum of the latter part of (ca) is — 2 B, which added to the sum nB of
the first part, gives nB — 2B for the whole sum of the second mem-
bers of (). But the sum of the corresponding first members is #B
+ AS, 4 8,; therefore,

8, A8, + 1B = B(n —2).
1



158 TREATISE ON ALGEBRA.

In the latter part of the equations (c,) we may likewise observe that
each of the n roots becomes in succession a factor of all the other roots,
taken two and two; and in the game manner as b multiplies i, { mul-
tiplies AZ, and I, Ai, so that the produet A is to be found three times
in the sum, as also are all the others. Hence the whole sum of the
latter part of the second member is in this case three times the pro-
ducts of n roots, taken three and three. Now the n roots, taken posi-
tively three and three, are expressed by — C; therefore, the same
sum being negative, will be given by -} 8C, which added to the sum
— nC of the first part, gives — nC 4 8C, or — C(n — 8), for the
whole sum of the second members of (¢;). But the sum of the corre-
sponding first members is — nC — BS, — AS, — 8,; therefore,

8,4 AS, 4 BS, 4 nC = C(n — 3), &e.

From this, and from the two preceding equations, we easily infer the
values of S,, 8, 8, as follows:

Hom sl
8, == — AS, — 2B == A?— 2B,
8, = — AS, — BS, — 80 = — A® 4 3AB — 3G, &o.;

that is, the sums 8, 8, 8, ... of the various powers of the roots h, 1,

I, ... 1, are given by the known coefficients A, B, C.... of the equa-

tion [¢] = 0, whether the roots themselves-be known or not.
Corollaryand  Since A2 — 2B gives the sum of all the squares of the

erlterion. roots of the equation [¢] =0, in the supposition that

all the roots are real, the binomial A2 — 2B cannot be but a psitive

quantity, for it is equal to a sum of terms, all of them essentially posi-

tive. But the sign of A2— 2B depends on the values of A and B as

they are to be found in [e] ; if, therefore, the sign of this difference is

negative, it is certain that not all the roots of [¢] = 0 are real.
Conjugate % 102, The imaginary expressions

imaginary

xoots. ud o /=1, u—v/—1

are called conjugate, for [¢] = 0 cannot have for one of its roots an

expression of the form of one of the two conjugates, without having at
the same time also the other.

Before we demonstrate this proposition, it is to be observed that

(a4 b/ 1) = a* — B 2aby/ =1,
(a—-L;/:I)’ = a*— P —2ab/—1;
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and making ¢ — 82 = h, 2ab = K,
(a4 by/=1)* =k + Ky/=1,
(a—b/=1)* = h— K, /=1,

from these,
(a4 by/=1) = (a4 by/=1)(h+ Ky/=1),
(e —by/—1)* = (a — by/—1)(h — Ky /—1).
Now (68) (@ == by/—1)(h = K\ /—1) = (ah — BK) == (aK 4 5h)

v—1.
And making th —bK = I, aK 4 bh = m;

(¢ =22 by/=T)(k == Ry/=1) = L == my/=1,
Hence, (a+ b/=1) = 14 my/=1,

(a e bJ:‘I)a =1l— 'I'!’!‘/‘:l.
In like manner, we have

(a4 b/—1) = n 0,/—1,

(2 —by/—1)} = n—0,/—1,
and generally

(a4 b/=T1)m = A 4 B,/—1,

(a—by/—1)m = A — B, /—1.

The equation

[(=0cannot ¢ 103. In the supposition that one of the roots of [¢]

the sonjursis = O has the imaginary form u - v,/—1, substituting

without admit- § - is. 1 -1 —
tlngu]lfwaor“:he in [¢] =0, that is, in 2"+ Aam-1 .. .. L K =0,

other. that value instead of z, the equation will take the form
U4 Vy/—1=0;
for taking separately each term of the equation, we will have
= (uto/ 1P =w v =1,
A=l = A(u+ o /—1) -1 = w/? o7 /=1,

- B '= oL L L L =W e =, K.
=1
And, consequently, calling U the sum of the terms u/, #// .. .. K and
V the sum of the coefficients v/, v’/ . . . . »®), we will have

2" A= B~ 4 K = U4 Vo/=1.
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Now U 4 V,/—1 cannot be equal to zero, unless scparately U and V
are each equal to zero; because U, a real term, can never be elimi-
nated by V,/—1, an imaginary one; hence, [¢] = 0, which, in our
gapposition, is U 4 V,/—1 = 0, necessarily supposes U = 0 and
V = 0. Itisnow easy to see that when z = u - v, /—1 is a root

of [¢] = 0, 2 = u— v, /—1 is a root of the same equation likewise.
Because, substituting this value of z in each term of [¢], we have,

= (u—v /=1 =W —v =],
Azl = A(u — v /—1)" = —v// /=],
Brer®pn e sl wg U valh s om0 —Il'”"/:j, &e.

K=K
And therefore, e 3

Al K=U—V,/—1
But when z = u 4 v,/—1 is a root of [¢] = 0, U and V are sepa-
rately each equal to zero; hence, U—V,/—1, as well as U4V
+/—1, isequal tozero. But U—V,/—1 is that which [¢] becomes
when u — vy /—1 is substituted for z; hence, z = u — vy /— lisa
root of [e] = 0. Therefore, when one of the conjugate radical ex-
pressions is a root of the equation, the other also is necessarily a root
of the same equation,

From this connection it follows, first, that the number
Corollaries. s

of the roots of the imaginary form (a == 4y /—1) must
necessarily be even.
Secondly, since whatever be the roots of [¢] = 0, we have always
[fl=(z—R)(z—i)...... (x —a)(z — 1).
Supposing that the first two, or four, or eight and so on, are imagi-
nary, we will have for example, h = a4 by /=1, i=ma—b/—1;
hence,
(z—h)(z—i) = (z—a—by/—T)(z—a+by/—=1) = (z—a) 422,
and, consequently,
[(]] =[(z—a)*+ 8] (z—1)..... (z—1).

That is to say, whatever be the nature of the roots of [¢] =0, the

polynomial [¢] is always capable of being decomposed into real fac-
tors, either of the first or of the second degree.
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ARTICLE IV.

Resolution of Determined Equations of the Third and Fourth
Degrees, having Real Coefficients.

Generilormu- % 104, A gexERAL formula expressing any equation
{‘i:n‘;z}'t‘;e‘;’é;‘; of the third degree, may he as follows:
degrae, B4 A2l Bz C=0 (7).
Now we have seen (100) that equations of any degree can be cleared
of the second term, and (r) can become

B4+ HzKE=0 (). i
Which being resolved, we may obtain the roots of r, by taking 3
from each of the roots of (r/), for (r/) is deduced from (r) by substi-

tating #/ or -|—‘E instead of .

Now, from 2/ = z 4 % , we have also z = 2/ —%, which, if sab-

stituted in (r), will give us the equation,
74 4 Hz/ L K = 0, " %

in which 2/ is the same as the z of (r) and H = B—§-, G T

A? AB :
o 4 C. But when the coefficient H and the term % are
thus determined, it is immaterial to call the variable either z or 2/,
gince the roots must bie such as to correspond to H and K; we may
therefore use (/) as well as the last equation. -

Observe also, that the formula (r/) is as general as (r); and
since the resolution of (#/) gives the resolution of (r) also, all that
we may say with regard to the resolution of (/) can be applied to the
resolution of any equation of the third degree. >

Roots of the ¢ 105. Since the degree of the equation is an uneven
ff;:f;}'tm,ﬂ';ﬁ number, the equation (»7) =0 contains certainly (96)
degree, one real root at least; the other two will be (103) either
both real or both imaginary. Calling, therefore, & the real root, and
the other two i and I; the equation (/) = 0 will be (98) equivalent to

E—=HlE—i)(z—0] =0,
in which (=)= =2 —(i+ Yot i
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Again, (r/) does not contain the second term, which supposes (99.r)
equal to zero, the sum of the roots of (r/) = 0; thatis, A4 i 1= 0;
and consequently, = — (i+1).
To find out the quality of the roots ¢ and I, make — (i4-1) = 2a and
il = @ — 8¢; or, which is the same, make

h=12a, (z—i)(z—1) =24 20z} a*— 3¢,
which values being substituted in (»/), or

(z—h)[(z—i)(z—1)] =0,
we will have (2 — 2a)(2* 4 20z 4 a* — 8¢) = 0,
or 20— 3(a® 4 ¢)z 4 Bae — 24° = 0y
and consequently, # St )
= — €
K= 6ac—2a J /)

Resolving now the equation

(x—i)(z—1) = 2* 4 2az } (a*—3¢) = 0,
we have (93) i= —a4 I

= —a —

= €,

which are either real or imaginary, according as ¢ is positive or nega-
tive. Now from H and K that are given, and from the equations (f),
we may find out whether ¢ is positive or negative.

The equations () may be changed as follows :

H K
§=—ﬂ=—€, §= 300—&',
S e 23__:-: — o — Satc—BaE— o

K
= 9a%? — Gate 4 o°;
and consequently,
3
T % = — 9a'c 4 6a*2— ¢,
= — ¢(9a' — Ga% -+ ),
—e(Ba®* —e)>
¢ § " ( - K H,
Now (8a2— ¢)? is essentially positive. When, therefore, THa®
positive, the factor ¢ of the second member must be negative, and

when the same binomial is negative, the factor ¢ must be positive.
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But when ¢ is positive, all the roots of (r/) = 0 are real. Hence,

the roots of the equation,
B4+ He 4 K =0,

3
are all real when the cube (g—) of one-third of the coefficient of z,

plus the square of one half of the last term, give a negative sum; if
the sum is positive, then two of the roots of (1) = 0 are imaginary.
Let us apply the criterion to the following examples :
(1.) 22—38z452 =0,
(2.) ##—1924-30 = 0,
from the first in which H = — 38, K = 52, we have

4-{-—_mﬁ—l.__-|-675.

The sum is positive; therefore, two of the roots of (1) are imaginary;
and, in fact, the roots of this equation are

r= —4, x=2+3\/_;1, :t'=2-—3~/:1.
From the second in which H = — 19, K = 30, we have
H3 . 6859 784
-4--{-5? =220—W =_-ﬁ'
The sum is negative; therefore, the roots of (2) are real, and in fact,
the roots of this equation are
=2 =23, £ =—5,

Resolution of 2 106. It vemains now for us to see in what manner
the same gene- = s P
ral equation.  these roots, either real or imaginary, may be found and
determined.

And here observe, that to have any quantity exactly determined, it
Two conditions 13 Not enough to have it explicitly given by a function
Jequired of other quantities which are known; but it is neces-
sary, besides, that the function itself be reducible to a determined and
explicit value. Thus, for example, in the equation

T = \,/T)-Il,

we have the unknown quantity 2 explicitly given by a fanction of 4
known Auantity. But this function can never be exactly determined,
for y/30 is an irrational number. And more generally the unknown
quantity explicitly given by any function of known quantities follows
the nature of the function; and in cases in which the value of the fune-
tion could not be determined, either exactly or in any way, the unknown
quantity also would remain undetermined or altogether unknown,
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Thefirst con-  Now with regard to the resolution of our general

?:?r:’ﬁ:a,ﬂw:;: equation, we ean always obtain the values of the roots

not the second. explicitly given by a function of H and K, which are
known quantities; but the function itself is not reducible to a definite
term, except in some cases,

Let us first see how the first condition is always verified.
Take with the general equation,

24+ He 4+ K=0 (r),
the other of the second degree,
H\3
24Kem () =0 (),

having for the coeflicient of z the last term of (7/), and for the last
term the cube of one-third of the coefficient of z in (/). Now the
equation (r//) can be resolved, and calling z,, z, its roots, the roots also
of (r/) will be given by the different values of the binomial

zli- + 2,§.

In fact, the equation (r/) = 0 is fulfilled when the binomial z.i-l- "é
is substituted instead of z. To see this, make zé‘ u, z,* =, or
z,g -+ :,* =u-nr
and the substitution of this binomial being made in (r,) we will have
(e o) H{u4v) 4 K.
Now from the equation (r/”) we have (99)

K= —z —z = —t—13,
HY\s
— (E) = 2,2, = u*9;
that is, H= —3!&!:'

and substituting these values of H and K in the last formula, it will
become (24 o) — Buv(u+4 v) — (¥4 3),

which, if (v <4 v) is a root of (r/) = 0, must be equal to zero. Now
evolving the first and second terms of this trinomial, we have

12 = 3ufo 4 Bur® 4 3 — Bulr — Bue? — 0 — 3 = 0.
Hence, the binomial u+ v or 2.5 -+ ‘,’} substituted in. (/) fulfils the
equation, and z,* + 2,5 is a root of the equation,
But zﬁ--[—s-,4 admits of different values, some of which must be
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excluded, That is, all those values, and only those, which make —(u?
4 %) = K and —Buv = H, will make also u-+ v = 0a root of (/).
From the equations u = z,&, v= z,!’, we have also
= zl§r W v= z,é I
but /1 has the following different values:

@’T: 1%
3
—1+438%/=1
N g e
_]_35'\/:1
=Y

because each of them, raised to the third power, gives 1.
Therefore, ¥ and v admit each of three different values; that is, the
three values of w, are

SR 5 | ! ——1—3;’,/:1
z'i’, zl‘k [42“_"""_11' EN [—2"""]
and the three values of v,

O] et e

Now among these values those only may be used from which we
obtain — (w3 - %) == K, — Suv = H. The term K will be always
obtained in the same manner, whatever be the values ehosen for  and
v; since, in all cases w3 v*=12,4-2, and — (2,4 2,) = K; but
with regard to H, not all the values of u and v ean give it, but those

only whose product is z}z,é. Now this product is obtained in the
three following manners only : Mualtiplying the first value of u by the
first of v; the second value of » by the third of v, and the third value
of u by the second of v. The roots, therefore, ,, Ty, z; of (1) =0,
will be represented as follows:

T, = 2.1'{ + = tJ

- B

i e s ety s
2 1 - ) = 7

Ty =

oyl . |
Ty = L 3\/’:12‘]{+ 1+§ \/ 12\1&'



166 TREATISE ON ALGEBRA.

These are the expressions of the three roots of the general equation

(/) of the third degres, in which the coeficients of 2} and 2} are
either equal to unity or of an imaginary form. With regard to z,
and z,, which are the roots of (#//) = 0, we have their values (93),

as follows: .
R T \](E) ')

imaginary or real, accordingly as the binomial under the radical sign
is either negative or positive. But from the criterion given in the
last number, when this same binomial is negative, the roots of
(r*) = 0 are all real, and when the binomial is positive, two of the
roots of (r/) = 0 are imaginary. That is, when the roots of (r//) are
imaginary, all the roots of (+/) are real; and when the roots of (»//) are
real, two of the roota of (r/) are imaginary. Again, whenever the

binomial ( ) + is not equal to zero, and all the roots of (»/) =10
are real, they are axe!u.swe]y given by terms and factors of an imagi-
nary form.

From all this, it follows that the roots of the equation (/) may be
always given by explicit functions of the known terms H and K, and
the first of the two conditions is, consequently, fulfilled in all eases,
But we will see, by some examples, that the functions themselves are
not always reducible to explicit and definite values, which is the
aeeond condition to be fulfilled to have the equation (r’) completely
resolved.

: 3 2
In the case of the binomial (!EI) e KT == 0, the roots of (r’/) are
real and equal to each other ; namely,

Bty = — 5
2
The roots also of (r/) are all real, and two of them equal to each

other; thatis, K}
x&=_2('2_) l

3
wmu= (&

and consequently, —, =, 247,
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¢ 107. Given equations:
Exam) ’
i (1.) 2'— 6224 82420 = 0.
(2) 2+8z2—14 =0.
(8) x— 120416 = 0.
The first of these equations is to be cleared of the second term,
- 6
which is easily done by substituting (104) 2/ g or 2’42, instead of
z. In this manner, we will have

(x4 2)* — 6(x/4 2)* 4 3(z/+ 2) 4 20 = 0,

or 2 — 92/ 10 = 0,

containing the roots of the given equation (1), but diminished each
by the number 2; for from z = z/4 2, it follows that =/ — »—2.
Hence, after having found the roots of the last equation, it is enough
to add to each of them the number 2, to have the roots of the given
equation (1). Now, to resolve the last equation, let us compare it
with the general equation (+/), and we will have

=—9, K=10;

and therefore K H
e 'g = 5, E — —3;

Hy*. K2
hence, (E) +r=—2

The binomial being negative, the roots of the equation are all real, And
with regard to these roots, we have first, from the preceding number,

7= —b+4 /=2,
2y o= — b \/:_2,
Hence, (z)} = (—54-v/=2)}, () = (—5— =)},
which are to be substituted in the values of the roots z,, z,, z,. But

before making this substitution, let us reduce [z,)g and (z,)!" to a
simpler form, as follows:

Make —b6t./—2 = (y o /—2)°
= =32 /=2 — 6y 2,/ =3,
=y — by == (8" — 2)y/=2,
which comes to the same as to take

y¥*—6y = —5;
8*—2 = 1.
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Now from this last we have 3* = 1, and consequently,
V= ==1.

But since the positive value of y alone substituted in y* — 6y makes it
equal to — 5, therefore -1 is the only admissible value for y; hence,

—5EV=2 = (L=
and consequently, 3

(—bkt /—2)° =1=x=,/=3,
and z.§=l+‘/:?, a,iml-—»,/:".’.;

hence, also 2, =2, z; = —1—/6, z,= — 14 ./6;
and consequently, adding 2 to each of these, we will have, for the
roots of the given equation (1),

4, 1—/F 148
General re Lt us remark here that since the last term of the
equation is the product of the roots of the same equation
(99. r), we may succeed in finding the roots among the factors of the
last term, by trying if any of them fulfils the equation. Thus, among
the factors of the last term 20 of the preceding example (1), there is the
number 4 which fulfils the equation; to find«the other two, divide the
equation by z — 4, and we will have z2*— 2r — 5 = 0, which, resolved,
gives 2 = —1 3=, /6.
The observation just made is general; that is, applicable to equa-
tions of any degrec.
Examplo 2. The equation (2) does not contain the second term; and
consequently we may immediately compare it with (r/),
from which comparison, we have
H=3, K= —14,

SO
and T fﬁ=50‘

The binomial iz positive; therefore two of the roots of the equation
are imaginary. With regard to z, and z,, we will have

fo= T OO,
2y =T —/50.
and making 7 == 5,/7 = (y == /2)
= (¥4 6y) == (35° + 2)V/2,
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or, which is the same,
Py =T, 8242 =5,

we have from the last r=1;
that is, y==1,
hut sinee - 1 only fulfils the other equation,

y=1;
and consequently, T325/2 = (1= /2)%,
and g‘-_—..l-}-‘/f 2,*:1—\/2-.

Henee, 7, = 2, 23 = — 1 -/ /=1, 0= —1—4/6 /=1,
for the roots of the equation (2).
The last equation (3), compared with (77), gives

Example 3. H=—12, K = 16;
H j
hence, ( )+——_‘B‘1+64"'0
therefore (106), 7 =2=—38,
and 3l=""4vz‘i—x'=2’

for the roots of the equation (3).

EQUATIONS OF THE FOURTH DEGREE.

Resolutionof & 108. The preceding method to resolve equations of
:Eg“}:ﬂéﬂ"'{df the third degree is applicable, with some modifications,
gree. also to those of the fourth degree. The following,

A4 GPA4Hz4K=0 (g),
is the general formula of the equations of the fourth degree, cleared
of the second term. To resolve it, take the equation,

+3UE-D)—m=0 @

of the third degree, together with (q), tmd let the roots of (¢/) be
called z,, z,, 25
The roots of (¢) will be given by the addition, either positive or

negative, of z,k, z.,%, z,é', and the difference between the same ex-
pressions, variously taken. To prove it, observe first, that (99.r)

zn+21.+z:= _gy

A
254 22,4 2.2, = E )

CrHN\
2,297 = (g) .
15
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From which, taking
:I:z,* =u, = z.* = 1, :I:z,i = w,

we have ",+u,+w______g

2 .
w4 =(§) =5 1)

e (B

and from these
G = —2u® — 2v* — 207,
K = '+ v* 4 v — 2™ — 2wt — 20w,
H = 8Buvw, or H = — 8uviw;
but let us take the signs of the factors u, v, w in such a manner as
to have H = — 8uww.
Substituting now in (7) the values of G, H, K, given by the last
equations, we have
zt — 2(u* 4 v* 4 w?)2* — Buvwz
4wt vt et — 20— 20t — 2% = 0.
Now making in this equation (which does not differ from (g¢), except
in form) z = u-- v+ w, the first member becomes zero, and the
equation is resolved ; z, therefore, equal to u |- v 4w, is the root of
the equation (g).
But H is either positive or negative: in the first case we may have
H = — Suvw, taking », v, w in four different manners, as follows:

U=+ E v =t v=—/n
U=y v =l =t
U=z, v =4/ 0=+ /0
U= =Sy V= — STy W= — 2
Hence, when H is positive, the roots of the equation (g) are
7= Va+/m— V5 =y —at+ /i
% =—y/H+ VitV To= —/—/a— /o

When H is negative, we may likewise have H = — 8uvrw in four
different manners, taking the values of u, v, w, as follows:

U=+ /7, V=5 v=+ /n
= T, 0= — Sy W= — /5,
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U= — o f2,, V= — 2, W=t /7,
U= — ST, V= S, w=— 2
And the roots of the equation (¢) are in this case,
zl=‘/z§'+\/z';+\/z_,, Tn=\/z_l-_\/z'_'\/&-ﬁ
¥==_J3:~—¢g+q/5; 1‘-—-—\/3_1+\/2'_g~\/?-
The addition, therefore, either positive or negative, of z,%, z._,%, z,i’, and
the difference of the same expressions, give the roots of the equa-
ton (g). e
Quality of the It is now evident that when Jz,: A 2a AL 'm'u
mts:how found real expressions, their sum, either positive or negative,
% and their difference in whatever manner it is taken,
will always give a real result, and consequently, real roots. On the
contrary, when one or more of the radicals are imaginary, the same
results from addition and from taking their difference will be likewise
imaginary, unless the imaginary terms be mutually destroyed. Hence,
to know when the roots of (g), or at least some of them, are real
and when imaginary, it is enough to know whether the radicals

V71 /72 4/7; are real or imaginary.
Observe, now, that from the third of the equations (¢’7), we have

Hy*

e.2.2=-+ (E) g
that is to say, the roots of (g’) give a positive product; but the posi-
tive product of three factors cannot be obtained, unless one of them is
positive, and the other two both real and positive, or both real and
negative, or imaginary. When z, is positive, and the two remaining
roots of (g”) also real and positive, the radicals \/Z,, 1/Z, /2, are all
real, and likewise the four roots of (g). If 2, is positive, and the two
remaining z,, 2, real and negative, then the radical 4/7, is real, but
the two 4/Z, 1/ are both imaginary ; and consequently, all the roots
of (g), or at least two of them, are imaginary; for when z, =z,
+ /5 — o/7% = 0; and therefore, in two of the preceding values
of the roots of (g) the imaginary terms must disappear. If 2, is real,
and the other two roots of (¢”) are imaginary, first, z, must be posi-

tive ; because, supposing A - ko/—1 to be the form of z;, the form
of 2, (102) ought to be h — ky/—1; hence, z,.2, (=¥ ") is a
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positive product; and, consequently, z, z, z, cannot be positive un-
lcss 2, is positive. Secondly, in this ease, two of the roots of (g) will

be real and two imaginary; because (h == k¢:l}§ is equivalent to
an imaginary expression of the same form (102): for instance, a ==
+/—1; therefore, in those values of the roots of (g) in which /2,
+/2; are taken with the same sign, the imaginary term by/—1 dis-
appears ; hence, two of the roots of (g) are real and two imaginary.
kgt % 109. To resolye now the equation
#—12:2—16.8%2—16 =0,

compare it with the general equation (). We will have

G gl X i
Hence (¢) will be

2 —624 132 —12 =10,

whose roots are

84 TR0 o5 S BTVl —=1

2 =23, z, = 3 o iy = 5
(i s U | Lo
Now, (_2*_/__) =j0=2.4 /1,
B ha:t‘:.‘:*,zﬂ},
sert =T
Hence, 3

¥

i iy o o
GEE e [y 0 5

= P v R

Now H the last term of the given equation is negative; therefore,
the formulas giving the roots are (108)—

= i+ VE+ VE
Y L

= — i —at vE
o= — A — /o
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Henee the roots of the given equation :

17“=\/3‘+\/r z==_ﬁ_J:1s
ty= S — T 7= —/F+ =1

CHAPTER II
RATIOS, PROPORTIONS, AND PROGRESSIONS.

Divisionofthe  § 110. RATIOS are the elements out of which
chapter: defini-

tions. proportions are made, which are either simple, or
compound, or continual.

The terms of a continual proportion form a progression.

Now ratios are of two different kinds—namely, arithmeti-
cal and geometrical. Hence the corresponding proportions
and progressions are likewise of two different kinds, distin-
guished from each other by the same appellations, viz.: arith-
metical and geometrical. The present chapter, therefore, may
be conveniently divided into two articles; in the first of which
we will treat of arithmetical, and in the second, of geometri-
cal ratios, proportions, and progressions.

ARTICLE 1.
Avithmetical Ratios, Proportions, and Progressions.

Definitions  § 111. RaT108.—The difference @ — b between
sndproperty:  two quantities is called also arithmetical ratio,
and the first of two terms is called antecedent, the latter, con-
sequent. Now a — b, whiehls:ve may express also by d, is
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such, that if we add to both terms or take from them the
‘same quantity, the ratio or difference 4 is not changed.
Hence, generally,

The terms of any arithmetical ratio may be increased or
diminished by any quantily q without changing the ratio it-
sel.
mf{‘{:ﬁ‘;r& § 112. PrororrioNs.—Two or more ratios
tions. - equal to one another form a proportion; for in-
stance, @ — b = o’ — ¥ is a simple arithmetical proportion,
which is either written with' the sign of equality between the
ratios, or more commonly as follows :

a—b..a" —¥;
and we read it @ is to b as @’ is to I’; that is, the sign —
stands for s fo, and .-. for as.
The terms @ and ¥/, the first, namely, and the last, are

called extremes, and the two remaining mean terms; and since
from a — b = o’ — ¥, we have

a4tV =d +0b

so also in arithmetical proportions,

The sum of the extremes is equal to the sum of
the mean terms. ‘

And sinee from any equation, like a - ¥ = o' + b, we
deduce @ — b= a’ — ¥, so, vice versa,

Whenever the sum of two terms is equal to the sum of two
other terms, the four terms are arithmetically proportional.

When the mean terms of the proportion are equal to each
other, the proportion becomes

a—b=>b—V,

from which 2b —=a < ¥/, and

a -V
Pt D

-

The term b is called mean arithmetical proportional be-

Propertles,
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a-+ b
2
the mean arithmetical proportional between two given terms

m and n, it is enough to divide their sum by 2.
continualana ~ The proportions having the mean terms equal
and pro- .

portions. to one another, are called also continual propor-
tions.

Let now different arithmetical proportions be given, as fol-
lows :

a—b:a’-——b’, c—d:ﬂ’—*d’, Bv—f:ﬁ’—f’-..-
It is easy to see that we will have also

(@+cte+t...)—@+d+f4...)=(@+++..)
—@+d+f+ D

which is a compound proportion of those given. The ratios
also, for the same reason, are called compound ratios.

forms of an  § 113. ProOGRESSIONS.—A progression, as we
unlimited pro- - -
gression. have said already, is represented by the terms of
a continual proportion.

Let now a continual proportion, containing an unlimited
number of ratios, be given as follows :

a—b=b—V=V—V=VV—-V"'=&e.;

in this case ayh, Wb &lc.,
are the terms of an unlimited arithmetical progression. But
the general formula of any such progression may be differently
expressed. Tor since the difference is the same for every one

tween « and V', but & is given by ; henee, to find out

of the ratios @— b, b — 1’ . ..., the binomials also b —a,
¥—0b.... mustall give t,hc same difference. Calling ¢ this
last difference, we will have
b—a:d‘, U—ﬁ:ﬁ, b"—b’:a .....
But from these equations we have
b =a -6

b’:b+6_a+26
W=V 4 ¢ = a + 33, &e.
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Hence the terms of any arithmetical progression, from the
first to the »*, may be generally expressed as follows :

General for- a,a + 8, a -+ 28, a 4 35,...... }(c)_
e a+ (n—2)3 a4 (n—1)3
With such a form given to the terms of the geometrical pro-
gression, it is easy to obtain the sum of any number of its
terms, commencing with the first; for instance, the sum of all

the n terms as above. Observe, in fact, that the sum of the
first and second terms, is

2a + (n — 1)8;
but the same is the sum of the terms @ + ¢ and @ + (n — 2)3,
that is of the second term, and of the term before the last;
and the same is that of the third term, and of the next term
before the last, and so on.

Suppose now, that the number n of the terms is an even
number, we will evidently have g sums, and each one of them
equal to 2a 4 (» — 1)d; and therefore, the sum of the sum
of the whole progression will be g[2a + (n — 1)8].

But let n be an uneven number, then in the progression

there will be a central term, having & ; > terms before, and

n

- E—}- terms after it. These terms, added respectively to one

another, as above, will give —— sums, each equal to 2a

+ (n—1)3; and consequently, the sum of the n terms of
the progression, with the exception of the central one, is

n; 1[2a -+ (n—1)7]. But the central term, added to it-

self, must give the sum 2a - (n—1)J, as the equidistant
terms do when added to one another; therefore, the central
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term is equal to %[2;; + (n—1)¢]. Hence, the sum of all
the n terms of the progression, is

=20 4 tn—1)3]+ 3[2a + (0 — o]

that is, z[za + (n — 1)8],

expressed, namely, in the same manner as when n is even.
Hence, generally, whatever be the number n of the terms of
the progression, their sum is given by the formula,

fom. S= g[ﬁa —f— ('Nr‘-— l)ﬁ]-

That is, to know what the sum of # terms of the arithmetical
progression is, it is enough to know the first term a, and the
difference & between two successive terms : for 2a + (n—1)3,
multiplied by one-half the given number n, gives for product
the required sum.

Let us sce an example. Suppose a clock striking
the hours and the quarters in this manner: The
hours alone, and the quarters also alone; first one, then two,
and lastly three. Hence, 7 will be the number of the strokes,
from the first hour, or hour one to twoe, and & will be the
number of strokes from two to three, and then 9, and so on.
How many strokes are contained in 12 hours? The num-
ber n of the terms is 12, the first term a is 7, and the dif-
ference & between two successive terms is 1; therefore, the
sum of the number of strokes in twelve hours is

S = 6(14 + 11) = 150.

But suppose that the hour is repeated each time when the
clock strikes the quarters, and that it strikes four quarters
before each hour. From the hour one to two, including the
four quarters before the hour, we will have 14 strokes; from

Examples.
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two to three, 18 ; and then 22, and so on. If, therefore, we
ask the sum of the strokes in 12 hours, it will be given by
S=06[2.14 + 11.4] = 432.
Howandwhen Vv hen the first and last terms of an arithmetical
%ﬁ;g;ﬁ; progression are given, and th-eir num.ber is also
. given, we may find all the intervening terms.
For let @ be the first given term, and w» the last, and let u be
the given number of terms. The form and value of the last
term u is from the preceding (¢),
; u=a-+ (n—1)3,
in which equation » and a and n are known, and conse-
quently 4 is easily found: and since from the same (¢)
a4, a423 .... are the intervening terms between the
first and the last, they also are all equally determined.
Let, for instance, the given values be as follows :
a=2, u=14, n=>5;
from u = a + (n — 1)3, we will have

Example.

14 —2{4.3;
and consequently, 3 =383
hence, for the intervening terms between @ and w, we have
5, 8, 11.
ARTICLE IL

Geometrical Ratios, Proportions, and Progressions.

Definitionsand

Dot § 114. Rat1os.—The quotient

b
tities @ and b is called also their geometrical ratio, and a the
antecedent, and b the conseguent of the ratio.

Whenever a ratio is mentioned without adding the quality
of arithmetical or geometrical, it is always understood to be
a geometrical ratio.

of two quan-



RATIOS, PROPORTIONS, AND PROGRESSIONS. 179

Multiplying now both terms of g by ¢, we will have

a.q a

gl
gqg bg b
that is, The terms a and b of the ratio ; can be multiplied

or divided by the same quantity q without changing the ratio.

Variableratios:  § 115. The terms of a ratio may be either
—direct and re- " .
ciprocal terms,  constant or variable, and when they are variable
they may vary with a certain dependence on one another, or
not. If they vary independently of one another, the ratio
itself is variable. But with changeable terms, depending on

one another, the ratio may be constant. Suppose, for example,
et o)

and in this equation m to be constant. It is evident first, that
for any change of @, a corresponding change must be made in
¥ Call  the value to be given to y when @ is changed into
a/, and 3" the value to be given to % when @ is changed
into «”, and so on. Now, generally, whatever be the values
of & and y, from the given equation we always have

i

= =W

y
Although, therefore, the terms @ and y are variable, their ratio

r

r
m is constant, and 3;;” :T, .... will be all equal to m. Now,

Whenever two variable quantities are so connected together
as fto give constantly the same ratio, they are said to vary
together directly.

1
But taking ; ==t
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in the same supposition of m being constant, and z variable
together with y, whatever be = and y, we will always have
1

Xxi-=m;

that is, @Y =m

The terms z and y, therefore, vary in this case, in such a
manner as to give constantly the same product. It is then
plain, that one of them cannot increase without a corre-
sponding diminution in the other, and wvice versd. Hence,
generally,

When two variable quantities are depending on each other
in such @ manner as to give constantly the same product, they
are said to vary inversely or reciprocally.

It is to be observed here also, that since

T.Yy=—xi-=m
¥ ¥ » 2
when the variables x and y vary inversely, x and = vary
directly. *
Continual geo- ¢ 116. We have seen (56) that irrational numbers are
metrical ratios. {90 limits to which an indefinite series of rational
numbers of fractional form may constantly approach. So, for instance,
the square roots of 2 and 3 are such numbers contained between 1
‘and 2, which cannot be exactly determined, but to which an indefinite
series of rational numbers contained between the same limits may con-
stantly approach.

Now all the numbers, both rational and irrational, contained within
the limits 1 and 2 form a continunal series; and if we conceive the
number 1 to be successively changed into every one of the terms of
this series, proceeding orderly from the first to the last, the number
1 would be said to increase continually, or to increase by degrees
smaller than any assignable quantity.

Upon this, let z and y be two quantities depending on each otner
in such a manner that when z becomes 2z or 3z, &e., y also becomes

2y, 3y, &e. ; and when z becomes E, %, &e., y also becomes g, g, s
With regard to these variables z and y, we say that
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iti i i
aﬁﬁ?fggm ::- If z changes (_:onatantly, y algo will change, continually
stration. keeping pace with 2.

Let, in fact, m and m/ represent any two whole numbers: we will
have y changed into m/y, when z is changed into m/z; and if in m/z,
¥
m

we change z into if, in m’y the variable ¥ must become =. Therefore,

’ ’
when z ig changed into %x, ¥ is necessarily changed into x—y. Now,
’
m and m/ are any two whole numbers; hence, ™ stands to represent
m

: s m’
any rational fraction; hence, also — may be any of the terms of an

indefinite series, approaching constantly to some irrational number u, :
and consequently, if z is changed into ux, y also will become py.
Bovoltirs. Generally, representing by » and v/, any two numbers,
cither rational or irrational, when z is changed into 2/= vz,
g will become y/ = vy, and when 2z is changed into z// = v’z, y will
become y// = v/y. Hence,
x/ y’
;"'; — ny'
That ig, when z and y change together and equally, the ratio between
any two values is always equal to the ratio between the corresponding,

values of w.

Direct and ro- 2 117. Let now ¥, 2, w, v ... represent any number
i?;f‘?}."uf}‘:ﬁ of variables, all independent of one another, and let
Sheoran, z be another variable, depending directly on each one of

them, so that, for any value given to the independent variables y,
z.4.. we always have the ratios ;—:, :-:, ++«+ unchanged.

Call now P the product .z.u. v....of the independent variables;
this product depends on each one of the variables y, 2, u ... directly,
gnd in the same manner as . Whatever be, therefore, the values
xr

given to the independent variables, the ratio P

will remain constantly

unchanged. That is,

If x varies directly as each one of the independent variables y, 3,
u, ... it varies also directly as their product.

We may arrive at the same conelusion in another manner. Since z
varies directly as any of the variables y, 2, ... independent of one

another, if in the ratio

T
L
16
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we give any value to y, the ratio will constantly retain the same value
as R. In fact, the same ratio can be decomposed as follows :
% e
Y Z.U.ie.n
Now giving at pleasure to y any value, z, u . ... suffer no change,

and z varies directly as y; therefore both factors 3 and %—- remain

unchanged for any value whatever of y; that is, the ratio L

will be constantly equal to the same R, whatever be the value we give
to y. But the same reasoning is applicable to 2, to u, &e.; therefore,
whatever be the values given to the independent variables y, z, u...

in the ratio %, its value will remain constantly unchanged;

that is, z varies directly as the product y.z.u....

Baut if z depends directly on u, v, . . . and inversely on y,
2, .... z varies directly (115) as each of the following:

= 1 |

Corollary.

W

Therefore, it varies directly as their product u.v...

R
L]

UH.v...

—= Vo ; hence, .

If x varies directly as v, v, ... and inversely as y, 2, . . .
Theorem. Moo
it will vary directly as the quotient R

Simple  geo- § 118. PrororrioNs.—Two or more ratios
metrical propor-

tions. equal to each other, form a proportion; for in-
stance, a a’
1= 7

and this is the general expression of any simple geometrical
proportion. The manner, however, of writing these propor-
tions is as follows :

: R T
and we read it @ is to b as o’ is to I ; that is, the two dots [:]
stand for #s fo, and the four dots [: :] stand for as. In geo-
metrical proportions also, the terms @ and 2’ are called ex-
tremes, and the other two mean terms.
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Geperal pro~ From the proportion equivalently represented

ot by the equation
L3 ﬂ'.’
B = 7
a ! d b
we have T T
and consequently a: b =al. b

That is, in geometrical proportions,
The product of the extremes is equal to that of the mean

terms.
!

But from a . ¥ =— «’ . b we have likewise, %: %. Hence,

When four terms a, b, o', b’ are such that the product of
the first by the last is equal to the product of the other two
terms, the four terms are geometrically proportional.
Continusland  Suppose now that the mean terms are equal

compound pro- .
portions. . to each other, then we will have

a:b::b:¥;
and consequently, 0 =all,
that is, b =/ ab.

b is the mean geometrical proportional between a and 0. If,
therefore, @ and b’ are given, to find out their mean geometri-
cal proportional, take the square root of their product.

Such proportions also, having both mean terms equal, are
called continual proportions.

Let now several proportions be given, as follows

a_dc_de ¢

T L AR 4 Yt
We have from them

a c e __a" d i’

b d f __"E'f’.'

And consequently :
(a.c.e...): (b.d.f...) s (o & o onia) 8 (Bladl ol iv'e)
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That is, If the first terms of several or any number of geo-
metrical proportions be multiplied together, and likewise the
second, third, and fourth terms, the products are proportional,
The ratios and the proportion itself, made out of these pro-
ducts, are called compound ratios and compound proportion.

Otherproper-  §119. From a : b :: a : ¥, or from
ties of geo N

trical pmpot- a a
tions, E - ?,
a b
we have e —— b—,j
that is, a:a::b:b.

Hence the terms of any geometrmal proportion are such,
that

The antecedent of the first ratio is to the antecedent of the
second ratio as the consequent of the first is to the consequent

of the second ratio.
’

Again, from the given proportion or equation % E Z,, we
Bl W
have - =
that is, bia::l:d.

Hence, The consequent of the first ratio of any given propor-
tion is lo its antecedent as the consequent of the second ratio

s to its own antecedent.
’

From the same proportion or equation E = %, we. deduace

the two following :

a a’ a a’
and consequently,
a+b a4V a—b a—b
b o WSRO LT
that is, a—+b:bira UV,
a—>b:bia =0V
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’

In equal manner, since % == may be changed into é =

bf
we have btara:: ¥4 ad:d,

b—aia::t —ad:d.
That is, the terms of any given geometrical proportions are
such, that

The sum or the difference of the terms of the first ratio s
to the first or to the second term of the same ratio, as the sum
or the difference of the terms of the sccond ratio 4s to the first
or to the second term of the same ratio.

We may observe that in the last proportion b — @ : a ::
V— d : a, the differences or terms b — a, ¥ — o/, may be
changed into @ — b and &/ — &', the terms remaining still in
geometrical proportion; for this inversion affects only the
sign of the ratios, which being equally changed in both of
them, the equality of the ratios still exists, and conse-
quently the proportion also. The same observation may be
made with regard to the proportion @ — & : b :: 0 — 8 : U'.
So that the last inference is altogether general.

From the proportions or equations

a+b o4+ a—b oV
BN G T B T S g SR

!

just inferred from the given proportion or equation %,

r.-.-|a

& 2o T (B bk B

i T a—0 b
a4 b a—1>
hence, also, o, j: ey L
@b al b
i a—b  ad-—1U’
consequently, _
(A b'a’—i—b'::a—b'a’-—b’,
atbra—0b::d +¥:a —V¥.

That is, The sum of the (e:ms offke Jirst ratio of any propor-



186 TREATISE ON ALGEBRA.

tion is to the sum of the terms of the second ratio, as the dif-
Serence of the terms of the first ratio is to the difference of the
terms of the second. And
The sum of the terms of the first ratio is to their difference,
as the sum of the terms of the second ratio is to their difference.
These, and the preceding inferences, are of great practical

use.
Numerieal pro- ¢ 120. Let the terms of the proportion
portions whose ag:biza’: ¥
-
reducible. be whole numbers, and let the terms a, & of the first
ratio be prime numbers to each other. Of the numbers a’, ¥/, the
first will be equal to ma, the zecond to nb, n being a whole number,
o

In fact, calling n the quotient :f, or mnking — = n, &/ may slways
be expressed by na. But ne cannot express a’, unless nd expresses
b’ ; for by supposition, a’ a.

v= &

and congequently, if ¢’ = na, &’ cannot be but equal to nb.

We say now, that n is a whole number; for from the same equation,
a’ a
F=p" have T W

d"=— Ve — = a.

b’ b b
a P . . i ab’
Now 5 by supposition is an irreducible fraction; therefore, e cannot
be equal to the whole number @”, unless (53) the number 3/ is exactly

7,
divisible by &; that is, unless the quotient g- is a whole number ; but

: W
U = nb, and from this equation, we have F=" the number n,
therefore, is a whole number.

Termsofany  § 121. ProarEssionNs.—The terms of any
geometrical pro- . .
gression. geometrical progression are the same as those of

any econtinual proportion. And a continual proportion is
generally represented by

@_6 A
_b' bn‘—--o-
or else by ab"lrb’“b’ e

The terms, therefore, a, b, ¥, 1,
are the terms of any unlimited geometrical progression.
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Let us now call % the common value of the ratios - -t

by’
we will have % Loy i_" =k, %;72 %, 000
and consequently,
e S
bnﬁg'; __%:?cz% ceen)

hence, the terms of any geometrical progression, from the
first to the %', may be generally represented as follows :
a a 1]

(y ';;3, E,....k—u_i (T);

General for-
mula.

or else, (making ; — 7), the general formula of

the terms of any geometrical progression containing » terms, is
O, oz, amr, a0
Now the sum of these » terms is easily obtained from the
known produet (63)
Azt ... 421 —2)=1—2",
1—=2"
which gives 142z+4-22 -+ ... 4 C T
from which
. g a.l — " a az"
g R e l—z 1l—z 1l—=
sumofnterms, VoW, the first number of this equation is the

and sum of an -
and sum of an gy § of the terms (7'); therefore,

Der of terms. o az"

s, gl e A

Suppose now that the numerical value of z is a number less
SRR ;
than unity, it may be represented by a fraction — in which

m is greater than r. In this suppusibion, the Iast term of (a)

will be ( )" m—r__
m R
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m.a . A O i
Now, ——— is a constant coeficient, as well as the fraction =
m—r

but the exponent n has different values according as the terms
summed up are more or less in number. Now the more we

n
increase n, the more the power (ﬁ) approaches to zero, and

» - m.a ry\" = L
with it the whole term (—) . Hence, taking an in-
m —ri\m

definite number of terms—that is, supposing the number of
the terms summed up to be without limit—the last term of (o)
must disappear, and in this case,

g=a2

= (@)

is the sum of an indefinite number of terms (/).

It is related that the inventor of the game of
chess, solicited to ask a reward, answered: Put
one grain of wheat in the first square of the hoard, two in
the second, four in the third, eight in the next, and so on, till
the sixty-fourth, which is the last. How many grains of
wheat did he ask?

Here we have the geometrical progression, whose terms are

152, 4, 8,08, 80k
which, compared with the terms (), give
R — 1, — 2, n= 64

Examples.

Hence, the sum of all these terms is
- punt b i
T =1 —1
- 2" e 1.
In the following chapter, we will see how the power 2% may

be obtained and expressed by an equivalent common number
But let, with @ = 1, z be less than unity and equal to ;,
the terms of the progression in this case will be ()
o
1, 2 4 é: <
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and the sum of the same terms indefinitely protracted is (¢")
1 2—1

=1:——=2

1—1 2
gz kg s
Henee, 1—|—2+;—|—§+-_2

iowand when  The first and the 2™ terms of a certain pro-
the terms of a

2?5.‘:““‘,&‘;”*’“’{; gression being given, all the other terms may be
found. found.

Calling @ the first and = the ' terms given, we have (')
u = az"", in which equation =, @, n are known elements,
and consequently z may be found. And when z is obtained,
all the terms a, az, @z® . ... are likewise obtained.

Let, for example, the first and fifth terms of a
certain progression be as follows:

o =2, 8 =182,

from % = az"~', we have, generally,

al—

Example.

u
|y R
% >

that is, 5 == “i ::,

and in our case, since n = 5,
2= ,*/1'6 = H

and, therefore, the terms of the progression are as follows :
248,00 8.0
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CHAPTER IIL
LOGARITHMS.

Exponential ~ § 122. WHEN the exponent of any quantity is
quantities.  yariable, the power is called an exponential quan-
tity ; thus, for instance, the power

as,

in which « is supposed to be a variable number, is an expo-
nential quantity. Now a may be either variable or constant.
Let a be a constant number ; if instead of = we take o/, ",
a"...., we will have different powers which we may repre-
sent by the numbers 2/, 2", 2. ... That is,

&l =y y

o i=2",

! = 2", &e.

And we may evidently conceive an indefinite
series of such numbers 2/, 2”. .. depending on the
variable exponent @. Now this variable exponent is called
the logarithm of the power; that is, 2’ is the logarithm of 2,
o’ is the logarithm of 2", and g0 on.

But the powers depend also on the constant numbera; for,
supposing the same exponents o/, ... applied to a different
constant, for example, to A, all the powers 2/, 2. .. will be
changed into others, which we may call Z, Z”. ... ; thatis,
we will have A% —

A S

Aﬂ” — Zfﬂ', &e-
Here, also, @’ is the logaritbm of Z’, 2’ the logarithm of Z”....
But the change of the constant @ into A, changing the whole
system of numbers to which the same logarithms belong, it
is plain, that when a logarithm &’ or 2 is given, and the cor-

Logarithms,
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responding number is required, we must first know what is
the constant or root to which the logarithm is applied as an
exponent.
This constant is called the Base of the loga-
rithms. And in the preceding examples, o/, @'/ ..
are logarithms of the numbers #/, 2. .. in the system having
a for base, and logarithms of the numbers Z’, Z”. .. in the
system having A for base. We may remark also the pro-
priety of the appellation, since the base is like a foundation
on which the whole system is built.

The sign or mark with which logarithms are in-
dicated, is either the initial log. of the word loga-
rithm, or the simple letter . And when logarithms belong
to different systems, to distinguish the logarithms of one sys-
tem from those of another, we may put an accent to the letter
Z, or change the small 7 into a capital one. For instance, log.
or [. being the sign of the logarithms in the system having «
for base, we may express by Log. or L., the logarithms of the
gystem whose base is A. And from the preceding equations
we will have for the first system,

Sign.

& =1loy. , "= log. 2, &e.. ..
or, ==l = &

And for the second,
ali—= Logo 2y = Lo 2, &oiis
or, o=l W o'l =, BB, &

Thelogarithm  § 128 1t 1s well known (15) that any number

of unity, and .2 - : x &
the Topnuithin raised to the exponent zero, gives 1 for its power;

of the base. ate hence, a® = A= ... =1; that is; 0 is the loga-
systeuis. rithm of wnity in all systems. Hence,
0 — !.(.1) == L.(1)= s

It is also equally known that any number raised to the ex-
ponent 1, gives the power equal to the number, that is, o' = a,
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Al=Aj;.... hence, Unity is the logarithm of the base in all
systems. Thus we have,
Il=%tta=5LA="...
Positive and

negatve logv  We have seen (45) that a=™ is the same as ?.l:_

Thuorems. Suppose, now, a to be greater than unity; since
a’=1 and a'=ua, the same quantity @ raised to any posi-
tive exponent either between 0 and 1, or greater than 1, will
give always a power greater than unity. Hence, when the
base is greater than unity and the logarithm is positive, the
number is likewise greater than unity.

But if with @ > 1 we take a—! instead of a', then we will
have a=? = 1_1_—" 1 Now L is less than unity; hence, the

L8 L @
number or power corresponding to @' is smaller than unity;
the same is to be said of any other power a—= in which m is
taken between 0 and 1, or greater than 1. That is, when the
base is greater than 1, and the logarithm is negative, the cor-
responding number is less than unity. From this and the
preceding inference we deduce the two following :

When the base is greater than unity, and the number is
likewise greater than unily, the logarithm of this number {s
_posttive.

When the base is greater than unily, and the number less
than unily, the logarithm of the number is negative.

But let the base a be smaller than unity ; then giving to a
any exponent contained between 0 and 1, the resulting power
will be contained between a” =1 and a* = a. Now all the
numbers between 1 and « are smaller than unity ; a, therefore,
raised to any exponent between 0 and 1, gives a fraction for
power. But if a is raised to any exponent greater than unity,
the power also will be a fraction. That is, when the base is
less than unity, and the logarithm is positive, the correspond-
ing number also is less than unity.
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Give now to @< 1 a negative exponent, we will have

m.?

1 2 :
generally a™™ = = but a™, as we have just seen, is always

less than unity; therefore, 1 - is always greater than unity;

hence, when the base is lcss than unity, and the logarithm is
negative, the corresponding number is greater than wunity.
From this and the preceding deduction, we infer also that
When the base is less than wnity, and the number also s
less than unily, the logarithm of the number s positive.
When the base is less than unify, and the number greater
than wnity, the logarithm s negative.
Inanyeystem, & 194, Take now, successively for =, the

when the loga-

rithms  form 1 L i
an arithmetieal equatmn Gty i + 3, & "I" 23} -------

rogression, the H . o
L i which are the terms of any arithmetical pro-

numbersforma - greggion, we will have

geometricalone,
a® =7,
a®t —¢,
=20 =2.ﬂ,
a®+ti — zm', &e.
Now (42)raf =% oy & ¥ = af ., a¥ = af(a’) a*t¥
= ax(@’)’y ...... and making @’ = ¢, we will have
az+c o az{, ax-lvﬁ et ::3’ w:-{-aﬂ' — a;:g, &c_

Hence, the powers z, 2/, 2, 2" .... are represented by the
terms T e R W T e i

which are the terms of a geometrical progression. But the
same powers are the numbers corresponding to the logarithms
z, o8, x|+ 20 ... in the system having for base any
number @. Therefore,

In any system of logarithms, when the ?ogant‘hms Jorm an
arithmetical, the corresponding numbers form a geometrical,
progression.

Ussful theo- 3 125. But let us come to those theorems which
Fems. show how advantageously logarithms may be used.
17
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Let 2 and y be the logarithms of the numbers z and v in

the system having a for base, we will have
& A=
end consequently, @*.a’ = @*t¥=z.v.
Now, from these equations, we have, also
e=1Lz, y=1v, -} y=1(2.2),
and therefore, L(z.v)=lz+4Lv;
that is to say, The logarithm of the product is
equal to the sum of the logarithms of the factors.
Again, from the same equations, we have
a z Ry T

=i B b i

and consequently, T—y = I.f,

or, E.E = lz—lLv;

that is, The logarithm of the quotient is equal to the
logarithm of the numerator, minus the logarithm
of the denominator,
Raise to the exponent ¢ both members of the equation

Yy
we will have (@) ==
or 0= ;:‘,
and L —="me;

but from a*— 2, we have z — 1.z ; hence
2 ] ¢
Z.z‘ —— CE-Z;

that is, The logarithm of the power of any number
is equal to the logarithm of the number multiplied
by the exponent.

But if we take the root of the degree ¢ of both members

of the equativns «* = z, we will have
. = 1

Theorem

0= s
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and consequently, e —

S iy
C’

e | =t

now « = l.z ; hence,
> G ¢
lee orl.p/a= El.z;

that is, The logarithm of the root of any number is
equal to the logarithm of the number divided by the
degree or index of the root.

From these theorems we infer, that when the logarithms of
the numbers are determined in any system, numerical calcula-
tions become much easier; for multiplications and divisions
are performed with simple additions and subtractions—powers
and roots are obtained with multiplications and divisions.

Common or  The logarithms of numbers have been care-
ordinary tables 2
of logarithms.  fully determined, and the common and most use-
ful system of logarithms is that whose base is @ = 10 ; hence,
the general formula ¢* =z, in this system becomes

Theorem 4.

102 —=,
and taking in it successively 0, 1, 2 . ... instead of x, we will
have 1, 10, 100 .. .. for the corresponding number z.

To find out the logarithms of the intervening numbers be-
tween 1 and 10, between 10 and 100, &c., it will be enough
to take the numbers between these limits in a geometrical
progression, and an equal number of terms between 0 and 1,
between 1 and 2, &e., in an arithmetical progression ; the
terms of the latter progression will be respectively logarithms
(124) of the corresponding terms of the geometrical pro-
gression.

Now the terms of any progression, either arithmetical or
geometrical, are the same (113, 121) as those of a continual
proportion ; and when the extreme terms a and &’ of a con-
tinual proportion are given, we obtain the mean arithmetical

term by taking (112) a-{z-lf, and the mean geometrical by
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taking (118) y/al’. Hence, in our case, the mean geo
metrical term between 1 and 10 is /10 (=3, 16 ...), and

the mean arithmetical term between 0 and 1 is 0_; . = %,
and the numbers, 1,8,36:...10,
1
0) §! I)

are terms of two progressions, the first geometrical and the
second arithmetical; and consequently, since 0 and 1 are re-

spectively logarithms of 1 and 10, so g OF 0.5, is the loga-

rithm of 3, 16 ... Now, again, taking the mean geo-
metrical proportional between 1 and 3, 16 ... and between
3,16 . ... and 10; taking, also, the mean arithmetical pro-
portional between 0 and 0.5, and between 0.5 and 1, we will
have two more numbers contained between 1 and 10 and
their logarithms ; continuing in this manner, we may have as
many numbers as we like between 1 and 10 and their loga-
rithms. The same may be said of the numbers contained
within the limits 10 and 100, 100 and 1000, &e., and of
their logarithms. This method shows well how logarithms
of any quantity of numbers may be found ; in practice, how-
ever, methods more expeditious are preferred. It is yet to be
remarked that even the method just explained is not neces-
sarily to be applied to all the numbers; but it is enough to
find the logarithms of prime numbers, for these being de-
termined, we have the logarithms also of all the numbers
which can be resolved into factors, and the logarithms of frae-
tions also. Take the number 15, for example, which may
be decomposed into the two prime numbers and factors 3.5,
we will have (125, Th. 1) 415 == .3 + L.b; take the fraction

%, we will have (125, Th.2) E.g =17 —1.9. But it is not

necessary for us to dwell any longer on this subject, for
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copious tables of logarithms are made with most exquisite
accuracy and with all desirable improvements.
Constant 1§ 126, Let @, a, @ represent the bases of three

Hbmainoosy different systems of logarithms, and 7., 1, 1.” the

AR, signs of the corresponding logarithms. From the
equation s e
we have, o=,

But if we take the logarithm of each member of the same
equation in the system having a for base, and then in the sys-
tem having " for base, we will have,
Ufal=) ==l 1" (a®) = 1%,
or, (125, Th. 3,)
A T
Substituting now in these equations the preceding value of =,
we have, riliali= by Llral ol =0l
L L'

-— ..—-_3."?‘ — I.'?‘.
La et TR

Hence,

And consequently,
Ly Jilly
i s =T
et L.

that is to say,

The logarvithms of any twe numbers v, of, divided by each

wther, give constantly the same ratio in all systems.

Towthologe- ~ Suppose the logarithms 7. of the system having
o s b @ for base, to be known or determined, and let o’
e et sithms De the base of another system of logarithms 7.’
CONHReE: which are to be determined; let also # be any
number. The logarithm of # is known in the system having
@ for base, and unknown in the system whose base is ' ; that
is, in the equation = n,
the exponent x(== l/n) is unknown. But from the same
equation, taking the logarithms in the system whose base is

a, we have xl.a' = ln;
17%
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and consequently, s ok

but the logarithms /. of n and @’ are known ; hence their ratio
also, or «, is known. Knowing, therefore, the logarithms of
numbers in any system, we may from them infer the logarithm
of any number n taken in any other system ; and consequently,
when tables of logarithms are made for one system, we may
derive from them other tables for any other system of loga-
rithms,

Bxplmlﬂf}' 4 127, Let us resume the two progressions,
i 1, 10, 100, 1000. ...

"I M P W

the first reprosenting the numbers, and the second the corresponding
logarithms, in the system having a = 10 for base.

In the same system the logarithms of all fractions must be (123)
negative, and the following terms may be added to the preceding pro-

gressions, 1 Iv 2
"1000" 100" 10°
. =8, —2,—1;

g0 that the number 1 in the geometrical, and 0 in the arithmetical,
progressions, are the eentral or middle terms of two progressions,
indefinite in both ways.

From the same progressions we see that in the same manmner in
which the logarithms of the numbers between 1 and 10 are greater
than 0 and smaller than 1, the logarithms of the numbers between
10 and 100 are greater than 1, and smaller than 2, and so on. In like

manner, the logarithm of the fractions between iITJ and 1 are contained

hctween —1 and zero, and the logarithms of the fractions between
100 I 1o e contained between — 2 and — 1, &e.

Ca.-llmg r any number between 1 and 10, since all the numbers be-
tween 10 and 100 are ten times greater than the corresponding numbers
between 1 and 10, the number contained between 10 and 100 and
corresponding to r, will be 10y or ar, and =o likewise the next corre-
sponding number between 100 and 1000 will be 100y or a%, and so on

1
In like manner, cince the numbers between o and 1 are ten times
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‘ess than the corresponding numbers between 1 and 10, the fraetion

Setween 11—0 and 1, corresponding to v, is -1% or i, and the next fraction
corresponding to the same y, and contained hetween i:}_ﬂ and flﬁ’ is
i-:ﬂ; or 5;2, and so on.

So that, we may generally represent by a any number contained
between the decades 10, 100, 1000 .... and by ;Eﬁ, any number con-

, : 8l 05
tained between the decadal fractions 1, 10" 100" giving, namely,

to n any of the numerical values 1, 2, 3..... And to represent all

the numbers, we have a™, a™
- 1y,

for those above unity, and —_ —
a" a’l

for the fractions, Whatever, therefore, may be said concerning these
numbers and their logarithms is evidently applicable to all numbers
and logarithms in our system, From the same formulas we infer
general rules, useful both for the understanding and the use of the
tables.

Bat first observe that the immediate object of logarithmical tables
is twofold. To point out, namely, the logarithm corresponding to a
given number, or, vice vers&, to point out the number corresponding to
a given logarithm,

It is searcely necessary to say any thing concerning the numbers
an, %{ = a~") of a mere decadal form, it being evident that a® is
equal to unity followed by as many zeros as there are units in n,
and o is equal to 1 divided by unity, followed by as many zeros
as there are units inn.  And, viee versd, when any whole number of a
merve decadal form is given, its logarithm n will be a whole number
containing as many units as there are zeros in the given number.
Hence, ;

When the given whole number N is of a mere
decadal form, it has for logarithm a number con-
taining exactly as many units as there are zeros in N ; and
when the given logarithm n ¥ an exact whole number, the
corresponding number is unity followed by n zeros.

Rule 1.
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It is plain that for such logarithms and numbers we need
not have recourse to the tables, and so also for the fractional

numbers % of simply decadal form, for which, and for their

logarithms, we have the following rule:

Rule 2. When the given fractional number ;—iisof simply

decadal form, it has —n for its logarithm, containing
exactly as many units as their are zeros in N; and when the
given logarithm — n contains an exact number of units, the
corresponding number ¢s 1 divided by unity, followed by n
Zeros.
We may observe, that such fractions of simply decadal
form may be expressed also by 0,1, 0,01, 0,001 ....; and
using the decimal form instead of that of ordinary fractions,
the second rule will be modified as follows :

When a decimal fraction ends with 1, preceded by n ciphers,
all equal to zero, the logarithm of the fraction is —n. And
when, vice versi, —n 1s given, the corresponding number or
decimal fraction ends with 1, preceded by n eiphers, all equai
to zero.

Let us now e¢ome to the numbers a%, f:-, and to their logarithms,

in which », we must recollect, is any number greater than 1, and less
than 10. But a* ¢ also, in which o, # represents any decimal fraction,
is a number, and any number contained between 1 and 10; therefore,
we may generally write y == a"?,

and in this equation, the exponent o, # cannot be changed except when
v is changed. Now with » = a%¢, we have also

ay = a*. a®? = a"toé = gn ¢,

and whatever he n, the decimal fraction # will always be the same
when y remains the same ; but from audesss a", we have

n,d=L(a%y) (r).

And a". y is a number contained between a® and g™+, either a simple
whole number or a whole number with & fraction /\ added to it.
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In both cases the integral part (let us call it N/) of a”.y must have
the same number of eipliers that are in a”; that is, in

at.r= N/, & (J&’),
the number of ciphers of N/ is the same as the number of those of
a", namely, n4- 1.

The figures, besides, of the number N/, /\ are the same as the
figures of v, the first » 4 1 of which form the integral part N/, and
the other, if there are any, the decimal /\. Now from () and
(a7), we have m == LING AN
Aud from the preceding remarks, it follows first, that the figures of
the integral part N7 of N7, /\ are one more than the units contained
in the integral part  of the logarithm, and vice versa.

Secondly, the figures of N7, /\ are invariably the same when the
fractional part J of the logarithm remains the same, and vice versd,
for the figures of N/, /\ are the same as those of v, and 4 does not
change except with v.

Hence, it is enough to know what is the y corresponding to the
fraction o, § to have immediately the numbers corresponding to all the
following logarithms, 1,4, 2,4, 8.4....m,4,
and viee versd, when the number is given, and consequently, the
ciphers of y also are given, it is enough to know what is the fraction
0,d corresponding to y, to find out also the logarithm of the given
number.

Now this is precisely that which is given by the tables. That is,
the first column, marked N, contains the numbers or figures of », and
the other columns the decimal part o, J of the logarithms. Henee,

To find the logarithm when the number is given, we have
the following rule :

When the number N', /\ is given, write n contain-
ing one unit less than the number of figures in N,
and this n s the integral part of the logarithm. Then , tak-
fng N’y /\ as an uninterrupted number, add to n the fraction
0, 8, corresponding to the same number, and given by the
tables.

Rule 3.

The whole number #. or intezral part of

‘haracteristic. ! 5
giearione 2 logarithm =, 8, is called the characteristic.

Hence,
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The characteristic of the logarithm of any given number
contains one unit less than the number of figures forming the
integral part of the given number.

When the logarithm n, & is given, find in the
tables the number corresponding to 3 ; cut off the first
n - 1 figures of this number from the following : the first
part will be the integral, and the rest the decimal part of
the number having n, 8 for its logarithm.

Rule 4.

With regard to the fraction a_"" we may remark first, that since o is

& number of simply decadal form, like 10, 100, &e., the guotient ::;

reduced to the form of a decimal fraction will contain the same figures
that are in », preceded by one or more zeros; that is, as many in num-
ber as there are units in z.

Observe, secondly, that % = a~" y; hence,

¥
—==a—n a%e,
a"

Now, a=". a%? =a—"+0? Instead, however, of writing expli-
citly the difference — n 4 0, 4, the same exponent is represented by
the simple expression 7, 4, with the negative sign above the character-
istie, to signify that it does not affect the decimal part 4 added to it.
We will have then,

v =
i a~ s

the two numbers y and 4 depending on each other, as above, whatever

n should be. Bat % reduced to the form of a decimal fraction, may
be represented by o, ; hence,

an? — 0, b}
that is,
n, § =1 (o0, D).
Now, from the tables we may have the ciphers of » corresponding to 4,
or, wice versa, we may have 4 corresponding to the ciphers of v that are

in p; and since, as we have observed, the figures of y commence in
0, » after n zeros, hence,
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For negative logarithms and their corresponding members
or fractions, we have the following rules.

Tirst, when the fraction o, D is given, and its logarithm is
to be found :

See how many zeros precede the first figure of
units in 0, D, and write the number n of these zeros
as the characteristic of the logarithm ; taking then from D
the number which commences with the first figure of units, find
from the tables the corresponding &, and add it to the charac-
teristic.

And to find the number corresponding to a given logarithm,
we have the rule—

When the logarithm n, 8 is given, write first as
many zeros as there are units in n, separating with
a comma the first from the others; then add to these ciphers
the number corresponding to 8, as given by the tables.

Rule 5

Rule 6.

We may observe, that the logarithms of fractional numbers
are differently expressed by different writers. We have ex-
pressed them by %, 3. But when n=1, or 2, &e., others
express these logarithms by 9, 35 8, 3, &e. But this manner
of writing such logarithms is somewhat ambiguous, and we
may say partial. For this reason we have preferred to make
use of the above-mentioned expression.

Appliestion o § 128 The practical application of the preced-
logarithms. — jno yules must be left entirely to the direction of
the teacher, and to the diligence of the pupil ; since any at-
tempt to apply them without having logarithmical tables at
hand would prove altogether useless.

To give, however, some idea of the useful application of
logarithms, let us observe that exponential equations can be
resolved by means of logarithms. That is, those equations in
which the unknown quantity is the exponent of some other
quantity ; as, for instance, in
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e 1
A=
in which equation z is the unknown quantity.
Applying the logarithms, we will have

¢ 1
LJ_. = f. [—’]
hence, (125, Th. 2, 8,)

le —lh=11—1lg¢"V=11—(z—1)lg;
and since 1.1 =0,
le—lh=(@x—1)lg;

from which
1 le—1Lh
R
and lie— Lk
T— Tl + 1.
Let another exponential equation be as follows :
(o) =10
L A
Taking the logarithms, we will have
101
x I.mz 110;
that i, « [2101 — 2100] = 1.

Now, from the tables 2100 =2, and 7.101 = 2,0043214;
hence, 7.101 — 2.100 — 0,0043214 ; therefore,
an 1 ~1,0000000
¥ = 5,0048214 — 0,0048214°
and finally the approximate value of

x =281
f 101 s R 100
But suppose that instead of 00’ the given fraction is /= SE
then, from the equation
1004*
(i—o—l p—— 10’

we have z [2.100 —2.101] = 1.
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Now 2100 — 7.101 =2 — 20043214

=—1-43 —20043214
- {: —1 4 0,9956786 }

= 1,9956786

henee, for the value of x,

1
0,0043214
=—231 ne:’zrly.

= —

101 01
In fact, (100) (130

*_101—«_1_03—‘r
TR NEN0 T8 NIOE
101\=

Now, from (m) =10, we have = =—281; the exponent,

[
therefore, to be given to the fraction %l%, when made equal

to 10, is the same number 231, but taken with a negative sign.
For other examples the student may combine at pleasure
several numbers, and make them equal to unknown quantities,
and then resolve the equations by means of the logarithms.
For instance, let a, b, ¢, d, ¢ represent given numbers; we
may form with them the following equations :
a.b
(1) ;g- = €x.
(2) a.b.e=d.c
x
b T
(8.) aticid = .
1 c.e
&) e aTa
GH A= as
and so on; and applying the logarithms to them, we will find

@A) le=Lla+4lb—lc—Ild—1Lle
18
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_lad-lbtle—1d
2) == l.e .

@) lz=bla+tlec+ld-H le

#) la=la-+Lb+lec+ Ldle
__blefdle
B.) le=— =1

With the exception of the second of these examples, in all the
others we have not the value of z, but the value of the loga-
rithm of z; now the corresponding number of any logarithm
is given by the tables; hence, with the Zx, we may have z
also.

It is plain, moreover, that any example like the preceding
is the general formula of as many as the pupil will like, by
substituting numbers for the symbols «, ?, ¢, &e., and chang-
ing them at pleasure.

CHAPTER IV.
SERIES.

What alge  § 129. ARITHMETICAL progressions are the
braleal | %t most simple of all algebraical series, and are
various orders. oqlled series of the first order.

The scries of the second order are those whose second
differences are equal, and the series of the third order are
those whose third differences are equal, &e. That is, let

I el R
represent the numbers or terms of an algebraical series. If
the differences
—t, =t d—. ...

between the successive numbers are all equal, the same num-
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ber or terms belong to an algebraical series of the first order.
But suppose the differences between the successive given
terms to be unequal, s0 as to have

== e e e =
If the second differences, or the differences between the terms
o, 2, 7. ... are equal, that is, if we have
gl W a ol M L,

the given terms ¢, ¢/, ¢*'. .. then belong to an algebraic series
of the second order. That is, the second differences also are
unequal, and we have
A R N P L

but the third differences, or differences between the terms
¢, ¢', 0. ... are equal: the given terms ¢, ¢, ¢”. . .. belong
in this case to a series of the third order. It is now easy to
gee when a series will be of the fourth, of the fifth, and gene-
rally of the m™ order.

It is likewise easy to infer from the foregoing remarks that
the second, the third differences, and so on, of any algebraical
series of the first order are all equal to zero, and the third,
and following differences of any algebraical series of the second
order are also equal to zero, and generally, the (m — 1)" and
following differences of any algebraical series of the m'™ order
are equal to zero.

varions ques-  The most common investigations concerning
tiong concern- 5 x
ing the series.  these algebraical series are about the general
term, and the sum of any number n of their first terms; but
the principal object in view is that of reducing other functions
to the form of a series.

This doctrine is copiously treated by modern writers, and
with exquisite analysis in differential caleulus.

#a e

It is not our intention to enter here inte long discussions on the
subject, and it will be enough for us to give an idea of it, treating
briefly the first and second questions above mentioned.
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Genersl torm % 180. Let us commence with the general term. The
of any series. polynomial,

() =A4Ant+An4 ... .+ Am,
in which the coefficients A, A,, A, ...A_ are constant quantities, ie-
presents the general term or the n*™ term of any algebraic series of
the m*® order. To have it demonstrated, it is enough to show that
the m* differences of the series corresponding to this term are all
equal.

Now to say that ( p) represents the a*® term of a series is the same
as to say that it represents the first, the second term, and o0 on, when
n is made equal to 1, to 2, &e., and the term immediately preceding
the n'® will be obtained from (p), by changing in it a into n—1.
Now, call (p,) the term preceding the a®, it will be

() =A+ A (n—1) A (n—1P4... 4 A (n—T)=,
and (p)— (p,) will be the first difference of any two successive terms
of the series. But this difference—we may call it { p,)'—after vedue-
tion will take the following form : .

B4Bnd-Bn*4...+ B, 0"
hence,

(p),or (p)—(p)=B+ Bl n4-Ba 4 oo By m=l:
in which difference, if we make n equal to 2, or 3, or 4, and so on, we
will have the difference between the second and the third terms, be-
tween the third and the second, between the fourth and the third, and
g0 on; we will have, also, the terms of another series, bécause ()
has the same form as ( 2).

Repeating, therefore, on (p,)! the same operation which we have
made on ( p)—that is, changing n into n — 1, to have the term imme-
diately preceding (p,)',—we may ecall it ( p,)—the difference will be

(2 or (p)'— (Pa) = C 4 Cond Con® 4 ... 4 Cps 7™,
representing any one of the second differences of the series having (p)
for general term, as it represents any ome of the first differences be-
tween two successive terms of the series having for general term ( p,)\.

It is now easy to see that the third differences of the series, corre-
sponding to the general term (p), are given by
(20 08 (5)' = (P) =D - Dyn4 Dynt 4 ... Doy 1o, ke
and the (m — 1) differences by

* (Pmadhor (Pas) — (Paa) = Q4 Q,u;
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and, finally, the m' differences by

(P“)‘! or (Pn—-‘.l. )! e (Pm) = Q:;

that is, any of the m*" differences of the series, whose general term is(p),
is given by Q5 that is, invariably by the same quantity ; for whatever
be n, Q, depends always equally on the constant coefficients A, A,,
Aot of (p) only; hence it is constant, like them. The mt differ-
ences, therefore, of the series corresponding to the ferm (p), are all
equal ; hence the same (p) is the general term of any series of the
order m.

Nay, not only (p), but any expression reducible to the form of ( p),
represents likewise the general term of algebraic series of any order.
Now, the fellowing formula,

ta=t,+ay[i* — (n—1)*] + a [n8 — (n— 1)) 4-. . }
Voot dpp [ — (n—1)mH] (o),

is reducible to the form of (p); hence (o) also represents the general
term of any algebraic series.

Sumof any 7 181, From the same (o) we have the first, the second,
f{,‘mﬁr 2 the third term, and so on, of the series, by making in
succession n=1,n =: 2, n = 8, &e¢., and these terms will be repre-
sented by the first member of (o), as follows:

Laldandians oy Syl
Now, we sgay that the sum ¢, 4-f.+4 . ...+ 1, of these n terms, is
given by
sy = ntagntay ... a0 (o),

To demonstrate it, it is enough to show that (o,) is equal to the first
term #, of the series when # is made equal to 1, and equal to ¢, 4- ¢,
when z is made equal to 2; equal to ¢, 4 ¢, 4 #; when n is made equal
to 3, &e. Now that (o,) is equal to #, when n is made equal to 1, is
evident by observing that (o) is equal to (o,), when in both of them we
make n = 1. Before showing that (o,) is equal to 7, 4 #;, when n is

made equal to 2, &e., observe that if in (o,) we change n into n—1,
we will have
bt = @y (i 1) A 4 (0 — 2 Gy (R — 1+ . < - g ()
hence,

ta—tas = a0y [ (0 — 1P @ [ — (r— 1)) ..
+ tnp [0 —(r—1)"H];
but this last member is the generallst:rm (o) of the series; hence
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f—8, = tn (0‘):
and consequently if in (o,) we make n =2, we will have

8— 8, =1,

but &, = t,; hence o=l Iy
Ifin (0,) we make 7 = 3, then from the same (o,) we have '
t—ty=1,;

but £, = #, 4 f3; hence
=+ 11,
And if in (0,) we make n = 4, we will evidently have
so=t4te 4 4;
and generally, s, or
antdantdandt ... =Htt4.... 4103 -
that is, (0,) is the expression of the sum of n terms of any series of the
mt™ order.
Let us now pass to see how, by means of the formulas (o) and (o),
we may find the general term and the sum of some given series.
Examples. ¢ 182. Let 3, 6, 10, 15, 21 be the first terms of a given
First. series, in which the second differences are all equal to 1:
hence, in the general term of this series, 7 must be equal to 2: that
is, the formula (o) will be, in this case,

ta = a,+ a[n*— (n —1)*] + o, [®— (n — 1)*].
To find out the coefficients 4, a,, a,, make in succession n==1, n == 2,

n=3; and since, with these substitutions, the general term ought to
represent the first three terms of the given series, we will have the

equations, o+ a, +a, =3,
a, 4 Ba,-4 Tay, = 6,
ﬂ,+5¢,+19&.=10,
from which ay = %, =1, a, = %!

Hence, the general term of the given series is
LI %+ 2n—14 (81 —Bn4-1),
PR A
_ N+
and the sum of n terms,2
=g b
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Let also, 1, 5, 14, 80, 55, 91 ...

be the first terms of another series whose third differences
are all equal to 2.  Making, therefore, in (0) m = 8, we will have for
the general term of this given series
ty = @, ay[n? — (n —1)2] + @®[#® — (n— 1)3] + ay[n'— (n —1)%],
from which, making in succession n =1, n =2, n =3, n = 4, we
will have the equations,

ttds +a; Fa =1,

a,+ 3a, 4+ Tay, + 16a, =5,

@, -+ Hay + 19a; 4 65a, = 14,

a; 4 Ty 4 87ay 4 175a, = 30;
and from these the following values of the coefficients:
1 5 1 1

G =g “n=ﬁ) q,=§, By = ﬁ;

Becond.

and substituting these values in the ganeml term, we have
ta= Jl. - n’-l— n"‘
and for the sum of the first n terms of the same given series, we will
find 1 f ety 1
== e =, A B
8y = Gﬂ—‘— " +3n +12m'

Othor ox-  Some of the coefficients a,, @;.. of (0), and the first
amples. term a, also, may be equal to zero, or may he such that
some terms of (o) evolved be mutually eliminated. In this supposi-
tion the general term may apparently have a different form from that
of (p). 8o, for example, we may have

tn=n% l, =nd
Suppose now that such general terms are given, we may obtain the
sums also; for substituting successively the natural numbers 1, 2.
3 ... instead of n, from #, = n® we have the series

1,4,9,16,925. ..,
and from ¢, = #n% 1, 8, 27, 64, 125 .
the first of which has the second differences, and the last the third
differences constant; hence, with the same process followed in the
preceding examples, we will find for the first >

1 1 1
ﬂ:——e; 59—23'1 5;
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and for the second,

1 1 1
a,=0, Oy = -4, y == 5, Oy== ;;

and, therefore, the sum of n terms of the series having f, — n® for
its general term, is 1 1 1
e =.=én+éa3+§n’;
and the sum of n terms of the series having f,= n® for its general
term, is i 1 1
: = ;ﬂ'-{-&u’-{-in‘.
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PROBLEMS.

1st. Two merchants, A and B, possess a capital of 38700 pounds,
but the capital of A is twice that of B ; how much does each one of
them possess ? : Ans. A.... 256800, B....12900,

2d. Philip makes a present to his children, M and N, of 2500 dollars,
but M gets as many times 20 dollars as N gets 5. What is the share
of each ? Ans. M.... 2000, N ....500.

8d. Divide the number 237 in two such parts, that the first be
greater than the second by one quarter of the second.

Ans. 1st. 131 + g 2d. 105 4 é

4th. Two friends wish to buy a horse, but the first cannot pay but
one-fifth of the price, and the second one-seventh only ; to have the
horse they should add £20. What is the price of the horse ?
10
Ans. 7 = 304 53
5th. A merchant after his speculations finds that he has gained 15
per cent. on his capital, and the amount of his actual fortune is
£15571. What was the original capital ? Ans, z = 13540,
6th. A man sells a certain amount of goods in three successive
days. The first day he loses one-sixth of the value of the articles he
is going to sell during the three days; the second day he lozes one-
tenth of the same value; but the last day he gains one-third of the
price. At the end he finds that he has gained no more than three
dollars. What is the price of the articles sold in the three days?
Ans. z = 45,
7th. Twice the number of years of my age, diminished by the fourth
of the same number, gives twelve years more than those of my age
What is my age? Ans, z = 16.
8th. A father sends to his five children 1000 dollars, with the con-
dition that the eldest should have 20 dollars more than the second,
and the second 20 dollars more than the third, and =o likewise the
rest. How many shall the first of the children have?
Ans. z = 240,
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9th. I had 42 shillings, and T paid a part of them. If you divide
the remainder by the number of those which I have paid, you will have

12. How many did I pay. v x=3+-8»
L Ty

10th. Two travellers go from the same place to another. But the
first, who travels 12 miles per day, leaves the place ten days before the
second. The second travels 27 miles per day. After how many days
ghall the second reach the first ? Ans. z=28.

11th. A mortar throws on a fortress 86 shells, before a second
mortar begias to throw its own. The second mortar throws 7 shells
in the same time in which the first throws 8. But the quantity of
gunpowder consumed in three explosions by the second, is the same as
that consumed by the first in four explosions. How many bombs
must the second mortar throw on the fortress to consume the same
quantity of gunpowder as the first? Ans, r = 189.

12th. A friend of mine 40 years old, has a son 10 years old. How
many years shall pass before the age of the father be double that of
the som? Ans = 20.

13th. Give me the expression of two numbers whose sum is a, and
the sam of the product of the first by m, and of the second by n is b

ey b—an ma—5b

m—n' m—n
14th. A general wishes to range his regiment in a square battalion;
he tries two ways, in the first of which there remain 30 men, besides
the full square ; in the second, which consists in adding a man to each
rank, he finds that there are 50 men wanting to finish the square.
How many men does the regiment contain ? Ans. z = 1075,

15th. Find such a number, that adding to it in succession a and b,
and squaring the sums, the difference of these sums be d.
d+4 0* —a*
f 2(a—b) *
16th. Find two numbers, whose sum is 87, and their difference 13.
Ans, z = 50, y = 87.

17th. The first of three friends A, B, C gives to B and C so many
of his own dollars as to redouble their original number, B then re-
doubles in like manner the money of A and C, and finally € redoubles
in his turn the money of A and B. After this, they find that each

Ans, z =
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one of them has 16 dollars. What was the original number z of A,
and the original mumbers y and z of B and C?
Ans. z=26, V= 14, z=2=8.

18th. I have two boxes with money in them. If I add 8 pieces to
those in the first box, the pieces contained in the first will be exactly
one-half of those contained in the second. DBut if, instead of adding
the 8 pieces to those of the first box, T put them in the second, the
pieces of the second will be three times those of the first. How many
pieces does each box contain ? Ans. z= 24, v — €4

19th. The money of A and that of B make £570. If the first
would have three times, and the second five times more money, the
money of both would amount to £2850. How many are the pounds
of A? how many those of B? Ans. 2z = 250, y = 320.

20th. Two baskets contain some dozen of apples. If those of the
first basket are sold at 5 cents a dozen, and those of the second at ten
cents, all will be sold for two dollars. But if the apples of the first
basket be gold at ten cents, and those of the second at five cents a
dozen, they will be sold for two dollars and 50 cents. How many
dozen of apples are in thefirst? how many in the second basket ?
Ans. z =20, y = 10.

21st. Some students go on an excursion. If they were five more
and each would pay 1 dollar more, the expense would be 61} dollars
more ; but if they were three less, and each would pay 1% dollars less,
the expense would be 42 dollars less. How many are the students,
and what is their fare ? Ans: 8t. 2z =14, F.y — 8}

92d. Find two numbers whose sum is m times, and whose product
n times as great as their difference. :

Ans, 2 = ———

23d. The sum of two numbers is @, and the difference of their squares
is 5. What are these numbers ? @+ b at—b
P el
24th, Add z to 94, and then subtract the same z from 94. The
product of the sum by the difference, gives 8512. What is the value
of 27 Ans. z =18,
25th. If the third part of a number be multiplied by the fourth
part of the same number, and this product be added to that of the

Ans., 2=
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same number multiplied by 5, we will have a result so much above 200
as the same number is below 280, What is the number ?
L v Ans, =48,
26th. One of two brothers is 20 years older than the other, and if
the age of the first be multiplied by that of the second, the produst
will be 2600 years more than the sum of the years of each of the two
brothers. How old is the younger? Ans, x = 42,
27th. Two boys sell 100 melons. The first sells his part at a price
different from that at which the second sells his. And yet they obtain
the same price. But if the first should have the melons of the second,
and vice versd, the first selling them at his own price would gain 15
dollars, and the second® 63 dollars. Iow many melons has the first

boy? Ans. z =40,
28th. Find two numbers whose product is 750, and whose quotient
18 3% Ans. 2 =15, y = 50.

29th. Find the expression of two numbers whose product is 2, and
whose quotient is b.
Ans. 7= J{:,, v = J/ab.
30th. Find two such numbers that the sum of their squares be 13001,
and the difference of the same squares be 1449,

Ang, £ == 85, y == 76.

THE END.
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