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PREFACE.
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This treatise of Analytical Geometry, which in progress of

1
—~
=

time may form a part of a complete course of mathematics,
although destined at present for a class in Georgetown College,
is offered also to those students who cultivate this branch of
science in other publie institutions. To all these the present
introduction is addressed, together with the following treatise,
divided into four parts or books: the first of which treats of
co-ordinates, and geometrical loci on a plane ; the second of
co-ordinates, and geometrical loci in space ; the third treats of
lines of the second order ; and the fourth of surfaces of the
same order. The first and second are nothing more than
an introduction to the principal object of this part of analysis
which is exclusively treated of in the third and fourth books.
The learner will probably find in our method something not
entirely conformable to that usually adopted in other similar
works ; thus, for instance, in the third and fourth books he will
easily remark that the questions are reduced to some principal
heads, from which, as from a nucleus, we derive the theory of
the lines and surfaces of the second order. Nay, more, all the
properties of the lines, as well as of the surfaces, are altogether
derived from the discussion of the simple quadrinomial formula

mz? 4+ ne 4+ p = q(*¥); or from the trinomial mz* -4 nz

(*) Book I1I, § 44, (i,). Book IV, § 111, final remark.
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— d. For this ingenious simplification we are indebted to
Baron A. L. Cauchy, who is deservedly considered not only
as one of the best mathematicians of the present time, but not
inferior to any of those who flourished in preceding ages. The
compendious style used by this celebrated author would pro-
bably not be intelligible to the incipient learner ; our endea-
vors, therefore, were especially devoted to develop and explain,
in a manner suitable to students, the analysis which the French
author first offered to the scientific world ; (*) yet, notwith-
standing this labor, some perhaps will object that the present
treatise still requires, on the part of the student, a certain pene-
tration of mind. 'This we readily admit ; but nobody, we
trust, will condemn us for supposing some penetration of mind
in those who give themselves to the study of the sciences ; and
if, in some instances, notwithstanding this supposed aptitude,
the student could not overcome by himself some difficult point,
we take it for granted that works of this character are not only
to be studied in private, but are also to be explained by the
teacher. 'This necessarily supposes the students in general
not to be able to overcome all the difficulties by themselves,
even in the most elementary treatise, unless the school be con-
sidered as a mere formality. Let us even remark, that diffi-
culties in some cases are not inherent in the method but in the
object, and to diminish them nothing contributes more than
simplicity and order. Order, moreover, excludes all the diffi-

culties which are not inherent in the matter, diminishes the

(*) Exercises de Mat., par M. A. Cauchy, (troisieme annge.)
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labor of the teacher as well as of the student, and is the only
means by which the mind can be enriched by a really scienti-
fic knowledge and comprehension of the subject. After this,
to exclude order from geometry, and in general from mathe-
matical works, is to expel the owner from his own house. An-
other observation, probably, might be made, namely, that the
present treatise is rather defective in point of familiar examples.
We neither deny nor grant it ; allow us only to remark, that
we may here suppose two, species of applications or examples,
those taken from analytical geometry itself, or those taken from
branches of natural philosophy to which this analysis is appli-
cable. The second class is evidently extraneous to our sub-
ject ; and as to the former, we thought it enough to give only
a few of them, which, affording the illustration of some pecu-
jiar point, could be at once a model for many others which the
teacher and even the student can form for himself illustrative
of the same or of other points.

The index which we subjoin, especially the part which be-
longs to the third and fourth books, may perhaps give to the
reader, who should desire it, a more complete idea of the plan
and character of the treatise. 'The parts'of this treatise having
such connexion and dependence upon eadh other, we have
been compelled to make use of frequent references. We know
well that some writers of works of this kind aveid as much as
possible such references, and some also, even eminent, ex-
clude them altogether ; the reader being, as they allege, thus
stopped and disturbed on his way. Consulting, however, our

own experience, and the assistance frequently offered by these
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references, although accompanied with some trouble, we pre-
ferred to follow the example of many others likewise eminent
and equally experienced in teaching. And for the sake of
some of our friends, to whom we are indebted for the remarks
made on the/treatise before its publication, and who incline to
lh.-e exclusibh, or at least diminution, of the references, we ob-
serve, that although such references are not all and at all times
profitable for each reader in particular, the book being written
for a great variety of readers, it is not improbable that the num-
ber of references be rather /deficient than too copious. And,
finally, whenever recourse to some of the preceding questions
is indispensable, (and they must necessarily form part of the
demonstration at hand,) in such cases, and even generally, a
reference is either useful to the-reader or not'; if it is useful,
there is no reason of complaint ; if not useful, the reader can
easily go on without noticing it, not being compelled by a
mere reference to interrupt his course.
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BOOK I.

CO-0BRDINATES AND GEOMETRICAL LOCE ON A PLANE.

Preliminary Propositions.

PROPOSITION I.
The sum of the projections of the sides of any polygon is equal to zero.

1. Let (fig. 1) ABC ... be any polygon whatever, either in
a plane or with its sides in different planes, that is, let the plane
determined by the sides AB, BC, for instance, be different from
that determined by the sides BC, CD . . .

2. The projection of one straight line on another is determined
by the interval comprised between two planes perpendicular to the
latter, and passing through the extremities of the former’ line.
For example, the projection of the side AB on the axis PX will
be HK, supposing that two planes passing through the extremi-
ties A and B of the side and perpendicular to the axis, cut PX in
H and K. Now the exiremity B of the second side is common
with that of the first, and consequently the projection of the sec-
ond side will begin from the very same point K, and end in another
L, either towards X or towards P ; and considering the first direc-

tion positive and the second negative, in the first case the projec-

tion of the two sides will be equal to the sum, in the second to

the difference of the partial projections. But in every case the

interval HL comprised between the planes, passing through the

first extremity of the first side and the last extremity of the second,

will be equal to the algebraic sum of the two projections. Like-

wise we may demonstrate that the interval comprised between
1
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the planes passing by the first extremity of the first side and the
last extremity of the third, gives the algebraic sum of the partial
projections of the three sides, and so on. Therefore the sum of
the projections of all the sides will be determined by the planes
passing through the first extremity of the first side, and the last
of the last sidé ; but these extremities are in the same point, there-
fore the length or sum of the projections of all the sides of any
polygon whatever is equal to naught.

Corollary I. 1t is known from trigonometry that the projection
of a straight line on another is equal to the co-sine of the angle
which the same line makes with the corresponding axis of pro-
jection, or with a line parallel to it, multiplied by the side itself:
hence, supposing Aa, Bb, Cc¢, &c., parallel to the axis PX and

calling the partial projections p, p/, p'', . . . ; since
b i 5 A R Ol e —— 5
and p=AB . cos BAa,»— CB cos CBb, . . ...

we will also have
« AB.cosBAa4- CBcosCBb 4 .... —

It is here to be observed, that as the angle which the first side
BA makes with Aa is taken with reference to the positive direc-
tion of the axis, so the other angles must be taken in the same
direction.

Corollary Il. Supposing moreover any side, for instance AB,
parallel to the axis, then cos BAa becomes equal to unity, and the
preceding equation will be converted into the following

AB —= — BC co-sin CBb — DC co-sin DCec — . ...

that is to say, any side of a polygon is equal to the negative sum
of the remaining sides, each multiplied by the co-sine of theangle

which it makes with the first side, or with : o t
o M > ith a line parallel to the /
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PROPOSITION II.

The projection of the plane area of a polygon is equal to the given
area‘?nultz_phed by the co-sine of the angle which the plane of the
urea Aakes with the plane of projection.

3. Let ABCD (fig. ) be the given plane area, and from the
angles A, B, . . . draw the perpendicular lines Aa, Bb, .. .. on
the plane P of projection, and let the points @, 4, . . . met by the
perpendicular lines be joined, so as to form a polygon, which is
the projection df ABCD. Now if we suppose another plane P’
to pass through A parallel to the plane P, by producing the per-
pendicular lines s6 as to meet the new plane, the same projection
will be renewed on\the new plane P/, and as the inclination of
the plane CDAB with P’/ is the same as with P, every relation
between the given areg and the first projection will be the same
as that between the given area and the second projection.

Let us now call 3 the akggle which the plane ABCD makes with
P!, and let the given area be represented by « and the area of the
projection by ». Let the perpendicular Aa be produced to A’, and
let all the other lines be likewise produced first to B/, C!, D/, and
then to 7/, n!, !, so as to give BB/, CC/, DD/, »+/, mm/, nn/, all
equal to AA’. Thus we will hive two prisms, the solidities of
which are equal, because, besides\the common solid AB'rmC’ the
remaining solid C'm/D/r! of the one is equal to the remaining solid
CmDr of the other. But supposing that A’p is a perpendicular
drawn to the plane of the given area.;\ we know from geometry
that the solidity of the prism AD'B'D is equal to « X Apand the
solidity of Am/r'm is equal to x X AA/, thqrefore

A X AN =a X Ap (9).

But according to geometry the angle made by\two lines respect-
ively perpendicular to two planes, is equal to the angle of the
planes ; hence

AA'p=—728
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Again, from the right-angle triangle A’pA we have Alp = AA’
cos AA'p = AA/ cos g, therefore we shall derive from (o)

n — a COS 3
‘\'
. DEFINITIONS.

‘4. Let (fig. 3) AX and AY be two straight lines drawn at any
angle to each other on a plane, and let K be any point on the same
plane. From K let us draw KH parallel to AY and KL parallel
to AX ; these two parallels evidently determine the position of
the point K with reference to AX and AY, because the parallels
drawn from any point which is not K will either both, or at least
one, be different from KH and KL. Now KL is equal to AH,
consequently the position of the point K with reference to AX and
AY may be determined by KH, KL, as well as by KH, AH ; that
is to say, by the line parallel to AY, drawn from K to AX, and the
portion of AX comprised between the intersection A and the point
H of which the parallel KH meets AX. The portion AH of AX
is termed the abscissa of the point K. HK is termed the ordinate
of the same point; both taken together are called co-ordinafes.
The point A is called the origin of the co-ordinates, AX the axis
of abscissas, and AY the cwis of ordinates. The axis are called
rectangular or orthogonal, if at right angles to each ether ; other-

wise obligue.
\&EMARKS.

5. Suppose (fig. 3) the directions of the axes AX, AY to be
considered as positive, the opposite direction AX'’, AY' must
then be considered as negative. Consequently if, instead of the
point K, situated within the angle XAY, the point K/, within
XAY', be referred 1o the axes, the abscissa AH will remain
positive, but the ordinate H'K’ shall be negative. And if the
point referred to the axes, suppose K", is within the angle YAX/,
the ordinate K” H” will be positive, and the abscissa AH” nega-
tive. Finally, if the point K” be within the angle X’AY’, both
the abscissa AH and the ordinate H” K" will be negative.
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OF the refative position of the poinis.

T~ REMARKS.

6. Let us imagine (fig. 4) two systems of axes, (AX, AY) and
(A'X", A’Y'"); the point K will be referred to the first system, by
means of the co-ordinates KH, HA, and to the second by the
co-ordinates KH', H'A!. Now the axis AX of the abscissas is
commonly indicated by X, the axis AY of the ordinates by Y,
and the whole system by (XY). The abscissas, moreover, of
any point whatever are represented by x, and the ordinates by 7,
observing that when several co-ordinates occur in the same
equation, their symbols are to be distinguished by some mark,
for instance, @_, 7, : @, ¥, &c. The same is to be said of any
system of axes; hence (X'Y') will represent the system (A'X/,
A'Y'), @y y the co-ordinates, and so on. To these indications,
which are generally adopted, we may add another very useful in
the transformation of co-ordinates. The angle which the axis of
abscissas forms with the corresponding axis of ordinates will be
occasionally represented by (ay) : the angle which the axis X
forms with the axis X' of another system will be exhibited by
(xx') ; and likewise the angles which X forms with Y/, and Y
with X', and Y’ will be represented by (2y/), (ya'), (y¥)-

N

Formulas for passing from one sysfem of axves (o another.

7. Besides the ordinates (fig. 5) KH', KH, let us draw from.
the point K to the axis X the perpendicular KB, which we will
produce towards . From the angles H/, A/, N of the polygon
BKH/A/NB let the lines H'+/, A’7", N#/' be drawn parallel to the
perpendicular KB. Again, if the angle which the side H'K of
this polygon forms with K » be called /, and the angles formed
by the other sides and the lines parallel to KB be called o, o/,
a*" ; we shall have from the first proposition (2 Cor. 1I)

KB=— — H/K coso’ — A'H! cos o« — NA'cos /" — BN cos o (m)
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But from trigonometry KB—KH cos HKB ; and on account of
the right-angled triangle KBH
cos HKB — sin KHB — sin KHX = sin (ay) ; moreover

KH is the ordinate y of K, hence
KB = y sin (xy)-
Again: cos o/ = cos H/ Kr = — cos H' KB; and on account of
the right-angled triangle KBS,
cos H'KB = sin KSB= sin Y/oX = sin (3'z); moreover H' K=/ ;
hence — H'K cosdo = ¥ sin (y'x).

Again: cos ¢ = cos A’ H'7' == —cos A’ H' /, and on account
of the right-angled triangle H'ln, cos A’ H'/=sin H'nl =
sin (xa’) ; and since A'H' — &/, we will have

— A'"H' cos o'/ = ' sin (xa').

Likewise: cos o// —= NA'7” — — cos NA/g, and on account of
the right-angled triangle A’gN, cos NA'g — sin A’ N ¢ = sin
A/ NX = sin (2y). Moreover, if the co-ordinates of A’ with
regard to (XY) be termed 2., y,, we will have A'N =1y, ;

therefore
— A’'N cos o' = y_ sin (xy).

Finally: cos o/" =4cos BN7" = cos 90° — o: consequently

— BN cos o= o
Substituting, now, the values thus found in (m), we will have

y sin (zy) = y' sin (y'z) 4 @' sin (2'z) 4 y, sin (ay)
from which
et i &’ sin (mx’_) + ¥ sin (ay)
sin (xy)

By a similar construction and process we obtain

& A +:c’ sin (yx') 4 9 sin (y) -
P sin (xy) Lo
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|
And these are the most g\eneral formulas for the transformation
of co-ordinates; from which 1i‘t appears that when the co-ordinates

of any point are given with‘;. reference to the system (X' ¥/), in
order to have the co-ordinatY the same point with reference

to the system (XY) it is necessary to know the co-ordinates z_ ,
, of the origin of the systém (X'Y’), and also the value of the
angles (29), (22), (29)/(y="), (yg)

C'oroilary I. Let gs suppose that the axes X, Y are at right
angles ; sin (zy) befomes equal to 1, and (a'y) = 90° == 2'x),
(¥'y) = 90° == (y'¥) ; hence sin ( 3) = cos (#'x), sin (y'y) = cos
(y'x) ; therefore the preeeding equat‘lons become

Y3y, o sin (a) \T Y sin (o)
x, -+ a cos (xa’) 4+ 4 cos (ay). )

Corollary IT.| Tf the origin A’ of the system (X' Y') coincides
with A, then #|—y, — o and the general equatlons ill be con-

verted into the fnllowmo ;oo it

_ @ sin (a2') 4y sin (wy’)
Jﬂmﬁf"y)

~ sin (yo') + ' sin (yy')
iy sin (xy') |

REMARKS.

/
(

8. Before we leave these relations betweén the co-ordinates of

different| systems, it is to be observed t at according to the

general fcumulas, any power of the variables z, y, for instance

2, 4, will be given by equal and inferiop’powers of the variables

20, whinQ will be plain by observing that the same formulas

may be modified in the following manner :

sin (ax' sin (@
iy ) (@)

sin (xy ) s o sin (ay) y

sin (my) sin (ay ) ¥
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\9. If we conceive on the plane of (XY) a series of points
ranged either in a straight line or in a curve, it is evident that
each one of these points may be referred to the axes by means
of the corresponding co-ordinates. Now it happens, as the fol-
lowing examples demonstrate, that the relation between the
abscissa and ordinate of one point of the series is the same as
that of the co-ordinates of every other point of the series; so
that this relation being given, by assigning different values to the
abscissa, we will be enabled to find the corresponding ordinates.
This relation of formula, which shows how the ordinates are to
be deduced from the corresponding abscissas, is called eguation.

\ Egualion of a straight line.

10. Let the given line be B'F (fig. 6). From any point K
draw the ordinate KH or y, which, supposing the axes rectangu-

" lar, will be perpendicular to X, AH will be the corresponding

abscissa or . The ordinate of the point E, in which the given
line cuts the axis Y, is AE, which we will represent by _, and
to which correspends an abscissa equal to zero.

Now, from the similarity of the triangles BAE and BHK we
derive the proportion

AE : BA :: HK : BA 4+ AH
That is to say,
Yorv BAG v BA S,
From which
yeteBA T 2)

But from trigonometry the triangle ABE gives i

BA
AE Yo .
= EBA — iz EBA’ and if the tangent of the angle
(=1

under the given line and the positive direction of X be, for

= ig EBA;

hence BA —
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brevity’s sake, called /; BA — y—t", which value substituted in
the preceding equation will give
3= iz + Yoir

The required equation between the co-ordinates = , y of any
point K, and the constant quantities # and y_, thatis, the equation

" of the given line, which may be transformed into the following

r—ay -+t 04

; 1
by making T = and —-—%9 = 0

Scholium. Let E'F' be another straight line parallel to BF,
the angle of this line with the positive axis X must necessarily
be equal to that of the first line, but the ordinate AE’ corres-
ponding to the origin of the axes is different from y, ; hence, if

we denote by Yo that ordinate, the equation of E'F will be
y=te+ty, (1).

In the supposition of the line passing through the origin 6f the
co-ordinates, y, = o, and consequently in this case the equation
will be
y=tz
Corollary I. Let us suppose now that BF passes through a

point of which x, and y, are the co-ordinates, these two values
must fulfil the equation of the line, and we will have

Y =tz +y,

which subtracted from the general equation between the co-ordi-
nates of any point, will give

y—y, =t@—a,)

in which nothing is variable but the co-ordinates @ , y of any
point of the line ; hence it exhibits the constant relation between
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the co-ordinates, and consequently it is the general equation of
the straight line referred to rectangular axes and passing through
a given point.

Corollary 1I. If besides the line BF the line CE' perpendicu-
lar to the first be referred to the axes X , Y (fig. 7), its equation
will be y = #g¢ DCX . # 4+ AE’; but OCX = COB +- OBC

— 90° 4~ OBC ; hence #g OCX = #g (90° 4 OBC) = — cot .
1 1 ; §
— = s t f E C will
OB == 72 OBC — 3 therefore the equation o
be

y:—-—}w—]—AE’_

By comparing, now, the coefficient ¢ of the abscissa in the equa-
tion of EF with that of the same abscissa in equation (1), it is
easy to perceive that the product between these two coefficients
is equal to the negative unity; and since CE, the perpendicular

to B’ F can alone admit of the coefficient — lee may conclude
that if

Yy=hr 4+ c

y=lke+d

be the equations of two given lines, these lines are at right angley/-
to each other, whenever

\ hk4+1=o

Equations of the peviphery of the civele with reference to trwo systems
of vectangular aves.

11. Let us first suppose the origin of the co-ordinates at the
extremity A (fig. 8) of the diameter AB =— 2r of the circle AFB.
From any point E draw ED parallel to Y. Now, it is known
from geometry that the square of ED perpendicular to AX is
equal to the product of AD and DB, that is, ED*— AD x DB.
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But ED — y, AD — 2, DB —= AB — AD = 2% — « ; hence
y: = Uz — 22

The equation of the circle with reference to the axes AX, AY.

If the origin of the co-ordinates be situated at the centre of
the given circle, and AX, AY be (fig. 9) the rectangular axes ;
from.any point F draw FD perpepdicular to AK, we will have
FD*= MD. DN; and since FD =y, MD=MA -+ AD =7+ «a,
DN=NA—AX—r—uzx;

Y =r*—z*

The equation of the circle referred to a system of rectangular ,
axes having their origin at the centre of the same circle.

\ Inalysis or discussion of equeations.
EQUATIONS OF THE CIRCLE.
12. The first of the preceding equations of the circle corres-
ponds to the following: »

y==z== &/ [2ra — a*]

from which we perceive that when « is positive and less than 2r,
to every value of the abscissa correspond two values of 7, the
one positive and the other negative, and both equal in length.
When « is positive, but greater than 2r, then the difference
2re — o is negative, and no real value can be found for y. And
when « is less than 2, but negative, the same difference likewise
results negatively, and for the same reason no real value for the
ordinate is given.
The second equation corresponds to

Y=/ [t —2?]

from which we see that to every value of x, positive as well as
negative, corresponds the double value of y equal in length and
contrary in sign, provided z be less than r, because with # > 7,
y never can have a real value. /
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REMARK.

13. From the preceding analysis it plainly appears that we
can, not only from a given series of points, derive the equation,
but that from a given equation we can derive the corresponding
line with its properties. Such lines, and, in general, every series
of points deduced from a given equation, are called geomefrical
loci, and the deduction of these loci and of their properties
constitutes the so termed discussion of equations, the principal
object of analytical geometry. To have some examples of this
discussion let us take the equations of those curve lines of which
we will speak more fully afterwards.

EXAMPLE I.
Discussion of the equation y* — px.

14. In the given equation let p be a known and positive quan-

tity. As the equation can be reduced to the following
y= £ ~pa;

it is evident that every negative value of x gives an imaginary
one for y, therefore AX , AY being (fig. 10) the positive direction
of the rectangular axis, no point of the geometrical locus corres-
ponding to the given equation can be found from A towards X'.
Again, from the same equation it follows that to every positive
value of @ correspond two equal values for ¥, the one positive and
the other negative ; so that, substituting for « a value equal to Aa
and taking on the perpendicular 44, two portions, ab , ad’ equal to
y deduced from the equation, the two extremities 4 and &' will be
points of the locus. Again, the same equation shows that the
values of y increase with those of @ ; consequently both branches
of the curve at the same distance from the axis Y are equally dis-
tant from the axis X and extend indefinitely from both axes.
Likewise we can deduce that the axis X cuts the curve at the
origin of the co-ordinates, and the axis Y is a tangent to the curve
at that point. '
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EXAMPLE II.
Discussion of the equation y2 = p (at — x2).

15. Let the given equation be transformed into the following

y==E[p (e —22)]

and supposing p a known and positive quantity ; to every value
of z, either positive or negative, will correspond two equal values
for y with contrary signs, provided z be less than &. When z is
equal to a, then y will be equal to zero, and when it is greater
than g, the value of y becomes imaginary. We perceive, there-
fore, that the geometrical locus (fig. 11) corresponding to the
given equation is a curve which cuts the axis X at a distance
equal to « from the origin A and on both sides of the axis. Sec-
ondly, the superior branch of the curve is equal to the inferior; and
finally, beyond the points of intersection the curve no longer exists.

EXAMPLE III
Discussion of the equation y* — p (¥2 — at).
16. Let the given equation be reduced to the following form :

y==L W [p (22 —a?)]

in which let p be positive. It appears that, as far as @ shall be
less than a, no real value can be obtained for y, whether « be
positive or negative. Again, with x equal to 4 @ or — a, y shall
be equal to zero, and to all the other abscissas taken (fig. 12) on
the positive direction of X as well as on the negative, shall corres-
pond two equal ordinates with different signs always increasing
together with . Therefore the corresponding locus shall cut the
axis X at a distance equal to + « and — a from the origin of the
axes, and then it shall extend itself with four uniform and indefi-
nite branches.

gt |
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REMARKS.

171t is to be observed that the geometrical loci come under
the sam;\denomination of the corresponding equations. Now two
kinds of equations are to be distinguished, the algebraical and the
transcendental:, Every equation in which the operations to be
performed with \‘t‘qgard to the variable quantities, are. nothing but
algebraical additicha_‘ and subtraction, multiplication and division,
or elevation to a fixed power, either whole or fractional, belongs
to the algebraical kind. The others of whatever quality are
transcendental. Hence it follows that the equations of the pre-
ceding examples are algebraical.

Again, the algebraical ‘equations and corresponding loci are
distributed in different orders, according to the degree of the
equation. So the straight Iin\e\ is the locus of the first order, be-
cause the corresponding equatibi(l is of the first degree ; the circu-
lar line is of the second order, béc_lause the corresponding equation
is of the second degree. \

. -‘ r‘/ e A
EXAMPLE I, '
\

18. Let us suppose the plane of the circle CL (fig. 13) to be
the same as that in which is the line CD tangent to the same
circle. Let the point of contact C be I'marked with a dot, and the
circle being rolled like a wheel along the tangent line CD, the
marked point will describe on the plane a curvilinear path CAD
called cycloid. The circle by whose revolution the cyeloid is
traced out is called the generating circle ; and supposing D to be
the point where it will have completed one revolution, the line
CD or the base of the curve will be exactly equal to the circum-
ference of the generating circle. The perpendicular AB on the
middle of the base is its axis. Now, in order to know if such a
curve is transcendental, we must find the equation. To this end
suppose the origin of the co-ordinates in A and the axis AX of the
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abscissas coincident with the axis AB of the curve, and the axis
AY of the ordinates perpendicular to AX. The co-ordinates of
any point M shall be MN =y, NA —gx. Let us now transpose
the describing point of the generating circle on M by means of a
corresponding revolution. The diameter C! L/ drawing from the
point C/ of the actual contact shall be perpendicular to the base,
and consequently parallel to the axis X ; hence : _.‘"j L

==l Iy W = ]‘_}_ J a
= = % (ot B
y= Mg+ ¢N =My -+ CB

To determine the values of these elements draw from the center
o the radius oM, and let the angle MoL or the corresponding arc
be termed a, and supposing the radius of the circle equal to 7,
since from trigonometry we have Mg — Mo sin MoL and Lg =
Mo . vers-sin MoL = Mo (1 — cos MoL) we shall obtain

Mg =rsina,Lg=7 (1 —cosa).

With regard to the value of C' B observe that C'B = BC — CC/,
but BC = C' ML and CC! —= C'M, hence C'B — ML. Now it
is known from geometry that the arc of a circle is in proportion
to the radius, therefore the arc ML (= «) with relation to the cor-
responding arc of the circle, whose radius is 1, is to be expressed
by #a, and so

CB=r7ra.

Substituting, now, these values in (o), we shall have for the co-
ordinates

2=17 (1l—cosa)
y=1noao -+ 7sina
But from these equations
2—1r I=—rcosa
y—7ra _—... r sin a

\

\
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and (@ —17)t =7 cos %a

2

(y — 7 a)® — 7% sin *a

therefore, since from trigonometry sin ?a 4 cos 2a =1
=74 (y—7r0)t =7
from which
y=ro+W [r* — (z —7)*]
or y—=ra-+A/[2rc—x2].

Let us now observe, that since » « is an arc, to have the second
member of the equation rectilinear, we must rectify the first
term. Secondly, since the arc depends on the abscissa Lg, we
must examine what operation is to be performed with regard to
@ to have the required rectification, and the whole second mem-
ber immediately dependent on @. To this end it is to be remem-
bered that Mg — 7 sin a, and consequently sin « = EI;E : and

—2 AT e
from geometry Mg — C'g . ¢L!, hence Mg —=4/C"¢. gL' =

N(CL —Lg) gU=W (2r—a) e = Vo —a°;

therefore

From which, by subjecting  to trigonometrical operation, we
are enabled to derive the rectification of a. Hence the preceding
equation between the co-ordinates xy of any point of the cycloid
is transcendental, therefore the curve is also transcendental.

EXAMPLE II.

19. Let us examine now the inverse case of the preceding, by
deducing from a given equation the corresponding locus; and let

y=a

!
!
|
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be the equation in which @ is a positive and constant quantity, the
remaining are variable, and on account of the variable exponent
« the equation is transcendental. Now, it is plain, that by
making x equal to zero the corresponding y becomes equal to 1.
And if x increases in arithmetical proportion, y increases in a
geometrical one, supposing x either positive or negative: and in

e : 1
the second supposition, since ¢—% = —; the value of y will be
g a®

represented by = and will diminish when x increases; yet it

will never be equal to zero as long as x preserves a finite value,
Therefore let (fig. 14) AX, AY be the axes. The curve will cut
AY in K at a distancefrom A equal to 1, and towards the posi-
tive direction of X ~will depart more and more from that axis;
towards the negative direction it will continually approach to the
same axis without ever reaching it, but at an infinite distance from
A. This curve, on account of the relation between the co-ordi-
nates, is called Logarithmic: and the axis or straight line to
which it continually approaches is called symplote. The asymp-
3%

totes are common to several curves. i VAR 4
\ Polar co-ordinales.

20. It happens, frequently, that the use of the polar co-ordinates
is preferred to that of the rectilinear co-ordinates, hence follows the
necessity of passing from one system to the other. To ascertain
the relation between such co-ordinates let (fig. 15) AX, AY, be
the rectangular axes, and from the origin A of these axes let the
straight line AM be drawn to any point M of the curve LL'. If
the length of AM and the angle which it forms with AX be
known, the position of the point M will be ascertained with re-
gard to A. These two elements, by means of which the posi-
tion of the point is determined, are called polur co-ordinates.
Now let the variable angle which MA makes with AX be repre-
sented by w and MA (called either radius or radius vector) by p.
From the same point M, let the perpendicular MP be drawn to

X; we shall have AP — 2, MP — 3, but :
2
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PM = AM . sin MAP , AP = AM . cos MAP .

Therefore
Y=p.850lw,T=p.COSw
The required relations in order to pass from the rectangular
system to that of the polar co-ordinates, or vice versa.

Functions of cwrvilinear loci,

21. Tangent of the point M (fig. 16) of the curve LM is that
part of the geometrical tangent which is limited between the point
of contact and the point T of the exis X, that is, MT.

The MNormal is that part of the line MT' perpendicular to the
tangent, comprised between the point of contact and T/, the point
of intersection with the axis X.

The sub-tangent is the line TP below the tangent TM, that is,
the distance between the ordinate MP of the point of contact and
the tangent, on the axis X.

The sub-normal is the line PT under the normal MT/, that is,
the distance between the ordinate MP and the normal, on the/
axis X,



BOOK II.

CO-ORDINATES AND GEOMETRICAL LOCI IN SPACE,

Relative position of the points in space.

Nige e

. L

Flree different manners of ascertaining the co-ordinates of the
same point.

22. As any series of points on aplane can be referred to any sys-
tem of two axes on the same plane ; so any series of points situat-
ed in space can be referred to three axes in as many planes, and
their position may be determined with relation to the system of
axes. Let M (fig. 17) be a point in space, and let AX, AY, AZ
or X, Y, Z, designate three straight lines or axes in space. If
these lines are at right angles to each other, AZ will be perpen-
dicular to the plane XAY, and AX perpendicular to the plane
YAZ, and of course the planes XAZ, YAZ perpendicular to the
third XAY, and XAZ perpendicular to YAZ. Now, to have the
position of the point M with reference to any system of axes, let
us draw from M the line MK or z, parallel to the axis Z, so as to
meet the plane XAY in K. Let another line KH or y be drawn
from K parallel to the axis Y. Let AH be represented by x. It
is evident that the position of the point M with reference to the
axes X, Y, Z, is determined by the co-ordinates x, ¥, z; because
the same three co-ordinates cannot belong at the same time to
any other point. It is unnecessary to repeat that the signs of the
co-ordinates correspond to those of the axes, and if taken from
the positive part AX; AY, AZ, they are positive ; if from the neg-
ative AX/, AY/, AZ/, they are negative.

23. In the same manner as from M we drew to the plane XAY,
MK parallel to Z, from the same point let us draw MR to the
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plane XAZ and parallel to Y, and MS to the plane ZAY and par-
allel to X. Now, since MS is parallel to X and MK to Z, we
know from geometry, first, that the plane SMK is parallel to
ZAX; secondly, that since MR and KH are parallel to Y, and
consequently parallel to each other, and both being comprised
between two parallel planes, they are equal to each other. In
the same manner we may prove that AH is equal to MS. There-
fore, the co-ordinates of any point M situated in space are de-
termined by three lines MK, MR, MS, parallel to the axes, and
drawn from the point to the planes. The denomination of each
co-ordinate depends on the axis to which it is parallel ; thatis to
say:
ME =72z, MR = o, M8 —u

24. The same co-ordinates cam be determined in a third man-
ner, because let H, L, G be the points at which the axes are met
by the planes RMK, SMR, SMK. The parallel lines AL, MK :
SM, AH : AG, MR shall be equal. Therefore, the co-ordinates
x, y, z of the point M are determined by AH, AG, AL. Now,
let us join M with L, H, G. ML shall be a line parallel to the
plane YAX. Therefore, to ascertain the co-ordinate z of the
point M, it is sufficient to draw from this point to the axes Z, ML
parallel to the plane YAX, and the portion AL of the axes be-
tween the origin and the point L, shall be the required co-ordi-
nate. Likewise, the portions AH, AG of the axes X and Y,
between the origin and the points met by MH, MG, parallel to
the planes YAZ, XAZ, shall be the co-ordinates  and y of the
same point M. It should be observed, that if the axes be at right
angles, the lines ML, MH, MG shall be perpendicular to the cor-

responding axes, as well as MK, MR, MS to the corresponding
planes.

The disiance belwceen fwo poinids in space deiermined by the co-ordinales
of each point. ;

25. Let @, v, z be the co-ordinates of the-"'\Point M, and &', ¥/,
2/, the co-ordinates of the point M/, (fig. 18.) \Draw from M and

N
i
N
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\
M’ MK, M'K! to the plane XAY and parallel to Z and KH, K/H/
parallel to Y, we will have

AH :w;KH = §,iRM '=2.
A= :c’,"i K'H' =g, KM/ = 2.

Again, draw MM/, KK'} and K'Q parallel to X, and M'N par-
allel to KK/, and let us suppose the axes at right angles. The
triangle K'QK is then rec'@angular in @ and M'MN in N ; hence

g

MM = M'N + MN
KK =KQ +KQ
But M/N — KK/’ hence

MW = KK+ NM = NM + KQ + K@
Now NM = MK — NK = MK — MK/ =z — 2
KQ = KH —Q{-I —KH —KH =y—y
K'Q —_-HH’:AH—-—AH': o —a'
Therefore, .' :
MM = (o — ) W (4 — 9) + (2 — )

Which formula gives the distance MM’ between the points M
and M/ by the co-ordinates of the same points.

Corollary I. If the point M’ be transferred to the origin of the
axes, the co-ordinates 2/, 3/, 2/ will be equal to zero, and the pre-
ceding formula shall become

mhz 2 -+ ¥ -4 &

that is to say, the square of thel"llstraight line drawn from the ori-
gin of the axes to any point M, is equal to the sum of the squares
of the co-ordinates of that point, \". It is plain that to the preceding
formula we may add the fo]lowin%

\

.
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il |
AM! — =2* + ym + a'?
Corollary II. Let the angle MAM' be called 3. We know from
trigonometry that MM’ is equal to the sum of the squares AM,

m? minus 2 AM . AM'. cos 3. From this equation is deduced
the following
AM + AM' — MM/

2AM. AM'

cos 3 —

In which, substituting the values before determined, we will find

aal + yy + =2/
AM. AM
az 4y + =2
NE F g Nty
That is, the value of the angle formed by two straight lines AM,

AM/, passing through the origin of the axes, is given by the co-
ordinates of M and M'.

COoBB-=

or

cos 8 —

Corollary IIT. Let the angles which AM makes with the axes
X, Y, Z be represented by X, Y, Z, and the angles which AM/
makes with the same axes by X', ¥, Z; if from M and M’ be
drawn the lines MH, M'H’ : Mk, M'%" : Mm, M' m' perpendicular
to the axes, we shall have (24)

AR —w, Ak_ =AM =z
Al =, Ak — ¥, Am =z
but from trigonometry _;'.
AH =AM cos X, Ak _'I'—.__AM cos ¥, Am = AM cos Z
AH — AM cos X', Ak’ = AM’ cos Y, Am' — AM’ cos Z'
hence,
azx' = AM . AM'. cos X cos X7
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i
yy = AM ;_;JAM’ . cos ¥Ycos ¥
= AM-J. AM'. cos Z cos Z

Therefore, from these values, and from the formula of the prece-
dent corollary, we shall find

cos B = cos X cos X' + cos Y cos Y - cos Z cos Z

The same cosine of the angle 3 given by the cosines of the angles
which each line makes with the axes.

Corollary IV. If MAM' is equal to 90°, then cos =—=o0. There-
fore when two straight lines passing through the origin of the co-
ordinates are perpendicular to each other, the relation between
the cosines of the angles, and consequently between the angles
formed by each line with the axes, is given by the following for-
mula :

cos X cos X'+ cos Ycos ¥+ cos Zcos Z = o
Corollary V. Suppose MAM' = o, the line AM, AM’ will co-
incide with each other and form only one straight line. In this
case cos g = 1, and cos X cos X' = cos X, cos Y cos ¥ = cos

QY, cos Z cos Z = cos Z, and the formpla of the preceding Cor.
IIT will be converted into the other >

'Z"fwa:,u cos ;X-|— cos g?t’—l— cci;:gZ= 1 AL

which gives the relation between the angles which any straight

line AM makes, with the rectangular axes. f‘b}
Kor las for passing from one fo anather system of parallel axes.
' T lA -

26. Let (fig. 19) AX, AY, AZ be any system of axes, and
AUX", AY", A"Z!" a second system of axes parallel to the for-
mer. The axes of the latter system being produced so as to meet
in %, 7, s the planes of the first system, if «_, 3, 2, represent the
co-ordinates of A" with reference to A, we shall have (23)

St Als =a, Allr =y, Alk=2z,

2 /0 | V3. WL T AN A
U

\
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Let now M be any point to be referred to both systems, and let
MK” K, MR” R, MS” S be drawn from M parallel to the axes.
Let moreover K", R/, S/ represent the points of the planes of the
second system met by the parallel lines, and K, R, S the corres-
ponding points on the planes of the first system. If the co-ordi-
nates of the point M with regard to the first system be called ,
4, 2, and those with reference to the second a', ', 2", we will
have \

M =w MR =, MKk —z
MS/ = af/, MR" = 3, MK/ = 2
But on account of the parallel planes
MS = MS" 4 A's, MR = MR" + A'», MK — MK" +4- A"k

hence ;
¢ =old-w, g =y vz =2 42,

T T { ] Ty ol —
or all =z S Y=Y Y ® =2 e,

all of which give the relation between the co-ordinates of the two
systems.

General formulas for passing from one system to any other whalever.

R7. Let us come now to the most general formulas of transfor-
mation of co-ordinates, and let AX, AY, AZ (fig. 20) be any sys-
tem of axes, and A’ X', A’Y/, A’ Z/ any other system whatever.
In order to have the relation between the co-ordinates of any
point with reference to the first system, and the co-ordinates
of the same point with reference to the second; let us draw from
Al three lines A! Z/, A’ X", A’ Y parallel to the axes X, Y, Z
which will form a third system, and considering this system to-
gether with A'X/, A'Y/, Al Z/ ; let us first ascertain the relation
between the co-ordinates of any point M with reference to these
two systems of axes. To this end let us draw from M the straight
line MB perpendicular to the plane X" A’ Y/ and A’ B on the same
plane, and let A’ H", H' K, K" M be the co-ordinates 2/, ', 2/
of the point M with reference to the corresponding axes X”, Y,

F
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Z'"y and A'’H/, H' K/, K! M the co-ordinates a/, 3/, z/ with refer-
ence to the axes X/, Y/, Z'. Let the perpendicular MB be called
n. The sides MB, BA/ which lie in one plane, and A’ H' in ano-
ther plane, with H' K/, K' M in a third plane, constitute the poly-
gon MBA'H'K'M. Now denoting by (na!), (ny'), (nz') the an-
gles which the lines A/ H', H' K, K/ M form with lines parallel
to MB or with MB itself, according to the given demonstration ()
we shall obtain

n = — K'M cos (nz') — H/K' cos (ny') — H'A! cos (na')
or n= —z!cos (nz') — y cos (ny') — a' cos (na')

The angle which the last side A'B of the polygon makes with
the line parallel to n being a right angle, the corresponding cosine
is equal to zero. If now the angle which # makes with MK/ be
termed (n2') or (since MK" is parallel to the axis z) (nz,) from
the rectangular triangle MBK/" we will have

n = MK" cos (nz) = 2 cos (nz)

which value being substituted in ‘the preceding equation, we will
find

2!l cos (nz) = — 2! cos (n2!) — y' ¢cos (ny") — a' cos (na')

or

abiady <1 2! cos (nz') 4 y' cos {ﬁ-y’} + 2/ cos (aa')
cos (nz)

By a similar process supposing #//and ' to be the perpendicu-
lar lines drawn from M to the plangés X" A/ Z", Y A’ Z' we may
find ’

2! cos (n'2!) + ¥/ dos (n'y') 4 &' cos (n/ ')

ko

% €T cos (n'y)

il z! cos (n'2') 4 of cos (n'' y') + a' cos (n'! @)
¥ cos (2 x)

and these equations afford the relation between the co-ordinates
a!y y, 2/ and @', 3, 2/, or injthe supposition of the axes X, Y, Z
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having common origin with X/, Y/, Z/, between the co-ordinates
a!y 9y 2! and x, y, 2.

Let us come now to the proposed case in which the origin of
the systems is different. Supposing that x_, ¥, z, are the co-
ordinates of the origin A’with reference to A, since A’ X", A'Y/,
Al Z!! are parallel to AX, AY, AZ according to the relation (26)
between the co-ordinates of the same point with reference to two
systems of parallel axes, we will have

I = 4 —
'r”:m_xo’y =YyY—Y»z =% %5

Therefore the first members of the preceding equations may be
converted into @ — x_, y—y,, 2 — 2z, and by transposing x_,
Y55 2, to the second members of the same equations we will obtain

& a! cos (n''a') + 3 cos (n"y') + 2/ cos (' 2')
o it cos (n )
/

a' cos (n'a') —|—y’ cos (n'y') 4 2! cos (n'2')

R R )

cos (n'y)
a' cos (n 3:’)4 y' cos (ny') 4+ 2! cos (nz2')
=R, =
P / cos (nz)
/

which are the required géneral formulas for transformation.

Seholium. An observation is here to be made similar to that
under n (8.) The determined value of @ given by the second
member of the ygoing equation is equivalent to

e 00 (' ') 4 oS (n'y) , __ cos(alZ))
°  ¢bs (n' @) cos (n' @) cos (n' x)

in which t}é coeflicients of the co-ordinates a', 4/, 2/ are numeri-
cal valugé' and the co-ordinates are linear quantities, that is, quan-
tities of the first degree like a given by them. From which it
follows that the value of 2" cannot be given but by powers of the
same and less degree of the co-ordinates o/, ¥/, 2/.

The same is
to be said with regard to y and z.
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11 Corollary. Supposing the axes X, Y, Z rectangular (fig. 21)
the normals n, ', #" ; that is to say, MB, MB/, MB" shall be
parallel to the same axes, and consequently the angles (a' z),
(n'y), (nz) shall be equal to zero. Hence,

cos (n''x) = 1, cos (n'y) = 1, cos (n2) = 1

Again, (fig. 22) the angle which for instance BM or n makes
with K'M, that is, the angle K' ML, or (n2') being equal to 180°
—K'MB and K'MB = LM e = ZAZ' = (22/) will give us

cos (nz') = cos [180° — (22/)] =  -— cos (z2/)

And since the angle which K'!// parallel to n makes with H' K/,
that is, the angle H' K'?/, or (ny') is equal to 180° — I/ K’ » and
UI'K'r = ZAY' = (zy'), we will have

cos (ny') = cos [180° — (2y')] = — cos (2y')

The angle which AH’' makes with H'Z" parallel to # or the angle
(n@') being equal to (180° — /" H'X') or 180° — ZAX or 180°
— (za') will give

cos (na') = cos [180° — (2p')] = — cos (zz')

In the same manner we may find |

Cﬁfg ﬂ'/; \  cos (nlzl) = — cbs (42!)

CB | cos (ny') = — '30!'? (¥y)
; a.z?w e | cos/(nal) =— co;a_ (ya')
LR v g T
Darrs eftw,’;;‘_ cos (n''y')= — cos E:Ify')
cos (n'lz')= — cos (xx")

Therefore, in the supposition that the axes X, Y, Z, are at right
angles and the origin A is common to both systems, by substituting
in the formulas above determined these last values, we will find



28 GEOMETRY.
@ = al cos (xx') + y' cos (xy') = cos (x2')
y = &' cos'(yaf) - y' cos (yy’)—[— 2! cos (yz')
z =a' cos (za') + ¥ cos (2y') + 2/ cos (22/)

Formulas giving the relation between the co-ordinates of any
point with reference to a system of rectangular axes and the co-
ordinates of the same point referred to any other system having a
common origin with the former.

REMARKS.

28. Every point, either of a“-strai'ght or curve line, or of a
plane or curve surface in space, may be referred to any system
of axes. Suppose now the same relation to exist between the co-
ordinates of each point of such a series; this relation is called the
equation of the line or surface, and the series of points corres-
ponding to the equation, as we said elsewhere (13), is termed locus
or geometrical locus of the equation. From the same relation
follow the two kinds of investigation already explained, that is, a
series of points being given to derive the corresponding equation,
or an equation being given to find the corresponding locus. We
will now speak of the first investigation, which will constitute the
following part of the present book, reserving to the third and
fourth books the discussion of the second, both in plane surfaces
and space, in a larger extension.

EXAMPLES.
NUJ. Eguation of the plane.

29. Let (fig. 23) the plane BCE be referred to the rectangular
axes AX, AY, AZ, and let BCn, ECm represent the intersections
of this plane with YAZ and XAZ. Let the distance AC between
the origin of the co-ordinates and the point C of the axis Z met
by BCE be called 2z and the trigonometrical tangents of the angles
BrnY, EmX, fand #!. Now to the straight line Em, if referred to
the axes X, Z, will correspond (10) the equation

z=tx -4 2z, (0)
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Let now K be any point of the given plane, the perpendicu-
lar line KH drawn from K to the plane XAY, and the perpendicular
Hea drawn from H to the axis X and Aa will be the co-ordinates
2, ¥, @ of that point. Imagine now the plane determined by KHa,
which is parallel to ZAY, indefinitely produced, and let pr, pU,
aV be the intersections of this new plane with BCE, with XAY,
and with XAZ. From this construction it follows that not only
pH is parallel to nY, but also that pr is parallel to 2B, and &V is
parallel to AZ ; therefore the angle VaU equal to ZAY shall be
rectangular, and 7pU shall be equal to BaY, and consequently
lg . pU = {. If now the line 7p be referred to the axes aV; aU,

we will have (10)
KH=1{.aH 4 la

but Iz is an ordinate of mE with reference to the axes X, Y, and
consequently is equal (o) to #' . Ae - 2, ; therefore

KH=+¢.aH - t. Aa + =,

or z=ty+4ta+z, ¥

The equation, or the relation between the co-ordinates of the
point K : but the point K is any point of the plane ; therefore the
same relation shall be verified with every other point of the same
plane, and the formula thus produced is the required equation of
the plane.

Corollary I. If we conceive another plane parallel to the first,
since the angles formed by the intersections of this plane with
XAZ, YAZ, and the axes X, Y shall be the same, and the dis-
tance between the origin A of the axes, and the point C' of Z met
by the new plane is different from z_, so calling z’ such a dis-
tance, the equation of this new plane shall.be exhibited by

r=tyt+te+tz

Corollary I1. Imagine that this plane passes through a point of
which @y ¥/, 2’ are the co-ordinates, the preceding equation must

necessarily admit of t\{ese peculiar values of the co-ordinates, and
shall be : 7
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=1y +ta' 4z,
which subtracted from the preceding will give
r—P=t(y—y) + 1 (a—2)
the general equation of any plane passing through a given point.
Corollary IIL. Supposing now that the given point be the ori-

gin of the co-ordinates, then @' = y' = 2’ = o, and the last equa-
tion shall be converted into the following :

z=1ty+4

general equation of any plane passing through the origin of the
co-ordinates.

Scholium. Let us observe that from the equation z = ty
t @ 4 z, we may derive

- lz f xT lz
y— t t (=]
%0 ¢ 1
& ?Z fy TZO
ki ] ¥ 1
or ma lng T: m,_T= n,_Tzc,: 9
d 1 : ¢ : 1 ]
an et e et e
y=mz 4 nx g
x=mz+ny-+ ¢

both of which are equations of the same plane, and which could
be deduced directly as the first was deduced ; so m and # are the
tangents of the angles made by the intersections of the plane
with Z and X, and »/, 2/ the tangents of the angles formed by the
intersections with Z and Y.
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II. Equation of the surface generated by the revolution of any line
about an axis.

30. Still supposing the system of axes at right angles, to which
system every point of the surface is to be referred, imagine a
plane ZAV passing through the axis Z, on which is described any
line msn (fig. 24,) and imagine the same plane moveable about
Z ; it is evident, first, that the line msn will describe a surface
around Z ; and if we conceive the surface already produced, it is
also evident that any section of the surface made by a plane pass-
ing through Z shall reproduce the same line msn.

Let us now suppose, as given, a surface mpng generated in the
described manner by any line, and suppose s to be any point of
the given surface, the section msn made on the plane ZAV pass-
ing through s by the surface will be the generating line. Now
the perpeadicular s drawn from s to the plane XAY, the perpen-
dicular 44 drawn from % to the axis X and A/, are the co-ordinates
z, ¥, @ of the point s, the relation of which is to be found. To
this end let sr be drawn from s perpendicular to Z, it shall be

equal to Ak, but A% = "Hc—i—i:_lcg: @ + y - Hence,

re=a + 3

And if the line msn be referred to the axes AZ, AV, consider-
ing Z as the axis of abscissas, s shall be the ordinate of the
point s, and supposing the equation of msn to be expressed by

rs will be equal to f(rA), but 7A = sk = z; therefore r& =
[f (2)T*, which value, substituted in the former equation, will
give

[fEF=a+9....(a)
The required relation between ‘the co-ordinates of the point s.
But s is any point of the surface; hence the relation between the
co-ordinates of any point shall be that given by (o), and conse
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quently (o,) is the general equation of the surface generated by
the revolution of any line about the axis Z.

Let us now propose some applications, observing before that
the second member of (o,) is independent of f (z), and whatever
be the generating line shall be always the same. On the con-
trary, f (z) is variable with the generating line, and depends upon
the equation of the same line. Therefore, to obtain the equation
of the surface generated by a given line, it is sufficient to deter-
mine the equation of this line with reference to the axes AX,
AV ; that is, it is suflicient to determine f'(z), and to substitute
this value in the general equation (o,). '

Application I. If the generating line is a circle, having the
centre in A, since (11) the equation of this line is

N

) ' ) ¥ =71 — 27

or\.l. : = AT —m 23
i wn/a,)will have (o)
~— @) =2
and consequently (o,) the equation of the generated surface shall
.be #* — 2 = a* 4 3°, or
r=at 1y +2.. 0. (@)

but the surface produced by a circle turned around a fixed diame-
ter is a sphere ; therefore the formula (a) is the equation of the
spherical surface, having the radius » and the centre at the origin
of the axes.

Applicatior: I1. If the generating line is (fig. 25) the straight
line mn, making the angle nmz with the positive direction of Z,
supposing An = 7, and according to the equation of the straight
line (10) we will have '

v=[lg.nmZ]z+r



\Z. GEOMETRY. 33
but amZ = 180° — nmA ; consequently tg . nmZ = — 1g . nmA

and — 1g . nmA = — ;:-i ; therefore, if the altitude Am be repre-

sented by ¢ :1g . amZ = — — ; consequently the equation of the

24
g
describing line mn is
>
V= —— — 2z r
7 i
from which
r r®
vr=[——z4rf=—(9g—2)
[~ 2zt =T 0—2)

hence the equation of the corresponding surface is

g (g—2)=2a'4y (a)

but the surface produced by mn is that of a right cone, of which
Am is the altitude and An the radius of the base ; theretore the
formula (a,) is the equation of the surface of the right cone.

Application 1II. If the generating line is the straight line mn
(fig. 26) parallel to Z, suppose An = r, and since the angle
made by mn with Z is equal to zero and #g (o) = o, the equation
of mn, with reference to the axes AZ, AV, will be

v=r
from which =7
and consequently the equation of the surface generated by mn is
r=z49r....(a)

but the surface produced by mn is that of a right cylinder, of
which the axis passes through A Z, and the radius of the base is An:
therefore the formula (a;) is the equation of the surface of the
described cylinder. It is to be observed that this equation is the:
same as that of the circular base (11). :

e lvakdel
1,
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FPolar co-ordinales.

31. The rectangular co-ordinates AH = 2, HK = y, KM =z
(fig. %7) of any point M can be transformed into polar co-ordi-
nates. Because the position of the point M with reference to A
can be completely determined by the straight line AM, drawn from
the origin A to the point M, by the angle MAZ, which the same
line makes with Z, and by the angle that the plane ZAK, on
which is AM, makes with ZAX, namely, the angle XAK. It is
here to be remarked, that supposing the angle ZAM to be taken
from 0° to 180°, the position of the rectilinear co-ordinate AM
may be directed towards every possible point in space around A,
provided the angle XAK be taken from 0° to 360°. Now, for
the sake of brevity, let MA be termed ;, and the angles ZAM,
XAK, 6 and . The values of these polar co-ordinates may be 3
given by those of the rectangular co-ordinates corresponding to'7
the same point. Because )

2= AK . cos o E
y = AK . sin o
z = MA . sin (90° — 8) -

and since AK = AM cos (90° — ) = ; sin 6 and MA sin (90%
— )= pcosb; {1

X = p sin 6 COS w
Y= p sin ¢ sin w
Z = p COS 6

which values, if substituted instead of x, ¥, 2 in the equation of
the surface or line referred to the rectangular axes, will afford
the equation or relation between the polar co-ordinates of the
same series of points.
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Lines in space.
REMARK.

32. The object of any equation, as we observed (13), is the
description or construction of the corresponding locus. For
instance, from z = fz 4 'y -+ z_, the equation of the plane, we
may derive the different values of z corresponding to x and y,
which are given, and each one of which z marks a point of the
plane. But suppose that instead of considering the whole plane
we refer only to the axes, a series of points traced by a line, for
example, a circle on the same plane. It is evident that the rela-
tion between the co-ordinates of every point of the plane, or the
equation of the plane, shall be the equation of that peculiar series
of points. And for this reason the above mentioned object of
the equation cannot be obtained with regard to the circle, because
no mark distinguishes the co-ordinates proper to the circle from
those of the plane in general. Therefore, to have the only values
proper to the line, it is necessary to modify the relation between
the co-ordinates in such a manner as to exclude all of them
which do not belong to the same line. This modification con-
sidered under its most general aspect will be afforded by the
following discussion.

FEgnations of any {ine in space.

33. Let (fig. 28) L be any line referred to the rectangular axes
X, Y, Z : and imagine two straight lines Rz, perpendicular to
the plane XAY, and R/' perpendicular to the plane XAZ running
along the given L. The lines P and Q described by these two
perpendiculars shall be the projections of L on the planes XAY,
XAZ. Two observations are here to be made: first, that in the
same manner as the perpendicular lines describe on the planes
the projections P and Q, so they describe in space two cylindrical
surfaces, of which L is the common intersection. Secondly, the
same perpendiculars take successively the place of the co-ordi~
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nates of L ; that is to say, the perpendicular Rr becomes succes-
sively the co-ordinate z of every point of L, and the perpendicular
R the co-ordinate y of every point of the same L. From the
last observation it follows that no other co-ordinates », %, z but
those of the projections can be the co-ordinates of L. Because,
after having drawn from any point R of L the perpendicular Rr
to the plane XAY or the co-ordinate z, the two remaining co-
ordinates of the same point are co-ordinates of a point » of the
projection P ; consequently no other co-ordinates x, y belong to
the line L in space, but those of its projection P on the plane
XAY. Likewise we may demonstrate that no other co-ordinates
x, z belong to the line L, but the co-ordinates of the projection Q.
Therefore, supposing the equations of the projections P and Q to
be represented by

2=f@) - (&)
2=F(2). 0. (&)

To every value of @ shall correspond at once y from (¢,), and =
from (e;), all co-ordinates of the same pointof L. And likewise, if
the given co-ordinate is either y or z, from (¢,) or (&) we will de-
rive @, which substituted in the other shall give the third co-ordi-
nate. It is now evident why the equations (e,), (¢;) are termed
equations of the line in space. It is evident, also, that the same
equations must be different in the different cases, and of this we
will now give some examples.

EXAMPLE 1.

Equations of the interseclion of two ziven planes.

34. Any geometrical locus is said to be given or known when
the corresponding equation is known, and the equation is known
when the constant quantities are known. For example, suppose

the constant quantities a, @/, b 4 : A, A/, B given or known, the
equations
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z=av+dy+d,z2=Axz+4+ Aly+ B

of two planes (29) are equally known, as also the corresponding
planes; because, substituling at pleasure every possible value for
 and y, we are always able to derive the corresponding z. Let
us suppose now these two planes inclined to each other, and let
us consider the straight line produced in space by their common
intersection ; it is evident that the co-ordinates of this intersec-
tion shall fulfil at once the equations of the two planes, and the
co-ordinates only of that intersection can fulfil at the same time
both equations of the planes; therefore, every formula derived
from the equations of the planes in the supposition of the common
co-ordinates, is necessarily an equation between the co-ordinates
of the intersection. Now in the said supposition subtract the first
from the second equation of the given planes, the difference shall
be

2(A—a)+yAl—ad)+4+B—b o

a — Al —B
or &—a‘l-l_A ..o i(e)

which being an equation between the co-ordinates a and y of a
line in space, is (33) the equation of the projection of the same
line on the plane of the axes X and Y. Observe now that the
equations of the planes may be reduced to the following form :

dy—=z—ar—b,Aly—z— Az — B

or
ol a b
AT T A
1 A B

In the same supposition of equal co-ordinates in both equations,
if the first be subtracted from the second, the difference will be

1§y b o Woidw i
# m“?)—”(m_?)‘m*”?-
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or z(@ — A') —z (Ad — Ala) — Bd' - Alb=o0
or finally

ad — A A!b = Bal oo (e:)

I=Aa'—A'az+ Ad — Ala

which being an equation between the co-ordinates x, z of the in-
tersection in space, necessarily must be the equation of the pro-
jection of the same line on the plane of the axes X, Z ; but the
equations of two projections of any line in space are the equations
of the same line; consequently the last formula (e,) with the pre-
ceding (e,) are the equations of the intersection of the planes.

Scholium. It is evident that the equations of the intersection
of any two surfaces may be determined in the same manner, pro-
vided the equation of each surface is given.

EXAMPLE II.
KHgrations of a straight line passing througlh two given poinis in space.

Any point is said to be given when its co-ordinates are given ;
consequently the points corresponding to the known or given co-
ordinates

Ly Yy 21t Xy Yoy 2y

are two given points. Now to find the equations of the line pass-
ing through these points, it is first to be remarked that the pro-
jection on a plane of any straight line situated in space is another
straight line ; because if (i_ig. 29) from any point p of the straight
line ab in space we draw the perpendicular pg to the plane P, the
plane determined by «b and pg¢ is perpendicular to P, and the
same which would be produced by pg if moved along ab with pa-
rallel motion ; therefore, the intersection of that plane with P is
th.e projection of ab. Now the intersection of two planes is a
straight line, which was to be demonstrated, and which may be
deduced, from the preceding number also. Now from this remark,
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and from the form (10) proper to the equation of the straight line,
we may conclude that the equations of any line in space will be
represented by

v=ay + b
(o)
x=uaz + ¥
Hence, what is to be done in the present case is to ascertain the
values of @, ¢/ ; b, §. Now the co-ordinates x, y, as well as x,
2z of every point of the line in space, must fulfil the equations (0);
but by supposition the line in space passes through the given
points ; hence the co-ordinates ,, y,, and @,, y,, must fulfil the

first equation, and 2, 2, : x,, z, the second ; and so we will
have at once

2, =ay, +b, v, =ay, + b
2, =dz, + b0, a,=dz, + ¥V

To obtain the required values of a, a/, b, &/, let us first subtract
the second equation of each binary from the first, we will obtain

r, —ax x — @
a—=——2 o =—L2=

Y, — Y. g Sl
the values of a and a/ determined by the known co-ordinates.
Again, since from the first equation of each binary we have

= ey !
b=, —ay, O =a, —dz,

and substituting the determined values of @ and o/

b &, — &

=@ — Y
h—1Y
& — &

b= — — > 2
Z, — 2,

which are the values of 4 and &' given by known quantities.
Substituting, now, the values of a, a!, as well as those of & and
b1, in the equation (o), we will obtain the required equations
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€Ty &, —&

el | WES g Bem 2ol
e —yzy L, y.—yzy‘]
B il _:'f.-._ s
a:_._z o z + [=, ~3 z:zi]

Scholium. Supposing only one point to be given of which
2, , ¥, 2, are the co-ordinates, instead of the two preceding
binaries, we will have two single equations

2, =ay, + &

e, =adz, 4V
from which
b

T, —ay,

e = gl
= e, a'z,

and substituting these values in (o) we have
2=ay + [z, —ay,]
x=4dz 4 [2, — dz ]
the equations of any straight line in space passing through a

given point. It is here to be observed, first, that the same equa-
tions may be transformed into

z—a, =a (y—y,)
x—a, —=a (z—2z,)

the form of which is that corresponding to the line on a plane
(10) passing through a given point. Observe, also, that the con-
stants ¢, ¢/ remain undetermined in this case. And if the given
point is the origin of the co-ordinates, since in this supposition
x, =7y, ==z, =— o, the last equations will be converted into

Gty 2= dz

 which are the general equations of any line in space passing
through the origin of the co-ordinates.
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EXAMPLE III.

Eguations of the perpendicular drawn from a given point to a
Ziven plane,

36. Suppose
r=mz 4y +q

to be (29 Sck.) the equation of the given plane in which, conse-
quently, (34) m, n, ¢ are known quantities. And suppose z,
¥, 2, to be the equally known co-ordinates of the given point.
According to the equations of the straight line which passes
through a given point, the equations of the perpendicular shall
have the following form:

2—a,=a(y—y,)
2 —2a, =a’(z—-zl)§ ©)

in which a and ¢/ are to be determined. To this end imagine that
BC, BD represent (fiz. 30) the intersections of the given plane
with XAZ and XAY, and let LM be the perpendicular line
drawn from the given point to the given plane. Draw LL/ per-
pendicular to the plane XAZ, and LL" to the plane XAY, from
any point L of LM ; and imagine the plane determined by ML
and LL/, and that determined by ML and LL/, to be produced
so as to intersect XAZ and XAY. These intersections L' M’ and
L'"M", are (35) the projections of LM, of which (o) are the
equations. Now the projection L/M' is at right angles with
BC, and L"M" with BD ; because, on account of the perpen-
dicular LI/, the planes ZAX, LMM'L/ are perpendicular to
each other, and since LM is perpendicular to the given plane,
this plane CBD with the same LMM'L' are equally perpen-
dicular to each other. But from elementary geometry, when
two planes are perpendicular to a third plane, their common in-
tersection is also perpendicular to the same plane. Hence BC is
perpendicular to the plane L'M'ML, and, consequently, to the
line L' M’ on the same plane. In the same manner BD is per-
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pendicular to L/M/. Now we observed (10 Cor. ii) that if the
tangent of the angle formed by a straight line and an axis is
equal to ¢, the tangent of the angle formed by the perpendicular to

Y 1 : :
that line and the same axis is — 7 But according to the equation

of the plane CBD, the tangent of the angle made by BC and Z
is (29 sch.) m, and that of the angle made by DB and Yisn;
therefore the tangent of the angle contained by L/ M’ and Z shall

be ——:;, and that of the angle contained by L”M” and Y shall

be — % But the coefficient a' of the second (o) is (10 Cor. i) the

tangent of the angle which M'L/ makes with Z, and the co-
efficient’a of the first (o) is the tangent of the angle which L/M"
makes with Y ; hence

1 1
=y a=——
7 m
which values substituted in (o) will give
1
m—m,:—’i(y,-—-y)
o 3 WL 050

1
w—mlza(zt—z)

The equations of LM, in which nothing more remains to be
determined.

%Sckolium I. Suppose the co-ordinates of the point M of the

lane met by the perpendicular to be sought. It is evident that
the co-ordinates of M are at once co-ordinates of the plane and
of the perpendicular; hence they must fulfil at once the equation
of the plane and those of the perpendicular. It is also plain
that the co-ordinates of that point alone are common to the equa-
tion of the plane and to those of the perpendicular. Therefore,
to suppose 2, y, z common to these equations, is the same as to
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substitute in the equations the co-ordinates of M. In order to
deduce the values of such co-ordinates, let us first transform the
last equations (o, ) into the following :
y=y, — nz + ne,
«ss (0,)
z =2z, — mz - mo,

and let us substitute these values of y and z into the equation of
the plane, which shall become

2=m [z, —mz 4ma,) +n [y, —nw+nz,]+g

hence
2 + m*a 4 nto =mz, + mew, 4 ny, + vz, + ¢
= m*z, +??L2'r] —{—mz] +ﬂy1+g+x1 = &y

or
a(14-m* +nt)=uz, [1+ m* 4] 4-mz, +-ny, 49—,
and finally

e ‘mzi +ny1 +9‘_'m!
Sl e ey

the value of the co-ordinate a given by known quantities, and
corresponding to the point M. To obtain the values of the others
let us modify the last equation and the preceding (o,) in the fol-
lowing manner:

' s _mz1+n3f|+?—x1
et S 1+ m? + ne

y=y,—n(@—a,)
2=z, —m(@—a,)

Substituting, now, the difference x — @, given by the former in
ihe latter equations, we will obtain
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ﬂ'(mzx +ﬂy| +9_w1)

Yy=% — 1+ m* + nt
£ e W (B2 ok iy e i )
G 14+ m* 4 n2

which are the required values of y and =.

Scholium II. The length of the perpendicular LM from the
given point to the plane may be determined, observing that (25)

Vi@ —a) + (y —3)* + (2 — 2)*]

gives the length of a straight line in space comprised between
two points, of which x, y, z and 2!, 3/, 2/ are the co-ordinates.
Therefore, if, in the general formula, we substitute for @, y, = the
preceding values of the co-ordinates of M, and for 2/, ¥/, 2/ the
co-ordinates @,, ¥,, z, of the given point, that formula shall give
the length of the perpendicular. But by such a substitution the
first term (@ — ') of the general formula becomes

y (mz2, +ny,+ g — a)°
A m ey

the second (y — y')

n2 (mzl+ ﬂy]+ e wl)g
(4 meF ne)e

the third (z — 2/)2

me PZt 1y, g —a,)e

(1 F mon2)e

and consequently their sum

(mzl+ﬂyl+ 9"_‘:'3‘1)s
14 w2t nt

of which the corresponding root
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is the required value of the length of the perpendicular.

Ty -4 2amrg, 0+ 2208 P PN T 2%y Yo gy 577
Use of lhe eqwaﬂ'mu o Hw llﬂt",gl’lt line and plane fo derive some amn-
Zular relalions.

I Value of the cosine of the angle contained by two straight lines
passing through the origin of the axes.

37. We obtained (25 Cor. IT) the value of the cosine of the
angle MAM' (= 8) by means of the co-ordinates of the extremi-
ties M and M/ (fig. 31) of the sides, without any regard to the
equations of these lines. Observe now that the equations of AM

and AM' may be exhibited (35 Sck.) by
w==ay , r=—=dz

d=cyl yal=cz!

from which
1 1
y=—_r,z=-—x
1 1
y=—ao, d=a
and

SLivligd st ol !
! —= — ax zzl — ox
8% = o0 ’ alc!

where we may suppose the co-ordinates of every point of AM and
AM'; hence, the co-ordinates also of the points M and M/. In
this supposition, since the value of cos 3 already (25) determined
is given by
22! 4y + 22/
.\/‘rz_i_yz..i_ 22 .\/xfz_i,_ yfz_l., 2z
in which a, y, 2, @', 3/, 2/ are the co-ordinates of M and M'; we

may substitute the corresponding values given by the preceding
equations. Hence,
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1 1
ool 4 gy + zz’:z.r’(l—{—;; + -

and

e
vwgewzcc\/“radrm

1 1
waz+yr=+z,z_mf \/1+'L._, + F;
consequently

1+“+ a-’c )
cos B — == oo0 (B
N N

the required value dependent only on the constant quantities of
the equations of the lines forming the angle g.

Corollary I. If the angle 38 is a right angle, then cos B =0
and in this case

L4 +

a"c’ —C

Corollary II. Let us suppose that the side AM of the angle 8
becomes coincident with the axis X, then (25 C. III) the angle g
shall become X. It is further to be considered that all the co-or-
dinates y and z of the line coincident with' X are equal to zero ;
therefore, in the present supposition the co-ordinates z/, y' of the
point M’ are equal to zero ; the co-ordinate, moreover, &' of that
point is equal to AM'; hence, the general formula (25)

_aal 4 gy 4=
PR o A

will be converted into

x. AM/ X

cos X=—= —

—

AM . AM/ AM

But (25 C. 1.)
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i 1
AM:MW_F? = Fop— =

a2 ?;

hence,
1

cosX:\/—l_l‘
ity

in which the sign of the second member depends on the sign given
to the root ; but the second member must have the positive sign
when X is less than 90°, and negative when X is greater than the
right angle ; therefore, when the line AM makes an angle with
X greater than the right angle, the radical expression

Sl e

will be negative ; when AM makes an angle with the axis X less
than a right angle, the same radical, dependent on the constant
quantities @, o/, will be positive. Let us here remark, that
sometimes the line, or any geometrical locus, is represented by
its equation, so that it is the same to say the line AM as the line
[e=ay , v=d'z]

Let us now come to the second case in which we suppose the
side AM/ of the angle § to coincide with the axis Y ; evidently
(25) the angle g will become Y. But in this second supposition
the co-ordinates /, 2’ of M/ are equal to zero, and the co-ordi-
nate y' equal to AM’ ; hence, the general formula will become

. AM/
cos Y= Y —

¥
—AM.AM — 7 \/—"——l 1
e T w

now from the first equation 2 = ay of AM, we have

g S ~—1 hence
— —_— . s I
J o a’
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it o+

Suppose, finally, AM’ to coincide with Z, in this case, g8 becomes
Z, and @' = y' = o and 2/ = AM/, consequently from the gene-
ral formula

cos ¥ =

1
3

z. AM 2

OOR & == R ] \/——
1445 bR

but from the second equation x — a/2 of AM we have z—==.

1 -
o g
hence,

1
a

a
cos Z — S
'\/1+§ SIs ze

It will be remarked that, by supposing the successive coincidence
of AM with the axes, we might have derived the formulas

cos X! =

1
‘\/1+§+c%

1
cog W l=
1 1
\/1+-c“; - o
1
cos 2= e

Vit L+ 4
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in which the radical
4 1 1
Nl ot

is positive or negative according as the angle formed by the line
[ = ¢z , y = ¢z] with X is greater or less than a right angle.
From the same formulas it appears, that if the equations of any
line passing through the origin of the axes is given, we may al-
ways derive the angles which the same line makes with the axes;
because these angles depend only on the constant quantities of
the equations.

Secholium. It is evident that the projections of two parallel
lines, for instance (fig. 32) aM', Aw/, taken on the same plane
XAY, are equally parallel lines; because, supposing the perpen-
diculars pr, gs drawn from any point p, and ¢ of aM/', Am' to the
plane XAY, the planes determined by aM’, pr, and Am/, ¢s are
of course parallel to each other, and consequently their intersec-
tions with the plane XAY are parallel to each other; but (35)
such intersections are the projections of each line. Hence, the
projections of the parallel line in space, taken on the same plane,
are likewise parallel lines. Now let the straight lines aM, aM/
in space be given at any angle, and let their equations be

r=ay+06, x=dz+4 ¥
r=cy+d,x=cz4+d

and suppose Am, Am' drawn parallel to «M, aM’' from the origin
of the axes, evidently the angle m'Am is equal to M'aM, and the
angles formed by Am'/, Am with the axes are the angles made by
the directions of «M’, «M with the same axes. But all these
angles depend on the constants a, a/, ¢, ¢’ of the preceding equa-
tions, as will be seen hereafter ; hence, by means of these con-
stants we may derive the values of the angle M«M’ and of the
other mentioned before. To demonstrate it, let us remark that
the projections of aM' are parallel to the projections of Am/, and
4
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the projections of aM are parallel to those of Am. Now (10 Sch.)
if the equation of a line in a plane is ® = ay -+ &, the equation of

another line parallel to the former, and passing through the origin
of the axes, is * = ay ; hence, the equations of Am, Am' will be

XE=aysll M= alE
o=y, 2=t

But the value of the angle mAm', as well as those formed by
each side with the axes, depend on the constant quantities of
these equations in the explained manner; hence the angle MaM/,
and those formed by aM, aM' and the axes or parallel lines to
the axes, will be given by the constant quantities a, o/, ¢, ¢/.

Il. Value of the cosine of the angle formed by two planes.

38. It is known from elementary geometry that the angle
formed by two planes is the same angle as that formed by the
lines drawn perpendicularly from any point in space to both
planes. Hence, if we are able to determine the cosine of the
angle made by the lines perpendicular to the planes

:r:Az+ AFy_‘_AH
©x = Bz + B'y 4+ B"

we shall have the cosine of the angle formed by the planes them-
selves. Suppose, now, x,, y,, 2, to be the co-ordinates of the
point from which are drawn the perpendiculars to the planes.
The equations of the perpendicular drawn to the first plane are

(36 (&) )
A 1y _
\E_{I']__A—Tty’-_.y)

-1,‘—‘1':]"_"-—-(2‘—:)

A
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and the equations of the perpendicular drawn to the second plane
are

1
m—'w1=‘]§T(y|_’y)

1
:::-;rI:——B-«(z,——-z)

Which equations, if the given point be on the origin of the axes,
will be converted into

1
I _Ey T .....]—%Ty
= — 2 .]‘.‘_.——B...,

Now the cosine of the angle formed by these two perpendiculars
is given (37) by the formula («), substituting there, instead of
a, a, ¢, ¢/, the coefficients of the last equations. Hence, if we
term g the angle formed by the planes, we will have

o e 14 A'B' 4 AB
- M1 AP A'N14 BF | B

Observe (37 C. II) that the radicals

VIFAFA,NVNIFB+ B

will be positives when the angles made by the perpendiculars
with the axis X are less than 90°; will be negative when the same
angles are greater than 90°. /{J

III. Value of the cosine of the angle formed by a straight line and
a plane.

39. Let us now treat of the angle contained by a given line
and a plane in space, and suppose the plane represented by CB
(fig. 33) and the line by pg. If from any point p of gp we draw
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the line pr perpendicular to the plane and then ¢r on the same
plane, the angle pgr is the angle which the line pg is said to
make with CB, and which, from analogy with the preceding angles,
we will term p”. In order to obtain the sine of this angle,
imagine the plane C'B’ parallel to CB and passing through the
origin of the axes. From the same origin A let us draw Ap/
parallel to ¢p, p'r' perpendicular to C' B/ and A7/ ; the angle p/Ar/
will be equal to g8". Suppose, now, Ap' parallel to »’p/, we will
have

pl'Ap! = pl'Ar! — plAr! = 90° — g
consequently,
cos (p"Ap') = cos (90° — p'") = sin g

But the first member of the equation is the cosine of the angle
formed by two lines passing through the origin of the co-ordi-
nates, which depends on the equations of the same lines.
Hence, to obtain sin g'/, it is necessary first to derive from the
given equations,

c—ay+ b6, z=dz4¥
of the line pg, and

v= Az 4 Aly + AV

of the plane CB, the equations of the lines Ap/, Ap". Now the
equations of Ap' parallel to pg are

B=ay, 2= az....(0)

and the equation of the plane C'B/ parallel to CB, and passing
‘through the origin of the axes, is (29, CC. I, III)

2= Az} Aly
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Finally, the equations of the line Ap" perpendicular to C’'B’ are
(36 (o))

1 1
T==—"5Y m:——ﬂ-;-z....(al)

Now, by a substitution in the formula (e) [37] we detiuce from
(o) and (o,) the required value of cos (p"Ap') or sin g" ; that is,
Al A

1_._ — ==
sin g = Sats (a2)

RAETT B ?1\/1+A'*+Aﬂ

in which equation the usual observation with regard to the radical
is to be made according as the lines Ap/, Ap" form an angle
greater or less than 90°.

JNVew formn of the equations of a sivaight line, and of a plane passing
through a given point,

40. From the angular relations already considered (37, C. II)
we may derive a new and useful form of the equations of a line
passing through a given point. The known equations of such
a line are

r—2, =a(y—y,), v—a, =d(z—z2,) (¢

and the angular relations of the same line with the axes are given
by the formulas

LosX:\/]+“ +_1_

a:

]

cos ¥Y— 4
oh1 i
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1
a
cos £ — o PR T
\/1 +? + az
from which
cos X £ cos X' |

== by
cos Y ’ cos Z

and substituting these values in the preceding (¢)

L cos X L cos X
t—2, =5 W—y,), 2—2, =55 (@—2)
hence
T—x,  yY—y, x—x, _z—2,
cok' X TR sege e Cos X+ cos Z

New form of the equations of a straight line which was required.

41. Let us now consider the equation of the plane. If ., ¥.,
z. are the co-ordinates of the point through which the plane
passes, its equation (29, C. ii) is

=ty =mA(—2) F A (Y—%) cee e @3]
Imagine from any point [z,, ¥,, 2,] we draw a perpendicular to

the plane, the equations of this perpendicular (36 (¢) ) are

-?—-'le_"?(y—%): 2 — = — = (2—2)

A

and from the angles X, ¥, Z, which this line makes with the
axes, we will have, as in the preceding number,

cosX 1 cos X 1
COB Ao 1 (ALY FeR i . i

hence

eos -y e €08 Z

Al —maee——y —_——
cos X’ cos X



GEOMETRY. 85

which values, substituted in (f), give

cos £ cos Y
cos X et Ml cos X(y — %)

T —2=—
from which :
(x —a,) cos X 4 (z—2,) cos Z 4 (y — y,) cos Y =0

A new form of the equation of a plane passing through the point
[z.5 ¥:5 2], in which the angles X, Y, Z are those formed by
the axes and any line perpendicular to the plane.




BOOK III.

LINES OF THE SECOND ORDER.

REMARKS.

492. Tt now remains for us to distinguish more exactly that part
which belongs to the present book from that which regards the
fourth.

Let us recall to mind the distinction (17) already given between
algebraical and transcendental lines, and the different orders of
the algebraical lines according to the different degrees of the cor-
responding equations. If now we suppose an algebraical equation
of a certain degree so general as to comprehend all the possible
cases of the equations of that degree, it appears that from the dis-
cussion of such an equation, we may derive, first, the common
properties of all the lines of the same order ; and secondly, by
modifying the general equation, the properties of the peculiar lines
corresponding to the different modifications. Now although this
investigation so generally proposed constitutes the object of the
present book, yet we will not extend the discussion to every or-
der of lines, but only to those of the second order ; and to pro-
ceed with the proposed method we will first establish the general
equation of the second degree. Observing that since the algebra-
ical lines described in plane surfaces may be referred to a system
[X, Y] of two axes, the variable quantities of the general equa-
tion will be only ® and y. We may remark, also, that the curve
lines described in plane surfaces are termed lines of only one cur-
vature ; those described in curve surfaces are called lines of

double curvature ; and this second kind of curves must necessa-
rily be considered in space.
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General Tormula or cquation of the sccond degree conlaining two rva-
riable quantities,

43. The degree or dimension of an equation is taken from the
highest dimension of the variable quantities found in its terms,
and this dimension corresponds to the sum of the exponents of
the variable quantities. For instance, the term ax™y", in which
a is a constant quantity, is a term of the dimension m + n, and
ax’ , ay® terms of the dimensions » and s ; and if m -} n is equal
to r, the terms ax™y" , ax® are of the same dimension. Suppose
now m + n , r and s different whole numbers, and m - » the
greater, an equation of the terms ax™y" , ax® , ay’is termed an
equation of the dimension or degree m -} ; and if  be the greater
number, the degree of the equation will be 7. From these obser-
vations it follows, first, that an equation containing the variable
quantities @, y will be of the second degree, if its term or terms
of the highest dimension are ax?®, dy® , cxy. Secondly, the
equation of the second degree, which, besides the terms of the
preceding description, contains terms of the form d.x , e.y, and
other terms independent of the variables x, y will be the most
general equation of the second degree; therefore, collecting to-
gether all the terms similar to «x?, all those similar to 4y, and
so on, we may give to the general equation of the second degree
the following form :

Aax® 4+ By + RCay 4 D2 - REy =K ..... (7,)

In which A, B, 2C, &c., are constant quantities, and the coeffi-
cients 2C, 2D, 2E are preferred to C, D, E to facilitate certain
investigations. It is plain that this equation represents all the
lines of second order.
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ol simpler form ziven to the Zencral equation in order fo dervive lke
properties of the lines of second order.

DIAMETER.

44. Let (fig. 34) n''an/n' represent any line of the second or-
der referred to the rectangular axes X, Y ; and let nn' be any
chord which we will term 2¢; let us represent by x_ , y, the co-
ordinates Ap, pm of the middle point m of the chord ; and let us
call « the angle »/rX formed by the same chord with AX. Draw
now from n and =’ the ordinates ng, #'¢, and from » and m, as,
mi parallel to X ; the triangles mno, n'mo’, in which n'mo’ — mno
= o, and nm =— mn/ = ¢, will give

70— Mol == ¢ COB'x , Mmo— nlol'= ¢ Bin'c

but no = ¢p , mo' = pg¢' ; hence, Ag— Ap— no , Ag = Ap
=+ mo'. Again, ng = po = pm — mo , n'g' == ¢'o’ 4 n'o' = pm
—~+ nld' ; therefore,

Ag =a,—c.cosa , gpn =y, — csina
Ag==a,+4c.cosa , ¢/ =y, - csina

But Ag, gn, as well as Ag/, ¢'n/, must fulfil the equation of the
curve, which being any line of the second order is represented
by the general equation (?) ; hence, Ag, ¢n, and Ag', ¢'a' may be
substituted instead of @, y in the same equation. Before this
substitution is performed, observe that

a

Ag=a>—2r,c.cosx 1 e?cos®x , qn —y— 2y, ¢.sine 4+ ¢sinz
Agl =z 4 e, cOBe - c2cos e , gn =y 4 2 c.sine 4 c?sinz
and

Ag.qn =z, Yy, — ¢y, €OS a — cx,_ sin @ 4 ¢ sin o . COS

Ag.gn' =a,y, -+ ¢y, cosa 4 cx,_ sin o« 4 ¢* sina.cosa

Making now the partial substitutions, we will obtain
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Azt = Ax ®* — 2Ax,.c¢.cos a4 Ac? .cos 2a or
1
Azt = Ax_* + 272, .c.cos a4 Act. cos ta

2
By = By.®* + 2By,.c.sin o 4 Be? . sin %o

gBﬂ = By,* — 2By .c.sin o 4 Bet . sin 2a or
;203:_; =RCw_y,—2C.cy cos a—2C.cx_sina-4 2C.c*sina cos a

2Cay=2Cx y.,+ 2C.cy_cosa-+2C.ca_ sina-42C.c*sinacosa

4‘ 2Dy = 2Dz, — 2D .e¢.cosa  or
? 2Dz = 2Dz, + 2D . c. cos a
SQEy = 2By, — 2Ec.sin a or
821-:3, = 2Ey, + 2Ec. sin «

Observe here, that the only modification which can be made
with regard to the general formula (7,), is the suppression of
some of its terms, and in this case some of the preceding binaries
will be wanting ; but in every case the sum of the value of Ax%,
By, &c., given by the first substitution, as well as that given by
the second substitution, is equal to the same K, and consequent-
ly, if the first sum be subtracted from the second, the difference
must be equal to zero. Before we perform this subtraction, and
in order to give a compendious form to the sum equal to K, let us
make

Az, + By, + 2Ca,y, + 9Da, -+ 2y, = R
Az, cose 4+ Byssine 4+ Cyscosa 4 Crosine 4- Deosa - Esine
or the corresponding
(Az, 4+ Cy, + D) cos « 4+ (By, + Cx, 4 E) sina = Q

and

(Z.)

A cos *a+ Bsin a4 2Csine . cosa= P
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By doing so the sums corresponding to the double substitution
will be represented by

P2 —2Qc + R =K k
Pc: 4+ 2Qc + R = Kg' =4
These equations may be represented by a single one
Pe2 7 2Qe + R =K

which is the fundamental formula; because upon the discussion
of that formula depends the whole doctrine of the lines of the
second order. And first, let us derive the equation of the diame-
ter by subtracting the former (¢,) from the latter. Since from
this difference we deduce 4Qc = o ; hence, Q = o, and conse-

quently (,)

Ax,cos & - Byssin a + Cy,cos« + Cagsina 4+ Dcosa + Esinae =0
from which

Y, [Ccosa 4 Bsina] =-—[Ax, 4+ D] cosa— [Cx 4+ E] sin a

and

9, [C + B fg «] = — [Az, + D] — [Ce, + E] fg o
=—ua, [A+Cilga]l —[D+ Eiga]
hence
e A+Cigu D4+ Eige -
S e By U Bl (2)

Considering, now, this equation, we may observe that the co-
efficient of x, and the last term are quantities dependent on « :
but the angle a is the same for every chord parallel to na'; and
since the relation between the co-ordinates x, , ¥, of the middle
point of any chord is expressed by the formula (7,), therefore the
relation between the co-ordinates x_, y, of every middle point
of a system of parallel chords will be given by the equation (7,)
in which the last term and the coefficient of x_ are constant quan-
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tities. Hence the relation between the co-ordinates of such a
series is a constant one, and (7,) represents the equation of the
line passing through all the middle points of any system of
parallel chords. But (7)) is (10) the equation of a straight line ;
hence in every line of the second order all the middle points of
any system of parallel chords are along a straight line, which
line is called diameter. And when the diameter is perpendicular
to the system of the chords it is called axis of the curve.

Seclolium I. From the same equation (7,) we are able to deduce
the angle « which the diameter makes with the positive axis of
the abscissas, because the coeflicient of x_ is (10) the tangent of
that angle, consequently

A. + C fg' [+ -
W ..... ('f_-,)

go=—

from which we may derive «.

Scholium 1I. Observe, moreover, that from this last value we
may obtain a criterion to know whether the diameter is an axis.
Because when two straight lines referred to the axes are perpen-
dicular to each other, the product of the tangents of the angles
formed by the two lines with the positive direction of X is equal
(10, C. II) to the negative unity. Hence in this case we must
have ig o . 1z w = — 1, that is,

A+ Clga y
T CAxBiga®
Therefore, when the system of parallel lines makes such an angle

« with the axes X as to fulfil the equation (7;), the diameter cor-
responding to this system is an axis of the curve.

1
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PROPOSITION.

In every line of the second order there is a certain position of
parallel chords in which they are cut perpendicularly in two
equal parts by a straight line.

45. The demonstration of this proposition depends on the reso-
lution of the equation (7;). Because if it is possible to find a
real angle « which fulfils that equation, the system of chords
inclined with such an angle is a system perpendicularly bisected
by the straight line. To find the real value of a let us transform
the equation (4;) into the following

Clg2a+ Algao=C -+ Bige
from which

=
fgza+f1——c—-taazl

o

which, being an equation of the second degree, resolved accord-
ing to the known rule, will give

A S B c2 (ﬁ = B)s
i = — 5 2 ]
g o 50 & ,\/ [ o
now the quantity under the radical sign is a positive and real
quantity, consequently the second member is a real quantity, and
if the angle o corresponding to the positive sign of the radical be

termed «,, and that corresponding to the negative sign o, , the last
equation may be represented by the two following

e e oo T
:

N iy

from which we may derive the real values of &, a,. That is, in
every line of the second order there is such a position of parallel




GEOMETRY. 63

chords as to be cut by a straight line or axis not only in two
equal parts, but also at right angles.

Corollary. From this conclusion it follows that every line of
the second order can be cut in two equal and symmetrical parts ;
because when a system of parallel linesds cut in two equal parts
by a line perpendicular to the system, every point of the extremi-
ties of each parallel from one side of the secant has the corres-
ponding point equally distant on the opposite side ; hence the
whole series of points on both sides of the secant shall be equally
disposed, and the areas comprised between the same series and
the secant will be equal to each other.

Seholiuvm. On account of the use to be made of the values of
the tangents lately determined, it is necessary to give to them a
new form, which we will obtain by observing, first, that from (7,)
follows

CopBigass{ Ak Cign] 212
+Biga=[A~+Clga] =
hence
C Bsi il A C e Sina.
cos a—+ B sin « = [A cos « + C sin o] o

and consequently

Ccosa +— Bsinae _ Acosa 4 Csina
sin a T Cos a

which last is the same as the following:

[C cosa + Bsina] sina a7 [A cos a4 C sin a] cos o
sin 2a TR cos *a

!
But when two ratios %, '}’ are equal to each other, the sum
@ - o divided by & + &' is equal to the same ratios. Because,

!
supposing _} = %, we will have, also, % = %, and, consequently,
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a4 d
a= bk o/ = bk, hence a 4 d = (b + ¥') k and —— =+
b+ &
a a

== Making, now, an application of this theorem to

the preceding equation, we will obtain

[Ccosa 4+ Bsina]sina [Acosa 4 Csinae]cosa

sin 2a cos 2a i

C cos a sin o 4+ B sin 2a 4+ A cos ?a 4 C sin « cos «
sin ?a - cos 2a

But the numerator of this last member is (44, 7,) compendiously
termed P, and the denominator we know from trigonometry to be
equal to unity ; hence

Ccosa 4 Bsina __ Acosa- Csina __

sin o COS a

P

The first and third member of which equation may be modified
in the following manner:

Ccosa-+ Bsina sina
sin o cos a

=Pigoe
hence

C+ Biga=Piga ]

A4+ Ciga="P ;mm
from the first of which

1 e c
£ =P =1

from the second Pe='A
ig o= C

Observe that P (7;) is a quantity dependent on a, therefore if we
term P,, P, the values of P corresponding to o, and a, (4,), from
the last equations we will derive
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ol 0 O e B
-t Ty kel 5

(%)
i 2 g s el e
il ek AR ne Ry

the new form of the values of #g «,, g a, Which was required ;
but P, and P, are still to be determined by means of known quan-
tities, which we may obtain by substituting in the last equations
the values of g «, and g a, given by (¢,) ; because from this sub-
stitution

HErt o TR = 4 w)
LA -/ T ] = 40

B— A B A
and, observing that —5— = -:g ==

=B e s (R
R:Btﬁ_\ﬂﬁ+%A;Bj

the second members of which equations contain only the known
coeflicients of (z, ).

Egnations of the aves of the curve,

46. The equation of any axis of the curves of second order is a
peculiar case of the general formula or equation of the diameter
[44 (i,)]; hence, to deduce from that formula the equation of any
axis, let us remark, that in the peculiar case of the axes the

angle a becomes either «, or a,, and from (7,) we have

A—|—Cf.g'a|.1:l’1
A+ Citga, =P,
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and C+4 Biga, =P, lga,
C+ Biga, =P, tga,

therefore, the coeflicient of @, in (7,) will become

1 iod 1
ig o, ig o,
and the last term of the same equation
D—i—Efg‘u D4+ Eiga,
or — —m—5——*=
P fg' o, P, iga,
and consequently the equations of the axes are
fgd 1 ‘- D+ Efga,
Yol iga, ° P, iga, o
1
Hrg i 1 5 D+ E fgig %
o= tga, ° E5 P, tga,
PROPOSITION.

The curves of the second order cannot all have the same number of
.LES .

47. Different hypotheses may be made with regard to the values
of P, and P,; we may first suppose both values equal to zero.

Secondly, we may suppose only one to be equal to zero, or next
neither the first nor the second ; and in this last supposition it
may happen that both values of P, and P, are equal to each
other or not. Let us consider every hypothesis.

Suppose, first, that of the two P , P, the second is equal to
zero, in which case the second (i, ) gives

B-;-A —\/[C“ +(A-;B)=] iy
VIe+ ()=

or
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which value, if substituted in the first (10), will give

1)1=B"2‘A+B'12'A=B+A

and consequently (z,)

Rt O
I el e
which equations determine the angle o, of inclination of a sys-
tem of chords bisected at right angles by the axis. The second
(4,) would give

A C

tga, —=— =3
but there is only one position in which a system of parallel chords
can be bisected by the axis; because, with P, = o, the second
(¢, ,) becomes

1

y":_'tgu. x, — o

C B

yDZX 1‘0——@:6 CI'.'D—CQ

or

From which it appears that to every abscissa corresponds an in-
finite ordinate, and, consequently, the position of the axis corres-
ponding to the last equation cannot be assigned.

Let us now examine the second hypothesis, in which we put
P, = P, and not equal to zero; it will be P, — P, =0 ; and
consequently (7, ,)

Al gl il o

ifjore =i

A — B\*
But C°, as well as ( ) ) are either equal to zero, or neces-

or
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sarily are positive quantities ; the second supposition cannot be

: A — B\z
admitted, because thenJ[Cg +( 5 ) would never be

equal to zero ; hence,
— B\
B==ib (é—fa—) =0

A— B
=10, —2——_-0

or

consequently, with P, — P, will be also
C=oy, Al—B—09p , Ac=B

Therefore, in the present supposition, every diameter is an axis ;
because, the general equation (z,) of the diameter on account of
the last values becomes

STy L D-I—Efga
y"—_igt&w"— B)‘-gu.

in which « still represents the angle formed by the corresponding

system of chords with X, and — -{;—‘; the tangent of the angle

formed by the diameter with the same axis X ; but — ?;—u is
(10 C. IT) the tangent of the angle formed with X by any perpen-
dicular to the chords of which the preceding equation represents
the diameter ; therefore, in the present supposition every diam-
eter is an axis.

In the third supposition, in which neither P , P, are equal to
each other, nor equal to zero, the formulas (z, ), as well as (¢, ,)
will remain unvaried, and the systems of chords inclined to the
axis X with the angles a,, a, are alone bisected by the axes.

Let us finally suppose P, = P, = 0, we will have at once

P4+P,=0,P, —P,=o0

and consequently (¢, ,)



GEOMETRY. 69

B_;_A+B;_A=o or B4+ A=o
and O
or 2"![0’_!-( 2 )]=0

VR

From this last equation, as we observed in the second hypothesis,
follows C = o , A — B = o0 ; hence, we have at once

A.—l—B:O, A—B:o

and consequently
A —iory Bi—ia

Therefore, we cannot suppose P, and P, at once equal to zero,
without supposing at the same time A = B= C = o ; that is,
without supposing the general formula (7,) converted into the fol-
lowing :
2Dz 4+ 2Ey = K

which being an equation of the first degree cannot represent any
line of the second order ; therefore, as long as we suppose a line
of the second order, P, and P, can never be at once equal to
Zero.

Discussion of the curves of the second ovides with referemce o their azes.
PROPOSITION I.

The curve of the second order in which all the diameters are axes is
a cirele.

49. In the preceding proposition we remarked, that in the sup-
position of P, = P, every diameteris converted in an axis, and in
the same supposition we have C = o0, and A = B ; consequent-
ly, the general formula (¢,) becomes in this case

Azt 4+ Ay + 2Dx + 2By = K




70 GEOMETRY.

from which xt - y® + @ x —|— = %

and also

2 %m+2%v+(%)+(%)=(%)+(§)+-§
- el Gl

b i 2%3}—!— (%)z——- (y —i—%)z
5+( ) ( ) KA+AD‘+E~

hence, the same equation may be changed into

& 4 Poga § 4o Y T S B by
( A)( A) A

but this is the equation of the circle, because, supposing (fig. 35)
the origin A of the rectangular axes at the centre of the circle,
the equation of this curve is (11) 22 - yz = »2; but if the origin
of the axes be transposed to A and the axes X’ Y' are parallel
X, Y, the co-ordinates a, ¥ may be given by those of the second
through the formulas (8), in which some modification is yet to be
made, because in the present case the angle (va') is equal to zero
and (y'z) = (y2) =90° ; hence sin (xa') =0, cos (z2') =1,
sin (y'z) = 1, cos (y'2) = 0 : moreover 2, — Aa, y,— aA’;
consequently the wvalues of the co-ordinates with reference to
the first system will be given by the formulas

y—aA' 49y, o= Aa-+}
which values substituted in @2 4 y2 = »2, give
(@ + A0t + (¥ + Ala)s 72

which, compared with the preceding (o) manifests that if P, =P,
the line is a circle whose radius is
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\/ KA + D’ E°
Az
But since the properties of the circle are commonly treated of in

elementary geometry, any further discussion of this curve will be
omitted in the present treatise.

PROPOSITION 11.

In the curve having only one axis, the diameters are all parallel to
this axis.

50. The curve of the second order, which admits only one
axis, corresponds (47) to the case of P, = 0 and

B C
tgu,z—ézx

Now since the tangent of the angle which any diameter makes
A4 Ciga 3
C+ Biga

z, () and the tangent of the angle which, in the present case,
fgla] (7.) 5 if these
two tangents be the same, the corresponding angles also shall be
the same, and all the diameters will be parallel to the axis of the
curve. Now, from the above mentioned equation we have

with the positive X is given by the co-efficient —

forms the axis with the same X is equal to —

e R
G g«
. ] A+4Ciga
and since the coefficient — m may be transformed
A
6— + fg a
into — ————, which, on account of B — c , is equal to
1+5ge s ;

the following:
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A
= ig o
C+ & € FA
AT T ,andl—}—x-tgu:A—(é—{—tgu.)
l—l-tha.
therefore
A+ Ciga A 1

—-C-}—Btgu:ﬁ_tgul

that is to say, the tangent of the angle formed by every diame-
ter with the positive X is equal to that formed by the axis of the
curve with the same X, And in the curve of the second order,
having only one axis, the diameters are all parallel to this axis.

PROPOSITION III.
The curve having only one axis has no centre.

51. The centre of curves is said to be that point in which the
chords drawn in different directions are equally bisected. Now,
such a point is impossible in the case of a single axis. Because
let (fig. 36) O represent any point within the curve. From this
we can conceive OA, a line passing parallel to the axis of the
curve, which, of course, will be a diameter. Imagine ab to
represent the direction of the system of chords bisected by the
diameter AO. Any other line &/4/ will belong to another system
of chords bisected by a diameter parallel to AO; but any line
parallel to AO never can pass through any point O of AO; con-
sequently the chord represented by a'#/ shall be bisected in a
point different from O ; therefore the only one ab is divided in
two equal parts in O. Now, the same demonstration may be
applied to every other point, consequently the curve of the
second order, having only one axis, is without centre.
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PROPOSITION IV,

When the curve admits two aves, these aves are perpendicular to
each other.

52. When the curve of the second order has two axes, the
equations of these axes are represented by (7;,). Now the line

represented by the first of those equations is perpendicular to
1

H A tg o,
multiplied with each ether give a product equal to — 1. But
this is the case at present, because from the equations (#,) we may
readily derive

tg «, fg“z='(§¥‘[(B_A) (Ci'!" (A—B) )]

the second, when (10, C. II) the coefficients —

hence iga, tga, =—
L
but — S ! e :
ig o, ig «, ig a, Iga,
1
therefore . —1

_fg ) _fgae

and the two axes are at right angles.

PROPOSITION V.

In the same curves all the diamelers pass through the point of
intersection of the axes.

53. If the co-ordinates of the point of intersection between the
two axes fulfil jn every case the equation of the diameter, every
diameter shall pass through that point, because the co-ordinates
of the points of the line to which an equation belongs can alone
fulfil the same equation. Therefore, to demonstrate the present -
proposition it is sufficient to determine the value of the co-ordi-
nates of the point of intersection, and then observe if, in every
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case, these values fulfil the equation of the diameter. And first
observe that the co-ordinates of the point of intersection, and
only these co-ordinates, belong at once to both of the axes; con-
sequently, if we suppose in (¢,,) the same co-ordinates x_, v,
the values of z,, ¥, derived from the formulas (7, ,) in this sup-
position shall be those of the co-ordinates of the point of inter-
section. Subtracting, now, the first (7, ,) from the second, and
reducing their difference to the same denominator, we will obtain

_ (D+Efga)P,tga,—(D+ Elga)Pilgn
i P, P,

— 2z, (lga, _ig“;)
but (52) {g a, . 1g o, = — 1; hence

DP,1g a,— EP,— DP, tga, 4+ EP,
P: Pu i [:O)

—x, (18 o, —iga,)=

again, (1)

T i %J(EE_B)’ 4 C and (i) , (3, )

Pt oy [ﬂr"_ﬁ—._i‘_)'_k Cz__BJ(A—B)= _1_05]

2
P, tgm,z_é_ [E%__m +C4+B J(A_Q_-B)z oy C’]
hence DP, #g a, — DP, #ga, = — 2 I::B J(A; B)s + ¢
moreover (%4,,) P, — P, = 2 J(A '2_ B)z -+ C*; hence
EP,—EPE=2EJ A; B)* 4 c

finally, from the same (%,,)

P,P,= AB— C¢
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Substituting all these values in the preceding equation (o) we will

have
DR e R
5 .EJ—A—B !—C-;_ —2 G ,J(A_EB)$+CQ+2EJ(I‘23) _}_CZ
&G ( B) )+ e AB—C?
DB
hence 1 s "ﬁ__i_E
(R =
" 1 "5 po's DB
. TS ATE e O

one of the values required ; to have the second let us first reduce
the equations (7, ,) to the form

D+ Eiga
&, = —1g o, yo——'T—"
D+ EBiga
Fg=sis 1 o Yo~ ~Tmgre

and subtracting the first from the second, we will have

T3 E (P ]
Yo (g0, — 18 %) = D.AE, R P( I:‘:g & P,iga,)
1

From the preceding values of P, — P, we derive

P,— P, :“2J(A_'2__]_3)2 g ik

and from (7,), (i,,)

1 1 1
P tra ——-|A ]A B\¢ S T o _C
2 1€ o, C[ ( > )+ C S b QAB c]

1 P e T
P, iga =_[—A A—B p o g lAB—C“]
bt J( 7 )+-C R .

hence,

Psfg?‘]_Pl tg“s=2%J(A;B)$+ c
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So, by a substitution similar to that of the former case, we will find

) AR o SAR T RG o
QJW ‘_QD-\!'( = ek C\‘ gr) L
—%: o)+ C = AB—C*
or AE
.zo_____.__D+ u
T DA —
hence,
__CD — AE
Yo 57 AB =0 §
which with s=esis (112)
CE — BD
b RAT = O

will determine the point of intersection of the two axes.

Let us now come to the second part, that is, to the substitution
of these co-ordinates in the general equation (2,) of any diameter.
It is plain that only the co-ordinates of any point of the line rep-
resented by an equation substituted in the same equation, shall
make the first member equal to the second. Hence, if from the
substitution of the values of a_ , ¥, we will derive the first member
of (7,) equal to the second, every diameter will pass through the
point of which the co-ordinates are x_ , 7, ; that is, through the
point of intersection of the axes of the curve. But, substituting
in the formula (¢,) the values (7, ,), that formula becomes

CD — AE ‘) v AJCips CE — BD DA Eiga

AB—C' =  C+Biga AD— C*  C-+Bige
or
CD—AE __—(A 4 Ciga) (CE—BD)—(D+Efga) (AB—C?)
AB =Gt (C+Biga) (AB—C°)
But
— (A4 Ctga)(CE—BD) = — ACE 4 BAD — EC* fga

+ BCD {g a

— (D4 Efga) (AB—C*)= — ABD 4 DC* — ABE {ga

+ EC#ga
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hence,

CD— AE _ DC'— ACE + BDC t¢a — ABE iz a
AB—C - (C +Biga) (AB—C)

Again,
DC?— ACE + BDC g« — ABE tg 2« =CD (C 4 B tg 2) — AE (C + B1g2)
= (CD — AE) (C+ Big=)

therefore, substituting,

CD — AE CD — AE

AB—C — AP —0%

that is, the co-ordinates (¢,,) substituted in the formula (z,),
make the first member of that formula equal to the second ; and
all the diameters of any curve of the second order having two
axes, pass through the point of intersection of these two axes.

PROPOSITION VI.
The point of intersection of the two axes is the centre of the curve.

54. This proposition is a corollary of the preceding ; for imagine
any chord passing through the point of intersection of the two
axes : this chord, as well as the system of its parallels, is cut in
two equal parts by the corresponding diameter, but the diameter
passes through the same intersection ; hence, the chord is cut in
two equal parts in the point of intersection, but (51) the point in
which the different chords are equally bisected is the centre ;
therefore, the point of intersection of the axes is the centre of the
curve. Itis yet to be remarked, that all the straight lines pass-
ing through the centre of the curve do not reach the curve, as we
shall see in the following discussion.
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Piscnssion of the chords passing throwgh the cemive of the curee.

GENERAL FORMULA.

55. The general formula of any chord whatever may be derived
from the sum of the equations (), because from this we have

2Pc¢* = 2K — 2R

5 ; dik 2R
an o= P

which is the square of any semichord. Now, in order to have
the value of those chords only which pass through the centre of
the curve, it is to be observed that among the elements by which
the preceding value c* is given, K is (44) a constant one, P de-
pends on the angle formed by the chords with the axis of the
abscissas, and R depends on the co-ordinates of the middle point
of the chord. Hence, to have the expression of the chords
bisected at the centre of the curve it is first necessary to deter-
mine the peculiar value of R by substituting the co-ordinates (7,,)
of the centre. The general value of R is (4,) Az 4+ By, 4
2Cx_ y, + 2Dz, + 2Ey_ and substituting,

SRE
il AC'E RACEBD + AB*D?

o (AB — C°)
5, s _ BC'D' — 2ACEBD 4 BA'E
Wit o (AB T Cn)‘:
00z, y, — 20" ED —2C:D'B — 3C*E’A 4 2ACEBD

(AB — GV

before making the substitution, in the two last terms, of the value
of R, let us take the sum of the three preceding, which is
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Ax,t + By, + 20z, y, =

— AC'E* — BC*D* + 2C°ED + BA’E® 4+ AB'D*— 2ACEBD
(AB — C)e

__ —C*(AE* 4 BD*— 2CED) + AB (AE* 4+ BD* — 2CED)
5 (AB — C¥):

.

(AE* 4 BD* — 2CED) (AB — C?)

(AB — C¥):

_ (AE® 4 BD*— 2CED)
TR B ICY

Substituting, now, the same values in the remaining terms, we
will have
4CDE — 2BD* — RAE*

ngo + 2Eya e T AB___G:_ =0

hence the whole value of R, which, in the present case (and to
distinguish this peculiar form from the most general value) we
shall call », will be given by the formula

2CDE — AE® — BD* i
o= N R (is)

and the square of this semichord corresponding to the same value
of R, and passing through the centre of the curve, will be given
by

DifTerend cases with vegard lo the fines passing hrvough the cemdve
of the curve.

56. We have already observed that the value of P depends
upon the angle e which the system of parallel chords makes with
the axis of the abscissas ; hence, although the curve admits of a
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centre, and consequently, in this case, the peculiar values P,, P,
of P corresponding to the angles, o, and a, (45) are different from
zero; yet it can happen that the value of P, corresponding to
another angle a, different from o, and a, , becomes equal to zero.
Hence we may distinguish three different cases with regard to the
last formula (¢,). Either the value of P is equal to zero, or, if

—_—, s =
p— 18 positive or negative. The

first case will be considered afterwards ; let us now examine the
iwo latter. And first, as far as the second member of the for-
mula (%,,) is a positive quantity, there are two real corresponding
values for ¢ ; that is to say, as far as P is different from zero, and

not equal to zero, the ratio

such as to effect the ratio r, a positive quantity, the semi-

P
chord ¢ shall be a real one, and the lines passing through the
centre of the curve forming, with the axis of the abscissas, the
angles « corresponding to such values of P are chords. On the
contrary, if the value of P is such as to make the same ratio
K —r

P
ratio, and all the lines passing through the centre of the curve,

a negative quantity, no real value of ¢ corresponds to this

and forming the angles o corresponding to such wvalues of P, are
not chords ; because the distances ¢ between the centre and the
point of the curve met by these lines are imaginary quantities.
Therefore, the condition to be fulfilled by the lines passing through
the centre of the curve, in order to be chords, is that the angles
formed by these lines with the axis of abscissas be such as to

make the ratio P T a positive quantity.

Corollary. From these observations follows an important co-
rollary with regard to the axes ; because axes are diameters which
bisect the system of parallel chords at right angles. But we de-
monstrated (52) that the axes are perpendicular to each other,
consequently, each axis is at once one of the parallel lines cut by
the other, and it is that which passes through the centre of the
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curve. Therefore, when the axes meet the curve, these are at
once axes and chords, and since, in the case of the axes, the
value P becomes either P, or P, , if the semi-axes be termed
¢,, ¢, from the general formula (7,,), we may derive

K—7r K—r
0y e

Vice versa from these formulas we may perceive if the axes
meet the curve according to the positive or negative value of the
second members.

Peculiar case of the infinite chords.
57. Let us now come to the case in which the value P is equal

; : . K— :
to zero. In this case evidently the ratio __p___r becomes an infi-

nite quantity, and, consequently, the corresponding square c*
also, that is, that chord passing through the centre and forming
an angle a with the axis of the abscissas, which makes P —= 0.
Let us determine the values of these angles. Since (44) (z,)
P = A cos *a -4 B sin 2a + 2C sin o cos o, we will have, also,

A cos *e 4+ B sin fa 4 20 sine cosa =0

Hence those values of « which fulfil this equation are the values
corresponding to P — o0, and if no real value of « may fulfil the
same equation, P will never be equal to zero. In order to resolve
the last equation, let us transform it into the following:

A+Bilgta+t+20tga=o0

: C A
from which g *u+2]—3~fga=-—-—-—]§-

and consequently, by resolving the equation according to the
known rule,

fg’u.:-—% :i:%\/C"-—AB.... (%)
6
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from which equation it is plain that two real values of the angle
« (/5 a/’) will fulfil the equation when C* — AB > 0, and when
C* — AB < 0 no real value of a can fulfil the same equation.
And in the former case only two chords passing through the
centre of the curve, making the angles o/, o/ with the axis of the
abscissas will be infinite chords.

Functions of (he curves,
Equations of the tangent and normal.

58. Let AA'/CB'R (fig. 37) be any line of the second order,
and let T'T be a tangent drawn to any point C of that line. Sup-
pose a system of chords A'B/, AB, ... . to be parallel to the
tangent TT/, and let m'mD be the diameter corresponding to this
system. Such a diameter must pass through C, the point of
contact of the tangent TT/. Because, imagine the chord, for
instance AB, to be moved in a parallel manner towards T'T’, the
points A, B must be always equally distant from m, and always
approaching nearer to the same point of the diameter, so as to
become only one point when the chord will have reached the
extremity C of the same diameter. But then the chord becomes
tangent, therefore the diameter passes through C, the point of
contact. Hence the co-ordinates 2, y of the point C are at once
co-ordinates of the curve and of the diameter CD, and they
must fulfil the equation of the curve as well as the equation of

that diameter. Now, from the general equation (7,) of the
diameter, we have

an equation which is fulfilled by the co-ordinates z, 5 Y, of every
peint of the diameter corresponding to the chords which form an
angle o with the axis of abscissas. Let us now substitute in the
preceding formula the co-ordinates @ , ¥ of the point common to
the diameter and to the curve ; we will have
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o Cy+ Az 4+ D
gu"—_By—[—Cm—l—E

But the co-ordinates x , ¥ are those of the point of contact of the
tangent forming an angle o with the axis of abscissas ; and if, to
prevent any confusion, we term v the abscissas, and u the ordi-
nates of the same tangent, the equation of that line is (10)

u=1g av4 u

or, since that tangent passes through a point of which @ , y are
the co-ordinates, (10 C. I), the equation of the same tangent is

also i
u—y=1ga(v—a)

and substituting the value of {g « given by the preceding equation

Az 4 Cy+D

YT TGt Ry +E Y

which is the required equation of the tangent, and in which x , y
are the co-ordinates of the point of contact.

The normal corresponding to the tangent TT’ is (21) the per-
pendicular CP drawn to the tangent from the point of contact ;
and if the abscissas of this new line be termed »' and the ordinates
%!, the equation (10 C. II) will be

e / /
Ul = tg =0 -+ u,
But CP passes through the same point C ; consequently, the equa-
tion of the same line is also given by

1
e MR
U —_—y = ha(*v @)

and substituting the value of ig «

_CatBy+B

ul —
T Az+Cy+D
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Tangent, wormal, sublangent, and subnormal of any point.

59. We remarked already (21) that the portion CT of the tan-
gent contained between the point of contact and the axis of the
abscissas, is called tangent of the point C; and CP the normal,
and the segments TH and HP, in which the hypothenuse of CTP
is divided by the perpendicular CH, are termed subtangent and
subnormal of the same point C. Now it is plain that, supposing
« and 2/, in the preceding equation, to be equal to zero, the cor-
responding » and o/, in the same equations, must be the abscissas
AT and AP of the points of the axis X, met by the tangent and
normal ; therefore, if those abscissas or distances of the tangent
and normal from the origin of the axes be termed A and a/, we
will have

__ ., Co4By+E
G B g g )

Az+ Cy+ D
T GrBy 4+ E

But TH — AH — AT — @ — & ; hence, the absolute value of
the subtangent TH :

afie=op

Czx + By + E
Az +Cy+DY

Again, HP — AP — AH — A’ — x; hence, the absolute value
of the subnormal

Az 4 Cy+ D
Cz +By+ B 7Y

And, since CT = 4/[CH® 4+ TH*®*] , CP = o/[CH® 4 HP*]
we will obtain the values of the tangent CT (= #), and of the nor-
mal CP (= n) by the following equations :

= w1y + (v — 2)°]
n= W[yt + (&' —a)*]
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Mifferent species of the lines of the second orvder.
Modification of the general equation.

60. From the discussion of the axes, and of the chords pass-
ing through the centre of the curve, it is plain that there are
different species of lines of the second order. But a further in-
vestigation of the subject is necessary to separate entirely each
kind from the others. To this end let us first begin by modifying
the general formula (7) or equation of these lines, which shall be
performed—supposing any diameter of the curve to become the
axis X of the abscissas, and any straight line parallel to the chords
bisected by that diameter the axis Y of the ordinates; because
in this supposition the general formula must necessarily be

Alz® 4 Blyt 4+ 2De =K. . . (o)

For let AX (fig. 39) be the diameter, and YY' the line parallel to
the system pg , p'¢/, . . . . of chords bisected by AX. Now, to
every abscissa Ak, AA/, &c., correspond two ordinates /Zp, &g ;
ip'y Rg', &ec., the one positive, the other negative, and equal
to each other. Butifin (o) we suppose to be added any other
term, we will no longer have two equal ordinates for every ab-
scissa ; because, the terms which may be added are (43) 2C'zy,
2E'y, that is, 2(Cla 4 ENy, and introducing this new term in (o),
we will obtain

Blyz + 2(C'z + E)y = K — Alaz — 2D'x

an equation of the second degree, which resolved will give

Cle E K' — Algz —2D/x Cla B
Sy BT = \/ [ i ( 7 ) ]

Now, to each value of z correspond two values of » different from

af Clx+ E
each other, and this difference depends on the term — =T

that is, it depends on the introduction of the term 2 (C'z 4 E/) g.

s 2y
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Hence, in (o), where C/ and E’ are equal to zero, to each value of
@ correspond two equal values of y affected by contrary signs,
and given by the formula

oy :I: \/[K-’ —_ A':cﬂ — 2Df.:r:]

WDifferent cases confained in the general equation.

61. Let us now consider how many partial forms may be given
to the preceding general equation. There may happen five cases ;
we may suppose either the general formula

Alz? - Blyz 4 2Dla = K/

as it is modified in the preceding number, or the same formula
wanting some terms, first, the term K’ so as to have

Alzz 4 Blyz 4 2Dz — o
Secondly, the last term of the first member ; and, consequently,
Alxr 4 Bly>» — K/
Thirdly, the first term, so that
Bly2 4 2D/ —= K/
And finally, the first term and the term K, so that we have
Blyr + 2D'x — o

These are the only possible cases. We cannot suppose, for in-
stance, the general equation without the first and second terms at
once ; because, in this case, the equation would become an equa-
tion of the first degree, and it would preserve, moreover, only
one co-ordinate. The same would happen supposing the general
equation deprived of the first and third terms; that is, it would
preserve only one co-ordinate ; and the same is to be said if the
formula is deprived of the second and third terms, and of the se-
cond alone, or of the second and last, K. 'We can no more sup-
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pose the same general equation wanting at once the last term of
the first member, and the term K’ of the second ; because, in that
case, the equation might be converted into the following :

RBI
o=/

which being an equation of the first degree cannot represent any
line of the second order ; therefore, only the five cases first con-
sidered are those which can be admitted. But, as we shall pre-
sently see, the curves corresponding to the first three equations
may be represented by a single equation ; and the curves corres-
ponding to the two remaining equations may be likewise repre-
sented by a single equation. Therefore, the five cases may be
reduced to two only.

T'he lines corresponding to the preceding cases vepresenled by two prin-
cipal formelas.

62. Suppose the curve p/pgq’ (fig. 39) to correspond to the gen-
eral equation Alr®* 4 B'y* 4 2D'z — K/, and let AX be the
diameter taken for the axis of the abscissas, and AY the axis of
the ordinates parallel to the chords pg, p'¢/, &c., bisected by AX ;

if the origin A of the axes be transposed to A/, so that the length
!

AA' be equal to %, the ordinates p/ , p'f!, &ec., corresponding to

the abseissas A4 , A4/ in the first supposition shall correspond to

the abscissas A'A 4+ A% , A'A + AZ!, &c., in the second sup-

position ; and if the new abscissas A’4 , A4/, &c., be represent-
ed by «/, we will have

D! D/

+a or o= & — —

-‘I?"I:E Al

and introducing this value of @ in the general equation, it will be-
come

N £ D!
A .z"-—»% + By + 2D/ (m’——ﬁj>=K’
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D"

A’

in which the second member is a constant quantity ; therefore,
this formula corresponds exactly to the third case considered in
the preceding number ; and consequently, all the lines which may
be represented by the general formula of the first case, may be
also represented by that of the third, and the difference of the form
of the equations is to be referred only to the different origin of the
axis. In the same manner we may demonstrate, that all the lines
corresponding to the second equation of the preceding number
may be represented by the same third formula ; therefore, all the
lines of the second order, corresponding to the first three cases,
may be represented by only one formula, that corresponding to
the third case. Let us come to the last two cases, and suppose
again the line p'pVgg¢' corresponding to the equation B'y* + 2Dz
— K/; if the origin A be transferred in A’, so as to have AA'=

or Azl + By =K' —

'
5D’ and if the abscissas taken from this new origin be termed

@', we will obtain the value of every abscissa a taken from the
!

s K S - .
origin A, equal to ' 4 i Substituting now this value in the

preceding equation, we shall obtain
/ K
B s+QDr(mr =1 _Q‘D_f)zK]
or Blyt 4 2D'z' = o

Which equation exactly corresponds to that of the fifth case.
Hence all the lines represented by the equation of the fourth case
may also be represented by that corresponding to the fifth, and
the difference of the forms depends on the different origin of the
axes. Therefore all the lines corresponding to the different cases
of the preceding number are represented by two principal formu-
las,

Alxe + ny:?. — KH‘
By 4 2D'z=o
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Furither modification of the fwo principal formuias.

63. From the conclusion lately deduced it is plain that the
discussion of every possible case is limited to that of the two
principal formulas, and from such a discussion we may be able
to derive the diflferent species, as well as the properties of each
species of the lines of the second order. However, before en-
tering upon this subject, it is necessary to modify the same
formulas, not only to facilitate our investigations, but also to give
to the equations the form usually adopted. To this end let us
first transform the principal formulas into the following:

Al B!
KT R T
! 2D/

3= iy

’
and then let us determine the values of some positive quantities

a, b, p, so as to have

g KH 1 Af
8" o DadEaa T R

A K 1 B/
4 & =§}— or -_-i:FﬁK‘—"”

!

== P N

And since this determination is always possible, we may conse-
quently substitute these values in the preceding equations, which
shall become

L. g
:I:E?:I:E'—l
y: = + P

Which equations, although apparently two, are really six, be-
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cause in the first either the signs may be supposed both positive
or both negative, or the first positive and the second negative, or,
next, the first negative and the second positive. Likewise the
second formula corresponds to two on account of the double
sigh. But some of these suppositions are evidently to be ex-

2 2
cluded, because we never can have either — :% —_ g—z— =41,
or y* = — 2px when @ >> o, and if x < 0, then y* = —2p . —2

is the same as y* = 4 2 . . Hence the only equations to be
discussed are j

m! yz‘__
=i
x! yi_
R (&)
y* ae '
7 Ml
y!:QPm

With regard to the corresponding curves, that represented by
the last equation has (14) two indefinite branches, and it is called
parabola. That represented by the first is eircumscribed within
certain limits (15) and is called ellipse. The curves correspond-
ing to the second and third equations are evidently of the same
kind; and if, for instance, in the third the axis of the abscissas
be changed in that of the ordinates, and vice versa, the third
equation shall take the very same form of the second. Hence
we may consider the first of the two equations alone, the corres-
ponding curve of which is (16) a curve having four indefinite
branches, and is called Zyperbola.

Observe that since the equations (g) are derived from that
general formula in which a diameter is supposed to be taken for
the axis of the abscissas, and since any axis of the curve is
nothing but a peculiar diameter, so we may suppose, and gene-
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rally we shall suppose, an axis of the curve to be taken for axis
of the abscissas, and consequently the co-ordinates to be rectan-

gular.

Lwiterion applied to the curves vepresented by the last formulas io
defect the number of the axes.

64. Before coming to the discussion of each curve in particu-
lar, it is convenient to make a comparison between the last for-
mulas (g) and the most general (¢), in order to apply a criterion,
deduced from the discussion of that equation. And comparing,
first, the equation y2 — 2px = o of the parabola with the gene-
ral Azt 4 By® 4 2Cay -+ 2Dz 4 2Ey = K, we derive A = o,
B=1,C=0,D=—p, E= K= 0; consequently [45 (10) ]

P, =1, P,=0

But when one of the values P, , P, is equal to zero, the curve
(47) admits of only one axis ; therefore in the parabola only one
axis is to be found, and since in the case of a single axis the
diameters of the curve are (50) all parallel to that axis; there-
fore, supposing (fig. 40) AC to be the axis of the parabola
Vi ; the lines ac, ¢!, &c., parallel to AC, shall be all diameters
of the curve; the chords, moreover, bisected by the axis consti-
tute the only system perpendicularly bisected.

£ £
Let us, secondly, compare the equation % - % — 1 of the

ellipse with the same (7) we shall find

1 1
A:—a;, =7 Gl =00 Ki =l
g,z_i_M DE — a2
hence AR S A—B=-—r
and [45 (2) ]
1 1
L Vet L St
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Therefore the ellipse admits of two axes (fig. 41) AC, BD
which (52) are perpendicular to each other, and the point O of
intersection is (54) the centre of the curve, and all the diameters
. db, d'¥!, &c., must pass (53) through that point.

2 z
The comparison between the equation % - %—2- = 1 of the

hyperbola, and the general equation (7) gives
1 1

A=—, B=——,C=D=E=0,K=1
bt — at b2 + a®
hence P B =iy A B = Sy
and [45 (7,,) ]
1 1
PIIF’ Pz_—"—"'F

Therefore the hyperbola also admits of two axes AC, BD (fig.
42) perpendicular to each other, and all the diameters bd, b'd,
&ec., will pass through O, the centre of the curve. The other
properties derived from the general formula will be more appro-
priately examined in the discussion of the different curves.

PARABOLA.

i ion of Fe g» liay equation ; and first of that of the parabola.
DEFINITIONS.
65. In the equation of the parabola
y2 — 2pz

the constant quantity 2p is called parameter : and since the equa-
tion may be resolved into the proportion 2 : y : : y : 2, therefore
the parameter is the third proportional term to any abscissa and
the corresponding ordinate. The point V of the parabola met by
the axis AC is called verfex; the point F (fig. 43) of the same
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axis within the curve, and so far from the vertex as to have
VF = 1p, is termed focus. The siraight line QB perpendicular
to the axis and passing through a point E distant from V as far
as F'is the directriz. Observe, that since the origin of the co-
ordinates (14) is to be taken in V, the abscissa corresponding to
the double ordinate drawn from the focus must be equal to
VF = }p; but then from the equation of the curve we have
ﬁz = %p . +p = p*, and, consequently, Fs = p and ss' = 2 ;
that is, the double ordinate passing through the focus is equal to
the parameter. :

PROPOSITION 1I.

Every point of the parabola is equally distant from the foecus and
the directriz.

66. Let M be any point of the curve ; the distance of M from
QB is given by M{ (= o) perpendicular to QB, FM (= p) is the
distance of the same point from the focus. Now, supposing Ma
perpendicular to VC, we will have Vo = 2, Mn = y; conse-

quently ¢/ = {M = En = EV 4+ Va = }p + @, but p? = MF
el LAk
—Mn +Fn =g b e —ip)t =yt ar— ot 2,

and since y* = px, p* = a* - px —f—%—k = (2 + 4p)®, hence
b=+ tp, and

pl=p
That is, every point of the parabola is equally distant from the

focus and the directrix.

Corollary. From this property of the parabola it follows that
if we suppose a straight line BD perpendicular to AC (fig. 44),
every curve having all its points equally distant from the line BD
and from any point F of AC is a parabola. Whence we deduce

T T

g b =
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the manner of describing this line; because suppose (fig. 45) AB
the edge of a rule, R to represent the directrix, and let CD be
perpendicular to AB, that is the edge of the square S perpen-
dicular to that of the rule. Suppose, again, on the same plane a
thread FiD equal in length to CD, having one end fixed in the
extremity D of the square, and the other end in some point F of
the plane, and the part ¢D of the thread to be kept close to the
edge CD by the stile f¢g while the square slides along CB. (F
will evidently be always equal to Cf ; therefore the path described
by t, the extremity of the stile, is a parabola.

PROPOSITION II.

The sublangent corresponding to any point of the curve is double
of the abscissa of the same point.

67. The general formula by which any subtangent is repre-

sented is (59) ‘(%B:E;ﬁjl_—:-%y, but in the present case (64)

C=A=E=0,B=1,D=—p; hence the subtangent of
z
any point (x, %) is equal to — %; and since ¥u* = 2px, the

value of the same sublangent will be given by — 2x; and having
no regard to the sign, the subtangent of any point of the para-
bola is equal to the double abscissa of the same point,

PROPOSITION I1E,

The subnormal of any point of the parabola preserves a constant
value equal to the half of the parameler.

68. The general formula of the subnormal is (59)

Az + Cy+ D
~ Ce+By+ EY
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consequently, in the discussion of the present curve, the subnor-
mal of the point (z, y) will be%‘? —p, but 2 is the parameter ;

hence, the subnormal of any point of the parabola is a constant
quantity, and equal to the half of the parameter.

PROPOSITION 1IV.

The tangent of any point of the parabola is the mean proportional
between the distance of that point from the focus, and the quad-
ruple of the abscissa of the same point.

69. The square of any tangent MT (fig. 46) is equal to
Ma + Ta
the square of the ordinate of the point of contact plus the square

of the corresponding subtangent. Now (67) the subtangent is
double the corresponding abscissa ; hence,

3

MT = y* - 4x*

and, since y2 — 2px

MT = 2px + 4ot — 42 (L p + @)

but (66) + p + @ = p, the distance of the point M from the focus ;
hence,
I\-_ﬁ'—c:. 4z . p
or
4 : MT : : MT : ¢
Scholium. The angle which any tangent MT makes with the
axis AX, may be derived from the general formula (58)

Cy+ Az 4 D
T By+ Cx+4 E

and,since C=A=E =0, D=—p , B=1, we will have

fga=—
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tg « or g MTX:%

namely, the trigonometrical tangent of the angle which the tan-
gent of the curve forms with the axis X, is equal to the half of
the parameter divided by the ordinate of the point of contact.

PROPOSITION V.

The normal corresponding to any point of the parabola is the mean
proportional between the parameter and the distance of that point
Jrom the focus. -

70. The square of any normal MR is equal to szr -?T:Rz, that
is, to the square of the ordinate of the point M of contact plus the

et —_1
square of the subnormal ; but Mz , or 2 = 2 px, and (68) nR
= p%; hence,
MR — 2px + p* — 2p (x + 4 p)

and since (66) } p + @ — ; ; consequently,

ﬁf_l'z:%p.p
or 2p : MR : : MR : p

PROPOSITION VI.

The focus of the parabola is equidistant from the tangent and the
normal, the distances being taken on the axis.

71. FT and FR are the distances of the focus from the tangent
and normal reckoned on the axis AX. Now

TF — AT -4 AF

but AT — Tn — An, and Tz is the subtangent, An the abscissa
of M ; thatis, (67) Tn = Ra, and An — «. Again, AF is equal
(65) to § p ; hence,
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TFP=o+tp=9p
Moreover,
FR = AR — AF

but AR = An 4 2R, and An is the abscissa, nR the subnormal
of M ; hence, An =wx, and (68) =nR =p. Again, AF=1{p;
therefore,

FR=pteo—ip=a+tip=y

and consequently
TF = FR

The distance of the focus from the tangent equal to the distance
of the same focus from the normal, and both equal to the radius
p or FM drawn from the focus to the point M, to which the tan-
gent and normal belong, so that the triangle RFM, as well as
MPFT, are isosceles ; it follows, also, that

TR = 2TF = 2,

PROPOSTTION. VY IL.

The normal of any point of the parabola is double the perpendicular
drawn from the focus to the corresponding tangent.

72. Let FN be (fig. 47) the perpendicular drawn to the tan-
gent T¢. This perpendicular shall be parallel to the normal MR,
and consequently the triangles TFN TRM similar to each other;
hence from elementary geometry

TR __RM
TF — FN

and since (71) TR = 2TF, hence %Il\w{ =%, and

RM=2.FN

the normal is twice the perpendicular FN. Now, since (70)

T
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2 i p

W ] the value of the

RM = 2p . p, and consequently RM —

normal will be also given by the formula

7 _P-p
RM'_FN

PROPOSITION VIII.

Two straight lines drawn from any point of the parabola, the one
to the focus the other parallel to the axis, form the same angle
with the tangent of that point.

73. Let the radius FM be drawn from any point M of the
curve, and from the same point let Mz be drawn parallel to the
axis. The angle :M¢ which Mz makes with the tangent is equal
to the angle which the same tangent makes with AX. But (71)
in the triangle TFM the side TF is equal to MF ; consequently
the angle FTM — FMT ; but FTM — ¢M¢{ ; hence

*M¢ — FMT.

Eguation of the parabola with vefervence fo the polar co-ordinates.

74. Let g be any angle AFM (fig. 45) which the radius p or
FM makes with the axis AX, and let An, nM be the co-ordinates
x, y of the point M of the curve to which the radius is driven.
In every supposition we will have

x=—Ltp—pcosp

The angle 8 may be equal, less, or greater than a right angle ;
in the first case cos 8 — o0, and consequently the preceding equa-
tion becomes & = }p, the value of the abscissa corresponding
to m, to which, in this case, is drawn the radius. In this second
case the perpendicular drawn from m/ to the axis must fall be-
tween A and F, and consequently An' or x — AF — Fn/ ; now
AF = jpand Fn/ =4 pcosB; hencea —= }p—pcosp. In
the third case the perpendicular drawn from M must fall at some
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point » beyond F ; hence An or 2 = AF ~+ F2; but again,
AF = }p and Fn= — ; cos 8; therefore 2 — +p — p cos B.
Now the value of the radius p in every case (66) is given by
* = }p, «being the abscissa of that point to which the radius
is drawn; heace substituting, instead of r, the value given by
the preceding equation, we will have p = tp—pcosB4 4p;
that is

= v
p'_1+ cos 8

which equation, containing only the variable quantities p and g,
is the required equation.

Equation of the parabola with veference to any diaincter consideved as
the avis of the abscissas, and the Jangent parallel to the system of
chords bisected by that diameter, considered as the axis of the ordi-
nates,

75. Let M: be the diameter on which are to be taken the
abscissas. Mf the tangent parallel (58) to the system of chords
bisected by Mi on which are to be taken the ordinates. Let the
co-ordinates of the curve with reference to the new system be
termed a', y/, since (6) the. angle (22') = o and (¥'2) = a, that
is, the inclination of the tangent on the axis X, we will have
(7C. 1)

Y=Y+ y'sina
r=a,-} 2 + y' cos

in which x_, y, are the co-ordinates of the new origin M with
reference to the former system, and consequently we will have

Yo' = %, , and x, = %9' - Again, (69 §ch.) fg o= 2’ from
/4 Y

which y = zg?: - psfnos:; hence

P* cos fa P cos g

£, = - - = =
2 2p . sin %q 2sin 2q
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which value, with that of 7_, substituted in the preceding
formulas, they shall become

’ P cos o
Y=g -+ ¥ sin o
p cos %a
e zsmzu—l-.r-'—{-y Ccos a

Let us now resume the equation y* = 2px, and substituting in it
the last determined values of @ and y, we will have

p cos a _p»cos *a 3 i 1
m—}—y smo.>—2 r,Sinmm—l-%p.a:—1—2141._1';cos.:i.
hence
P° cos __ picos’a j s gy ak
S 9T -+ 2py cos a -} y" sin "o = o -+ 2pal 4 2py' cos a

and consequently 7't sin 2a — 2/, from which
- p

sin®a

x.!'

yfz =

the required equation.
ELLEIPSE.

PROPOSITION 1.
The axes of the ellipse meet the curve.

76. We observed (56 Cor.) that when the second members of
: gty K—r gty it V13
the equations ¢,2 = P2 Car b ke positive quantities
1 z
the axis 2¢, , %c, , having then a real and determined value,

a2 2
meet the curve. Now from the equatmn — —}- ?j = .1}y that

here taken in consideration, and compared w1th the most general
1 1 1
(1)“'811&‘0(64)]? aZ’P’-': g K:—.landA:zt—z,
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1
B =7 C= D =E = O; hence (55 (i;) ) r = 0 ; therefore

CRTp 2 — pe
ersi—tat ey s —0

that is, the axes of the ellipse meet the curve at a distance from
the centre, the one equal to 4, the other equal to c.

Supposing @ > b the axis 2a is termed #ransverse, and the axis
20 conjugate. Let us here remark that, supposing a¢ = b the
equation of the ellipse is converted (11) in that of the circle, and
of course the circle may be regarded as a peculiar case of the
ellipse.

PROPOSITION I[I.

The equation of the Ellipse considered in lhe present discussion
necessarily supposes the origin of the co-ordinates tn the centre.

7. Supposing thd centre or point of intersection between the
two axes to be different from the point of origin of the co-ordi-
nates, the co-ordinates (53) of that point will be given by the
formulas (7,,)

__CD — AE CE — BD

HEAT e AR e DR

hence B =00 O

but the point of which both co-ordinates are equal to o is the ori-
gin of the axes; consequently, where is the point of intersection
between the axes of the curve, there is the origin of the co-ordi-
nates.

PROPOSITION III.

If any chord passing through the centre of the ellipse is the diameter
of another chord passing through the same centre, the latter is by
turns diameter of the former.

78. Let (fig. 49) ad/ be any line passing through C the centre
of the ellipse ; since this line meets the curve with both extre-
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mities, it may be considered like a chord; and since it passes
through the centre it may be considered (53) as the diameter bi-
secting the system of chords parallel to the tangent (58) in a or
a'. Hence, if from the centre we draw a line 4%’ parallel to that
~ tangent, this line shall be one of the chords of the system ; but it
is a diameter also, and such a diameter as to bisecl the system of .
chords parallel to aa’. Because, supposing o« to be the angle
formed by 4%’ with the positive X, the angle » formed by aa' with
the same X, that of the diameter corresponding to the system of
chords parallel to 60/, and consequently given by the formula (7),
lE
attga
bd! is the diameter of the system of chords parallel to aa/, we must
bz

which in the present case becomes #g « — — Now, if

have ig o« — ; which will be easily demonstrated ; be-

T at Igw
cause, let us substitute instead of /g « the, value given by the
preceding formula, we will have #g a = #g a. Such lines con-
sidered together are termed conjugate diameters.

PROPOSITION 1V.

The sum of the squares of the conjugate diameters is constantly
equal to the sum of the squares of the axes.

79. Every diameter, as we observed before, may be regarded
as a chord passing through the centre of the figure ; and the square
K—r .

p— > in
which P depends on the angle which the chord makes with the
1

1

of any semichord passing through the centre is (55)

positive X. Now, since in the present investigation A —

1
Bic= TR C = o, so the value of P [44 (¢,) ] will become

€os *a sin %a
o e i 5" Hence, let aa/, (60’ be any two conjugate dia-
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meters, and the angle which 44 forms with CX be termed a, that
which @e’ makes with the same axis «, between which angles
there is the relation remarked before. Now, with regard to the
former 64!, the value of P is that mentioned above, and which

may be modified as follows :

P bt cos 2a - a? sin ta
e a* bt

with regard to the latter aa', we will have

b® cos 2w 4 af sin 2o
P= —
a® 0%

Observe, now, that (64, 76) K=1, » = 0 ; therefore, sub-

stituting the preceding values of P in the ratio £ I_,'T, we shall

obtain the values of the semi-diameters by means of the follow-
ing formulas :

—— at b2
Gh= :
b2 cos 2a + a® sin %2a
syveil0)
i a! b!
< T b cos 2w 4 at sin 2o
: ! b2
but we observed in the preceding number that g « = — 7z o
from which follows
b
2 —
il atlgia
or
sin e b4 cos ?a
cos2w @t sin fa
and

Cos*e a4 sin fa
sin 2w b% cos 2o

by adding unity to each member of both equations, and reducing
to the same denominator. If we observe that sin ¢ - cos 20
— 1, we will obtain



104 GEOMETRY.

1 b4 cos 2 4 at sin %a
cos®w a4 sin 2a

1 at sin *a - b4 cos *a
sin 2w b1 cos 2a

hence,
e 5 b2 a4 sin %a
Cos 2o = -
b1 cos2a + at sin 2a

a? bt cos 2a
@' sin 2a -} 0% cos %a

a® sin 2o =—

and consequently,

a® b (a® sin 2« - b2 cos e
a* sin 2a -+ 6% sin 2a

b2 cos 2w - @? sin 2o =

which value substituted in the second (o) shall give

o a* sin 2o - 0% cos 2
a = .
a® sin *a - 62 cos 2a

or since

a*sin*a - 4* cos®o = @' &* + a* sin *a + ' cos’a — a@* &*
= & *(sin*a - cos*a) -} a' sin *a - &' cos *a—a’ b’
= a*sin’e (8* + @) + & cos %a (* + @*) — &* &
= (&* + &*) [&’ sin *a - b7 cos *a] — & &7

and consequently,

at sin 20 - 0% cos %a be ; a2 b2
- — e o
@? sin 2a - 6% cos 2a h a? sin 2a - 6% cos %a

we haye also

el z2 pz
Ca = b2 4 at — = :
. a? sin 2 ~}- &2 cos 2a

&

but the last term is the value of C & given by the first (0); hence,
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Ca 4+ Cb = a* 44
and
el i
4.Ca+4.Co =4.a® + 4.0

that is, the sum of the squares of any two conjugate diameters is
equal to the sum of the squares of the axes.

PROPOSITION V.

»

The parallelogram on the conjugates is equal to the rectangle on the
axes.

80. If from the extremities @, «' , b, b! (fig. 50) of the diame-
ters we draw the tangents mn, m'n! , nn!, mm', the first two shall
be parallel to the diameter 44/, the other to aa'; hence, mn =
m/n/ = bb', and nn! = mm/ = ad/, and the parallelogram mnm'n/
is the parallelogram on the diameters aa/ , 6. In the same way,
if s, r's! , 71/, ss' are tangents drawn from the extremities of the
axes, the rectangle 7r/s's is the rectangle on the axes. Now, on
account of the parallel lines the diameters aa’ , 44 divide in four
equal parts the parallelogram mm/n'n, and the axes AA’ , BB' di-
vide in four equal parts the rectangle »ss'7/, so that the areas may
be given by the equations
rrlsls =4 ACB?"' =4 a.d

foal. } : (a)
mm'n'n —4maCl —=4aC. 0t

supposing 0/t perpendicular to ae!. Now, 't = 4/C sin §/Cd’ ; and
preserving still the same denominations of « and « of the angles
a/CA! , WCA!, we wil} have sin #/Ca! — sin (« — «) ; hence,

bt =10C .sin (a—w)...(a) i

but from trigonometry

sin (o — @) = sin a €08 @ — €08 o sin ©

= c0s & (sin @ — cos « Ig @)
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hence, ’
sin 2 (o — ©) = cos %o (sin a — cos a g «)*
bz
but (78) tg o = — an; consequently,
cos 20 ; z
1 — = ——— 2 2 2
sin 2(a — ) R T [a@2 sin 2a -~ 6% cos 2a]

substituting now instead of cos 2w the corresponding value given
in the preceding number, we will derive

[@® sin 2o -} B2 cos 2a]?
a* sin 20 -} &% cos 2a

sin 2 (6 — @) =

but from the same preceding number

a? sin 2a -} 42 cos 2a 1
at sin 2a -+ bt cos 2a 2
o Ca

hence,

PR i a? sin 2a -~ b2 cos 2a

Ca
again, from the first (o)
2 2
a* sin 2o -} 0% cos 2a = & b,
Cd
hence,
2 52
sin 2 (a0 — @) = a,. 2 S
Ca.Cl
or
A ab
s1n (Clr — w) == mﬂ,

let us now substitute this value in (a,), it Will become

s
g a. b vl S
£ Sk s rar et o7

from which finally substituted in the second (), we deduce

mm'n'n = 4.a.b
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but the first (a) gives rr's's = 4.a. b ; therefore,
mmn'n = rr's's

that is, the parallelogram on the conjugates is equal to the
rectangle on the axes,

PROPOSITION VI,

In every ellipse there are two conjugate diameters eérual to each
other.

- 81. Let ad’ be any diameter, and let us draw from o' a'n per-
pendicular to CA! the axis of the abscissas. Cn and ne/ will be

the co-ordinates @ and y of the point a/, and the square Ca’ of
the semi-diameter is equal to 22 4 y2 , or

Ca’:\/mz + y*

Now, from the equation considered in the present discussion of
the ellipse we derive

Yt = b2 — — g?

which value substituted in the preceding equation gives

CGFZ\/mz..I_bz_gmz

or Cd = \/g (& — %) 4- &

From which equation we know, first, that all the diameters in the
quadrant BCA' are different among themselves, because the
second member of the equation depends on the variable @, which
is different for every point of the curve corresponding to that
quadrant. Secondly, since « > b and consequently ¢* — &° > o,
the diameters are increasing with z, but x is to be taken from o
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to a4 ; and to @ = o corresponds Ca' = b ; to # = a corresponds
Ca! = a; therefore all the linear values comprised between the
semi-axes ¢ and 6 are the values of the semi-diameters drawn
from every point of the curve contained between B' and A'.
Now, on account of @ > &

P pe g pep FE &
J 2 <J e _-2_>~]—“2

but \]#: a, Jb__g_&: & ; hence Ja—-‘_g—nb—isavalue

comprised between e and &, and consequently the value of one
of the semi-diameters drawn from some point «' of the branch
B/A’. But (78) to every diameter corresponds another conju-
gate, and the sum of the squares of any two conjugates is (79)
equal to a* 4 62. Therefore if ;' represents the conjugate

2 2
semi-diameter of a, .-"”’_"Q:_b= x 3 the value of 2/ is to be

derived from the equation

r#%ﬁxrz:aa_‘_bz

which gives z/z = & _|2__bi and z' = A/ % —lg_ 2

therefore * = %/ and

Qe=24

that is, in every ellipse there are two conjugate diameters equal
to each other. It is here to be remarked that only one binary of
such diameters can be found in the ellipse, because since the
sum of the squares of the semi-diameters must always be the
same, if we take any diameter greater than 2 » its conjugate
must, of course, be less than 2 »/, and vice versa.
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PROPOSITION VII.

The sine of the angle formed by any two conjugate diameters cannot
be less than that of the angle contained by the equal conjugates.

82. The sine of the angle (« o ) formed by any two conju-
gate diameters is given (80) by the general formula

a.b

ikt ) v e

hence if Ca = Cb, that is, (81) if Ca and Cb are equal to
\/aq F;' bﬁ; the sine of the angle formed by these diameters

shall be given by

b

sin (u-—w)zm

If we now suppose the sine of the former equation to be less
than the sine of the latter, we must suppose, also,

a.b 2 a.ad
T Ch = b

and a.b(g;ﬂ—(‘ig—gja.b

from which it follows

2 Ca . Cb > a2 + b

But since (Ca — Cb)* — Ca + Cb — 2Ca . Cb, and the first
member of this equation is essentially positive, hence

Ca 4 5 > 2Ca 4 Cb

and, of course, if 2Ca. Cb > a2 -+ &2

Ca 4Tb > ar - be
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but (79) we demonstrated that the sum of the squares of the
semi-diameters is constantly equal to the sum of the squares of
the semi-axes ; hence we cannot suppose the sine of the angle

formed by any two conjugate diameters less than a%—-:_—%-l -

PROPOSITION VIII.

The sum of the distances of any point of the ellipse from the roct
s constanily equal to the lransverse awis.

83. Let (fig. 51) two points, F and F', be taken on the trans-
verse axis AA'! equally distant from the centre, and let the dis-
tance be equal to @’ — & ; such points are called foei of the
ellipse. The difference a® — 4% is a positive quantity less than
a*, making, consequently,

at — h2 = 2 42

we must suppose ¢ < 1. Such a fraction is termed the eccen-
tricity. Observe, now, that the equation of the ellipse reduced
to the form

be
y*=;(a*—a:=)...(o)

may be transformed, also, into
yr=(1—e) (@ —a2) . .. ().

Let us now draw from any point M of the curve the lines MF,
MF' to the foci, which lines are termed radit or radius-vectors,
and let MF be represented by p, MF/ by ¢/. M= the perpen-
dicular drawn from M to the axis X the ordinate y of that point,
so that, considering the triangles MFn, MF/n, we may derive
the equations

pr =yt + aF

By ks (o))
== yt - nF’
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but 2WF=CF—Chn=Nd—b—r=:w—=z
WFl=CF4+Ch=Na—0+r=:wmta

therefore, substituting in (o;) these values and that of %2, given
by the preceding formula (o), we shall have

= (L— ) (@ —ot) + (ca— a2
P = (1= ) (@ — @) + (ca+ 2)

And since
(1—¢2) (e — a2) + (ea — @)2 = a2 4 222 —2cav = (a—e2)*

(1=—¢2) (a2 — a?) 4 (e + @) = a2 4 e2@? +-2ax = (¢4 e)®

S0 p2=(a —:x)?, p'*= (o} c2)?
therefore p=a—ex, p=a-4 2
and P -—f— p" = 22

That is, the sum of the radius-vectors of any point M of the
ellipse is constantly equal to the transverse axis.

Observe, that since (¢ — :2)? = (& — @)%, 50 p2 = (@ — 32)°
= (ex — a)®, and consequently p = «r — @, in this case we
would have ¢! — p = 2a¢. But considering, for instance, the
extremity A of the transverse axis, of which the radius-vectors
are AF, AF', according to the last equation it would be
AF — AF' = 2a¢ = AA/, which is absurd; consequently the
value @ — @ of p cannot be admitted. Moreover, the required
value of p must be positive. Now, since ¢ <Z 1 and x can never
be greater than a, hence sx — « necessarily is negative, and of
course the value of p, to be excluded.

On the property of the ellipse above discovered depends a
mechanical construction of the same curve. Because if the ends
of a thread of the exact length of the transverse axis AA’ be
fixed by pins in the foci F and F' (fig. 52), then moving a stile
or pencil P within the thread FMF' so as to keep it always
stretched, it will describe the ellipse AB/A'B.
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PROPOSITION IX.

The distance from the tangent of any point of the ellipse to the cen-
tre, if reckoned on the transverse axis, is third proportional fo
the abscissa of that point and the transverse semi-axis.

84. Let (fig. 53) the tangent {T be drawn from any point M
of the ellipse. Since the origin of the co-ordinates is still sup-
posed in C, if Mn be the perpendicular drawn from M to the
transverse axis ; Cn shall be the abscissa of that point, and CT
(59) the distance A of the origin of the co-ordinates from the tan-
gent, reckoned on the axis X. Such a distance is third propor-
tional to Cn or  and the semi-axis CA'! or ¢: because the value
of this distance (§9) is given by the general formula

=¥ Cex+ By + E
AL O DY
and conscquently on account of C = D= E =0, B = biz !

A= %; by the formula

bz
but (83) »z = = (a2 — x?) hence,

=
e

a4 — 2

&

therefore, RN e ©OA

the indicated relation. Observe that the coeflicient gzi gm——-i iﬁ

. 1 .
is (58) equal to — T being a, the angle formed by T# with the

positive X, hence the tangent of the angle #TX will be given by

Az 4 Cy 4D

C_NTB?}- +E or substituting by — i

aty
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PROPOSITION X.

The normal corresponding to any point of the ellipse divides in two
equal parts the angle formed by the radius-vectors of the same
point.

85. Let (fig. 54) {T be the tangent of any point M of the el-
lipse. The line MR perpendicular to #T will be the normal of M.
If from this point we draw the radii MF = p, MF' = ¢/, the dis-
tances RF' and RF/ of the normal from these radii, reckoned on
the axis AA/, have the same proportion as the radii themselves.

Because
FR=FC — CR
;. Sl i)

FR = F/IC 4 CR

and (83) FC = F/C = ¢z , CR is (59) the distance a’ reckoned
on the axis X from the normal to the origin of the co-ordinates ;
which value given by the general formula

Ar 4+ Cy -+ D
Ca 4+ By + E
becomes in the present case

bz AENRL R
Al=g— —a= o T—
a® a

Al = p =

and since (83) @ — &' = & @’
n
al = *p

therefore CR — ¢ 2& . which value with that of FC and F/C sub-
stituted in the preceding (o) will give

FR =: (a ] s:L’_)
FR=¢ (a + ex)
but (83) @ — @ = p , ¢ | ex = ¢/; hence

FR= ¢, F'R = ¢/
8
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FR_, (_(ME
= G

Therefore, the side FF! of the triangle FF/M is divided by MR
in two parts, which constitute a proportion with the other sides
of the triangle ; but it necessarily supposes the angle FMF’ divid-
ed in two equal parts by MR. Because let F/M be produced so
far as to have MF — M, and let the points f, F be joined by fF,
the triangles F’MR, F/fF are similar to each other, for FR :
F'R :: FM : F'M, and consequently FR : F/'R : : fM : F/'M ;
hence the angle F/fF — F'MR, but on account of the equal sides
FM and fM, the angle MfT is equal to the angle fMF, and con-
sequently FfM -+ fFM = 2 MfF. Again, the angle FFMF —
FfM + fFM or 'MF = 2MfF, but MfF or F/fF = F'MR;
hence

F'MF — 2F/MR

that is to say, the normal MR divides in two equal parts the angle
formed by the radii MF, MF/.

PROPOSITION XI.

The normal of any point of the ellipse is o fourth proporiional to
the perpendicular drawn from any one of the two foci to the cor-
responding tangent, the radius drawn from the same focus to that
point, and the half of the parameter. :

)

] - il :
86. The double of the ratio = existing between the square of

the conjugate semi-axis, and the transverse semi-axis is termed pu-
rameter, and if it be compendiously termed 2p, we will have 2 =

2

5 :
2 S Now, before speaking of the proposed subject, let us de-

termine the values of the tangent and normal of any point M, the
second of which is to be used in the following demonstration :
Since the most general values of the tangent and normal of any
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point (z, y) are given (59) by the formulas ? = /'y | (z — A),
n=~7y =4 (a/ — x)%, and being (84, 85) with regard to the
ellipse,

xr: — a2 b
T—A= ——— A — =— — 1
) as
s0 we will have
r? — a*\*
el e e
x

A
n*=y=+g;w"

/R
buts-—— == = and (83) from the equation ¢ — &' = ¢* a* we

at

& o b
have 7= 1 — ¢ ; again, since (83) ' = = (a* x*) the value

of the square n* may be converted into the following
z bz
n? :% (a2 — x*) 4+ s (1 — &%) @2

bt

=F[a=—zf Cl:‘z]

buta® —:* x* = (a -} «a) (a—:x) and (83) a 4 cx = p/y e— = p
i 02
hence B pp!

Let us now come to the proposed demonstration, and first ob-
serve that the distance FT of the focus F from the tangent
reckoned on the axis X corresponds to CT — CF, and the dis-
tance F'T of the other focus from the same point T of the tangent

corresponds to CT - CF/, but CT or A is (84), equal to %:' and
(83) CF = CF' = £, hence

a* as
= g T = — .
FT=— —a, FT — o a;
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2
but d? F = =%(a:|'—'ed'.‘)
and G — & = p,a—+ 2= p
therefore FT=EP,F'T=EP’

@ x

Again, the distance TR of the normal MR from the tangent is
equal to the difference CT — CR and (84, 85) equal also to

at a? Pl ol

&—&'=?—~s!m=—— ; hence
) R e
TR= ——8M8M8M8—
x

but a* — ¢t x* — (a — =x) (@ 4+ «x) = p . p/ ; therefore
!
TR = 2%
&£

Let us now draw (fig. 55) Fm — ¢ and ¥/»/ = ¢' perpendicular
to the tangent MT; the triangles RMT, FmT, F'2/T are of course
similar to each other; hence the proportions

TR yT o MB

T

: ~

TR : F'T : : MR ‘Ei?‘;%é‘uk‘ %\3@{\%&,‘&;

- + i T .

and substituting the preceding values ~0 Mt ' 5 e::" . &
Lo N AT ™o~
G W S SR
B 2 i B> Fn S
T T S ? . ~~ e, “\\ - T

b ' L ‘\.. -
or R TR

from which =09 = —
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ant an?
and consequently gn — rr ol g'n = =T
but the square n* of the normal determined before is equal to
b
7 pp’ 5 hence

b2 b2
d e 5”“‘-“"‘"’?

: b2 r
and since — = p the semi-parameter, so

gn=pe s n=p¢
and consequently, -
gEtpiieipen oy Wl e e

the required relations, and

2p V)
?‘l=— P mp
2 gg

7

Scholium I. Let Cn — ¢' be the perpendicular drawn from the
centre C to the tangent ; on account of the similarity of the tri-
angles MRT , 2CT, we have

TR:CT:: RM: Cn

and substituting the corresponding values

] ]
By w8 1"
— i —1:mn:
T b 7
hence,
a’n a* n’
gl =t — and ¢'n = —
P’ PP

and subxutmg the above determined value of n* :S_' \ { A
e ¥
N

?N\J\]\‘x*?- K&%h—};\&‘.;\\\& N \
“ (% i (S\ W

,4
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that is, the conjugate semi-axis is a mean proportional between
any normal and the perpendicular drawn from the centre to the
corresponding tangent.

Scholium II. If in y* = (1 — «2) (a2 — a*) the equation (83)
of the ellipse, we substitute 4 ¢ @ instead of « ; that is to say, the
abscissa equal to the distance of the foci from the centre, the cor-
responding square of the ordinate y becomes

(1 — £2) (a% — &2 at) = a® (1 —e2)2

but (83) (1 —:2) = %; hence,
b be\2
2 om—_ = it
=t ()
and
b2
y=—=rp

the semi-parameter ; therefore, the double ordinates passing
through the foci are equal to the parameter.

Eguation of the ellipse willh reference to the polar co-ordinales.

87. Let g be the angle formed by any radius p = ¥m/ , or =
FM, =. ... (fig. 56) and the positive axis X. Such an angle
may be equal or less or greater than a right angle. In the first
case cos B — o0 in the second cos g >0 ; in the third cos g < o.
Suppose the three different cases to be represented by W'FX <
90°, MFX = 90°, mFX > 90° ; the first of the three perpendi-
culars m'r! , MF , mr drawn from the three different points must
fall between F and A ; the second shall fall in the focus F ; and
the third between the focus and the other extremity A of the
axis ; and Cr/ , CF , Cr will be the abscissas of each point. But
Cr' —= CF +4 Fr' , Cr = CF — Fr. Again, CF = ca, and
Fri—= Fm' . cos mM'FX = pcos B, — F»r —= Fm cos mFX —
p cos B; hence,
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Crl=ca-+4pcosp , Cr=-ca-pcosp

and since CF = ca = ¢4 + p c0s 90° = : ¢ 4  cos MFX =
sa = p cos B ; so generally

*=z:a -} pcosj3

But observe that (83) p = a@ — & @ ; hence, substituting in this
equation the last value of », we will obtain

p=a—z¢ (sa- p cos )
and consequently p (1 =4 ¢ cos B) = a (1 — &2)

_a(l.—a2) /
P = TF ccosp

or

which is the required equation.

Eguation of the ellipse with refevence fo Lhe conjugale diamselers.

88. Let us now pass from the rectangular axes AA’ , BB/ to
any other system determined (fig. 57) by the conjugate diameters
08 , adl 5 the general formulas (8. C. I) to pass from one to an-
other system of axes must be converted into the following :

= @!sin a -} ' sin @
7 g...(o)

rx=a' cosa-+t 3 cos

because, since all the diameters must pass through the centre of
the ellipse, the origin of the new system is of course common
with that of the former ; hence, 2, = y, = 0. Again, the angle
formed by one of the diameters, for instance &', with X being
termed a, that formed by the corresponding conjugate aa’ will be
accordingly termed » ; and supposing the former to be taken for
axis of the abscissas, we shall have (za') = a, (2y) = » . Sub-

22 2 !
stituting now the value (o) in the formula =3 -+ %— =1, wewill

have
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(z' cos o -+ 3 cos @)z 43 (z! sin « 4 ¥/ sin @)2 5

1
as b2
a't cos 2o - 7' cos®» | 22y cos a cos &
or +
a?
' sin 2a -} ¥'® sin‘e 4 Ra'y sin a sin @ 1

e
and consequently,

:r:’*[bz cos 2a -} a® sin *a] AL [bf- cos ‘w - at sin*w]

az b at be

a® sin @ sin a -~ 6% €oOS @ COS a
i 2aefyf[ o ]: 1

2

but since (78) g & = — ; and consequently,

at ig o
a? sin @ sin a = ~— §* cos « coS «
or
a® sin @ sin a -} 4% cos @ cos a = ©
therefore,
b cos 2o - a? sin 2a b2 cos*» 4+ a2 sin*
x'z [ = ]+yi‘: [ S ]:;.- 1
b2 cos 2a - a2 sin 2a 1
but (79 (o) ) TR T
Cb
b2 cos®» 4-a*sin®es 1
at b2 az
therefore,
x'e yfz
T P
Cob Cea

the same equation as that of the ellipse having Cé and Ca for
semi-axes and referred to them. Supposing, moreover, the di-

» ameters equal to each other, the equation of the ellipse does not
differ from that of the circle referred to the rectangular diameters
and having the radius equal to Ca.
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¥ It £
It must be remarked, that from the form; -+ % == NOF

the equation of the ellipse, we cannot conclude that the corres-
ponding curve is an ellipse whose axes are 22 and 24 ; because,
although such an ellipse also is represented by that equation, yet to
the same equation may correspond any other ellipse referred to
the conjugate diameters 2a, 246. Observe, moreover, that since
the equations of the diameters and axes, and every function of
the lines of the second order derived from the most general for-
mula (%), are deduced in the supposition of the curve referred to
the rectangular axes, so in comparing any other with that general

equation, we must suppose the curve referred to the rectangular
. . x® 2 :
axes. Hence, in comparing P -+ %; = 1 with the general

equation (7), we must necessarily suppose 2a and 26 to be the
axes, since in this case the curve is referred to the rectangular
axes, and among the conjugate diameters the axes alone are per-
pendicular to each other.

HYPERBOILA.

PROPOSITION I.

Only one axis of the hyperbola meets the curve.

89. Let us now discuss
‘r! y!
BT

the equation [62. (g) ] of the hyperbola ; which, compared with
3 1 1 =
the most general (?) affords (64) P, = = P, =— ik b=l

and on account of C = D = E = o, (4,,) » = o. Hence, ¢ *,
c,t , the square values of the semi-axes (¢, ;) shall become

c.E=ga , csz'_":._.&!'-

1

of which equations the first only being a real one, it follows that
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only one axis can meet the hyperbola and at a distance equal to a
from both sides of the centre. Yet, to preserve the analogy be-
tween the ellipse and the hyperbola, the axis 2 a, or AA! (fig. 58)
1s termed #ransverse axis, and cutting from both sides of the centre
at a distance CB, CB’ equal to &, the unlimited axis aa’, the
portion BB’ of this axis is termed conjugate axis.

PROPOSITION 11.

The equation of the hyperbola considered in the present discussion
supposes the origin of the co-ordinates at the centre of the curve.

90. The values of the co-ordinates x_, y, of the centre given
by the formulas (%,,) on account of C = D = E = o, both be-
come, in the present case, equal to zero. But the values
C = D = E = o depend, as it was observed (64), on the form
g’ — 51,; = 1 of our equation, and both the co-ordinates equal
to zero are the co-ordinates of the origin of the axes; hence the
equation of the hyperbola considered in the present discussion
supposes the origin of the co-ordinates in the centre of the curve,

or in the point C of intersection of the two axes of the same
curve.

PROPOSITION III.
Every branch of the hyperbola has its proper asymptote.

91. If two lines rs, 7/s/, passing through the centre of the hy-
perbola (fig. 59), are continually approaching, ‘the first to the
branches Al, A'm/, the second to the branches Al, A'm, without
touching them, but at infinite distance, according to the definition
given (19) of the asymptote, each branch of the hyperbola has
its proper asymptote. To demonstrate, now, that this is the case
with regard to the hyperbola, let us first recollect the condition
or criterion to be fulfilled when the chords passing through the
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centre of the curve do not touch it, except at an infinite distance
(87). It is proved that when the difference C* — AB is posi-
tive, there are two such chords making the angles o/, o/ with the
positive axis X, to be determined by the equation

ra=—F = g/C

L b e = C:— AB

but in the present discussion (64) A ='EI; y B— —%, O =4d53
C*— AB = .

hence el = e -

and, consequently,
b b
Fas e g Byl
1g o o M TR LA R

therefore, in the hyperbola, two straight lines rs, 7/s' passing
through the centre, and making, with the axis CX, the angles
o, o'y determined by the last equations, are two straight lines,
which do not touch the curve but at an infinite distance from C.
Therefore, if the same two lines are, moreover, continually
approaching to the four branches, each branch has its proper
asymptote. Now, the equations of the two infinite chords are

b
gy (e R
e sl I i
: b2 o2 .
from which yr=—ualt, yt= % x'e
a

Again, the equation of the hyperbola may be transformed into

bz
y! — =T x2 _bz

hence, if we take the same abscissa in the latter and in the former
equations, it follows evidently, first,

Yy




|
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secondly, yr—yr =0
and since yr—ypr = 4y Y —y
bt

A e o g
S

i
but  and 9/ are increasing with @, therefore the fraction

y+y’
and of course the difference 3’ — y, becormes smaller and smaller
by the increasing value of x; and consequently the lines rs, 7/s'
continually approach the curve.

-C'oraZZary. From this property it follows that all the branches
of the curve are contained within the angles 7/Cr, s'Cs bisected
by the transverse axis; hence any straight line pp’ passing
through the centre of the hyperbola, and contained within the
angles #/Cs, §/Cr bisected by the conjugated axis, can never reach
any point of the curve ; nay, shall continually diverge from the
curve. On the contrary, any line ¢¢' passing through the centre
of the curve, and contained within the angles #/Cr, s/Cs must
necessarily meet the curve ; because, while the curve is continu-
ally approaching the asymptote, that line is continually diverging
from it. Now, every line passing through the centre of the

curve and reaching the curve is a determined chord bisected at
the centre.

PROPOSITION 1V,

The diameter corresponding to any determined chord passing through
the centre of the hyperbola is contained within the angle bisected
by the conjugate awxis.

92. We observe (56), with regard to the general formula (i)
of the chord passing through the centre of the curve, that the
second member of that equation must necessarily be a positive
quantity. But in the present discussion, since (64) K= 1,
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and (on account of C=D=F =o0) r =o0and [44 (7)) ] P =

1 L b® cos ta — a* sin *a
= 2 =— — SIN %a =
=c03 "o 77 sin ‘a o the formula
(#,) becomes
a? bz
¢t = -
b® cos 2a — a2 sin %a

of which the second member cannot be a positive quantity except
by supposing '

at sin *a < 6% cos 2a
bz
or g ta < ¥

and in the present case it must really be so, because the angle
formed by each asymptote and the transverse axis must be greater
than that formed by the chord and the same axis. Now, the

tangent of the former angle is (91) % or — %, and of course

be
the square of the same tangent — ; therefore, the square of the
at 2

tangent of any angle less than the angle made by the asymptotes

g ! b2 .
with the transverse axis, must be less than - Hence, if the

angle formed by the diameter corresponding to the chord and the

transverse axis be such as to give the square of its tangent greater
B2
than Py this diameter is evidently contained within the angle

bisected by the conjugate axis. Now the angle #, made by the
diameter and the transverse axis, is to be deduced from (7,),

. ; . . . - 63
which in the present discussion is converted into #ge = i iga
from which

b 1
tg o e ?;T . tg 7

but since in the present case
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be
G5,

1g e <

1 as

te 2a = b

consequently, 3

1 B ;
and if instead of rrLTS we substitute (;’—G in the preceding equa-
2

tion, we shall obtain
b2

a2

ig%w

that is to say, the diameter corresponding to any determined chord
passing through the centre of the hyperbola is contained within
the angle bisected by the conjugate axis, and consequently can
never reach the curve.

PROPOSITION V.

If any line passing through the centre of the hyperbola is the diame-
ter corresponding to a determined chord passing through the same
point, this chord by turns shall be the diameter of the system of
chords parallel to that line.

93. Let (fig. 60) b’ be the diameter corresponding to the sys-
tem of chords parallel to aa’. Since ad is a chord of determined
length ; according to the demonstration of the preceding member,
bb must be contained within the angle of the asymptotes bisected
by the axis BB/, and will never reach the curve ; yet the lines
nn'y, ...mm' , ... parallel to 60/, are chords of determined
length, and of which ad’ produced is the diameter, Because,
calling « the angle formed by 44’ and the system of parallel chords
with AA’, the equation of the diameter corresponding to this sys-
tem will be derived from (47,) by changing « into «, which will
consequently become

bz

= ig w

Yo X

o
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But by supposition &' is diameter of aa’y, which forms the angle «
with AA’ , consequently (7;)
be

a® 1g o

g 0=
which value substituted in the preceding formula gives

Yo = g w

o

the equation of a straight line passing through the origin of the
co-ordinates, and making with AA' the angle a. But such a line
is ad' , therefore ad/ is the diameter of the system of chords paral-
lel to b¥'. To follow the analogy of the ellipse, observe that from

2
the formula ig 20 > % corresponding to the angle made by 64/

with the conjugate axis, we

sin 2q b
deduce —_—
cos 2y az
and a® sin *o — 4% cos @ >0

consequently, the ratio

a0

a® sin 2w — 02 cos *«

has 2 determined value ; and taking from both sides of C on the
diameter 40/ the portions Cd, Cd' equal to the square root of the

late ratio, dd' shall be termed conjugate diameter of aa’ and vice-
versa.
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PROPOSITION VI

The difference of the squares of any two comjugate diameters is
equal to the difference of the squares of the axes.

94. Let ad/, dd' be any two conjugate diameters. Since

adl = 2Ca,dd' =RCd;

A =i = e I 4

consequently ag! — 4Ca , dd! —= 4 Cd
and (92, 93)

Pl a b a? b2

— B S—

O == 0% cos 2a — a? sin %o’ e a® sin 2o — b% cos e
hence
) B R ad e o be

T | — e
% ddl == [63 cos 2a—a®sin 2o a®sin®e— &% cos ’w]'"(ﬂ)

Now from (7;) we have

sin «  b?cosa
cos @~ @ sina

and consequently,

sin 2w b cos %a
cos?e ™ a'sin 2q

From which we may derive the following in the same manner ;
as we derived similar equations for the ellipse :

b* o sin %o

a' sin *a 4~ 0* cos 3{11

G Gt S a® b cos %a
@~ Bl e T T 3
¢' sin *a - &* cos 2a

0% cos fa —

. o (a)

and
a® % (5% cos *a — a? sin %a)

a® sin %» — 0% cos %0 = :
a' sin 2a - &4 cos *a
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hence

a® b® a* sin ®a 4 b* cos %a

a® sin % — 0% cos %2p — b% cos 2a— @’ sin fa

o e (a,)

but the numerator of the second member
a' sin *a - &* cos *a =
@ sin ¢ 4 &* cos fa -+ a* b% — a® b
= a: sin *a - &* cos *a + a® 4% — a® 4% (sin %o 4 cos %a)
= b* cos *a (b* — a*) — a® sin %a (% — a?) 4 a® B2

= (% — a®) (b* cos *a — a® sin %a) + a® b?

consequently,
a? b2 a2 be
; =6t —a* -
a® sin 2w — &% cos *w 4% cos fa — a@? sin %a

which value substituted in the formula (o), will give

z

B s
adl — dd! = 4 (a® — b2)
2

or aal ==l = (Dgyn i (0 a

that is to say, the difference of the squares of any two diameters
aa' , dd' is equal to the difference of the squares of the axes 2a,

Corollary. Supposing 2a¢ = 2. (In which case the hyperbola is
called equilateral,) the conjugate diameters also are equal to each

— e
other, because in this case (2a)* — (24)® — 0 ; hence aa’ — ddl
=0, and
ad) — dd'

Observe that in the same hypothesis the asymptotes are at right

angles. Because the angle formed by each asymptote is (91) to.
9
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be derived from #g o = == ‘—Z;; hence, with regard to the equi-

lateral hyperbola, from #g « = == 1. That is, the angle formed
by each asymptote with the tranverse axis is equal to 45°; hence
that contained by the asymptotes themselves is equal to 90°.

PROPOSITION VII.

The parallelogram on the conjugales is equal to the rectangle on
the axes.

95. Let us draw (fig. 61) from the extremities @, a/ of the con-
jugate diameter ad/, the tangents mm' , nn' which (60, 78) must be
parallel to each other, and to the conjugate dd/. Let us draw also
m! n!, mn parallel to aa’ from the extremities ¢ and d/ of dd/, we
evidently have

mnn/m! = 4 Caln/d' . ... (0)
and in the same manner the rectangle on the axes
sl = K CABr , [ 0} (0,)-

Again, let d'#' be drawn perpendicular to aa’. For the area of
the parallelogram Ca'n'd' we may substitute the product Ca' . 4/
but d'# = Cd! . sin d/Ca! = Cd' . sin (d/CA' — A/Cd) = Cd'.
sin (o — a) ; hence

Can!ld! = Cda! . Cd’ sin (@« — a) . . . . (0,)-
Now from trigonometry
sin (# — a) = sin @ C0s & — €Os @ sin a
— cos » ({g «® cos o — sin a)
hence sin 2(w — @) == ¢0Ss 2w (#g © €OS a — sin a)?

b2 b2 cos a
a2 Ig o = a®sina

but (92) g0 =



GEOMETRY. 131

consequently

: b2 cos za z
sin 2 (w =—o0) = cos 2o - — sin a
a? s1n o

cos 2a
~ at* sin 2a

t 4
[63 cos 2a — a2 sin 2u:|

but from the former (a) of the preceding number, we may derive
the value of cos *w, which substituted in our last equation will
give

[b2 cos 2 — a® sin 2a]2

a* sin %a -+ bt cos 2a

sin 2(0 — ¢) =

b2 cos %o — a® sin 2w
T at* sin %a | 04 cos Za

(62 cos 2a — a? sin 2q)

but from («, ) of the same number, we derive

b2 cos 2a — a2 sin 2a a? sin 2w — b2 cos 2w
a* sin %a -+ 6% sin 2a a* b2

pRrr.
and the value of Ce gives

bR a® b2
b2 cos 2a —a? sin *a = -
Ca/
hence i
2 a? sin 2w — 42 cos 2
sin (o — a) = -
Ca/
O
again, from the value of C4 we deduce
g a? b2
@? sin 2w — 02 €Os 2w = =
Cd'
consequently
: a? b2
sin 2(0 — o) = —5——
Cd . Cd!
and

a.b

e R Grrey
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therefore
Ca .Cd .sin(o—a)=ua.bd
which value substituted in (o, ) gives
Canld! =a.d
buta . b = CA¢B, hence
Ca'nld! = CAs'B

therefore the second members of the equations (o) (o, ) are equal
to each other ; consequently

mnn'm — rss'r!

that is, the area of the rectangle on the axes is equal to the area
of the parallelogram on any two conjugate diameters.

PROPOSITION VIII.

The difference of the distance of any point of the hyperbola from
the foci is equal to the transverse axis.

96. Join (fig. 62) the extremities B! and A’ of the semi-axes
CB' , CA' and take on the transverse axis two points F' , F/ at a
distance from the centre C, equal to the hypothenuse B/Al.
Since B'A! — A/a* J- 4% CF — CF/ — Aa® |- 4%, the points
taken at such a distance from the centre are called foct of the hy-
perbola. Let us make now

QZ.+.£,2=E£QE

¢« (which is termed the eccentricity of the hyperbola) must evident-
1y be greater than unity. Now from this equation we may derive

b b*

o SIREIR S TR
> ¢ 1 and az_l g2
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and since (63) the second (g) which is the equation considered in
the present discussion, may be transformed into

b2 b2
Y= ey (Bhasiat)i = i (0B = of)

2
so by substituting the value of — a5 the same equation will
a

become
P=1—&F) (@—a®).... (o)

Let p and ¢! be the straight lines MF , MF/ drawn from any
point M of the curve to the foci, which lines are termed radii or
radius-vectors. Again, let y be the ordinate Mz of the point M.
From the triangles MaF/ , ManF we shall have

pl? = y-: + n_F.{_:}
T al)
p3=y'3—}—nF

But 2 =Cn—CF' =2 —Na& b0 =2a—:a

nF=Cn—|—CF=m—1—~/a‘:+b*:;r—|—sa

Therefore, substituting these values in (o,) and the values of ¥
given by (o) we shall obtain

=1 —2) (@ — )+ @— )
b= (1 — ) (@ — @) + @+ )’

now
(1= ) (@ — &) + (¢ — ea) = @*+ @ & — 2@ ca = (v — a)°
(1= &) (@ — 2) + (@4 o) = &+ 2* & 4 22 ca= (:x + )’

hence

Pf2= (ECL’ A a)c 5 Pa = (Fl‘—l— a)-:
and of = (@ —4a) ,p =c:x+a

therefore
p— ¢/ = 2a
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that is to say, the difference of the radius-vectors of any point M
of the hyperbola is equal to the transverse axis. We can here
make the same observation which we made (59) with regard to
the ellipse, that is, since (s@ — @)* = (@ — «x)® so we could take
the last form of the square of p”. But then p/ = a — sz and con-
sequently p 4+ p/ = 2a, which would be an equation to be verified
with every point of the hyperbola. But the radii of the extremity
A of the transverse axis are AF , AF/ and their sum is FF.
Hence, supposing p’ = @ — «@ we would have also AA'= FF/,
which being absurd, that supposition is to be excluded. Again,
since the values of the radius-vectors considered here are positive,
it is plain that p! = @ — e is to be excluded, because x cannot
be less than a and ¢ is > 1.

From this property of the hyperbola is derived a mechanical
method of constructing this curve. Because let (fig. 63) the
ends of two threads FMm , F/Mu/ be fixed in the points F and F
of the straight line FF/, and suppose these two threads to pass
through a small ring M. Now, if by means of a stile # we make
the ring glide in such a manner as to cause the same length of
each thread to pass by the ring, the difference between the
stretched part of the threads will be constantly the same ; for in-
stance, AA’, and of course the path AM marked by the point of
the stile, must be a hyperbola.

PROPOSITION IX,

The distance from the tangent of any point of the hyperbola to the
cenire, reckoned on the transverse axis, is a third proportional to
the abscissa of that point and the transverse axis.

97. Let M (fig. 64) be any point of the hyperbola, and T the
correspondent tangent ; the distance CT or a from the centre

to the point T being, according to the general equation (59),

Cx+4 By+E . :
m+m y in the present case will become

@

A = I == -
O x
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b2

but (96) P= Fre (z* — @) , hence
r* a® . a®
I = P — S ———
&I €T
from which AT e T

that is, the distance CT from the centre to the tangent is a third
proportional to the abscissa Cn and the semi-axis CA/.

g Cx 4 By 4+ E a® y :
Observe, that since A2+ Cy¥D = e and since (58)
Cx+ B E 1 ,
A——*—-—-£I Cii =" tg_a being « the angle #TX, we will also
have
s el
g o= at 7

PROPOSITION X.

The tangent corresponding to any point of the hyperbola bisects into
two equal parts the angle formed by the radius-vectors of the
same point.

98. Let MT be the tangent and MF , MF' the radius-vectors
of any point M. In the discussion of the analogous property of
the éllipse we observed (85) that the angle M of the triangle
FMF' is equally bisected by a line MT when the segments FT
and TF' are proportional with the corresponding sides FM , F'M ;
therefore, to demonstrate that the angle FMF' is divided inte two
equal parts by the tangent MT, it is sufficient to prove that

BT . FM p

'FTT—— F_M'f:?' NOW

TF = CF + CT
.« (0)
TF' = CF/ — CT
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2
But CT or a , as we observed before, is equal to % and (96)
CF = CF! = :a; hence

TF =m+fg— =%(e:c+a)

-
TFf=m-—£;- F%(em—-a)

again, ¢& -+ ¢ = p , e¥ — a = p/ ; consequently

oA PR
TF__wp,TF—-—wp
TF p

Corollary. Let us produce FM towards g, the angle FMT
shall be equal to gM? , but FMT = F/MT , hence gM¢ = I'MT ;
let now MR be drawn perpendicular to the tangent, the angles
RMT , RM¢ are of course equal to each other. But RMT =
RMF’ 4 F'MT , and RM# — RMg -} gM¢{ , hence

RMF' 4 F'MT = RMg -+ gM¢
and on account of F'MT = gMi
RMF’' = RMg

that is to say, the other angle F/Mg , formed by the same radius-
vectors, is equally bisected by the normal.
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PROPOSITION XI.

The normal of any point of the kyperbola is a fourth proportional
to the perpendicwlar drawn from any one of the two foci to the
correspondent tangent, the radius drawn from that focus to the
same point and the half of the parameter.

o e
99. The double ratio 2 - existing between the square of the

conjugate semi-axis is termed the parameter of the hyperbola,
and is compendiously represented by 2p. Now, to follow the
analogy with the ellipse, let us first ascertain the values of the
tangent and normal corresponding to any point of the hyperbola.
The values of which functions given by the general formulas (59)
t=Wy* 4 (2 —Aa)* ,n = Vy? 4+ (o' — x)? in_the present
case may be modified by the substitution of the values of A and A/
corresponding to the hyperbola, the first of which is already (97)

3

determined and found equal to % : the second, that is (59) the

distance from the centre to the normal, being, according to the
o Azeb Oy 4l
Cz+ By + E

b!.
present case equal to x - = therefore

general formula, @ y is consequently in the

xr? — a? Al b2
- i e e R
T ’ al

G FETIET L
t=\/sf’+(ma, )aﬂﬂ'\/sﬁ-i-;a—‘
2 i

b - 3 b2 S
but (96) gz = s (a® — &%) and === i

r — A =

hence, taking the square of the normal

b2

b2z S s 2 -
nD:Ez-(‘rc_a!)'i'?(E:—l) e -&—;(s?‘.’r‘—a)
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Again, (s @* — @) = (@ + a) (s x — a) and (96) cx4-a =9,
@ — a = ¢/ ; therefore, (¢ @’ — a°) = p.p', and

b2

D e !
g

b\/—,
n=—a/ PP
(4]

Now, let M (fig. 65) be any point of the hyperbola, and MR the
corresponding normal #» , MT the corresponding tangent £. Again,
let MF — ¢ , m'F/ — ¢' be the perpendicular lines drawn from
the foci to the tangent, we will manifestly have

or

TR: F'T :: MR : Fim!
TR : FT :: MR : Fm

or
A i R
- (0)
TR : ¥l en:ig
: be
But (97,99) TR —=CR — CT — A' — A ,and A/ = a 4+ = "
g 2
=at+(F—1)a=d sz, a:%;hence, B = sgx—-%
s f_'_f‘;'_'_‘_r—‘_“; again, (¢* 2 — &%) = pp'; therefore,

_D
-Q__.

R =

8|

Observe, moreover, that F'T = CF/ — CT = CF/ — a, and FT
= FC 4 CT = FC + A ; but CF = CF/ = ca; hence, F'T

a* a® .
=sa—-?,FT=sa-|— ?;andsmce

a as a
sa——;= -‘-T-(s:l'.'—a); sa-{—? = E(Ea"i—a)
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andsx—a=yp' , te4a=;; s0
f -
FT=22 pr=2°¢
@ &

which with the preceding value of TR substituted in (o), will

give

!

pp , Gp

— r— i n f
T @ 7
gipk B,
‘r.x.. 9

from which

p:ai-n:g plraiin:g
and
; an an
Glas=, o == ==
P p
or
7 an? an?
n = n —
q PR q o

b2
but we observed above that n® — pel o' 5 hence,

b'}r _'v.
;P; ?n*ap

g'n =

but % is equal to p the half of the parameter ; hence,

gn=pp 5 qn=pp
and finally,

ghapl i b g picpim
the required proportions, and
1
s Pt o
7 g
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Scholium I. Let Cn = ¢" be the perpendicular drawn from
the centre to the tangent, the similar triangles CaT , TMR will
afford the proportion-

TR : CT: : MR : Cn

or, substituting the preceding values

hence,
g a’n
e
and
In = — n
q il
HE
but a2 = R ' 3 hence,
g'n = &°
and G R

That is to say, the conjugate semi-axis 4 is a mean proportional
between the normal of any point and the perpendicular drawn
from the centre to the corresponding tangent.

Scholium II. If in the equation of the hyperbola (96) 7z =
(1 —2) (e — x%) we substitute 4 < ¢ instead of x; that is, if
we give to the abscissa the value equal to the distance from the
centre to the foci, the corresponding value of * will become

Y = (1..._.£2) (az —E az) = p2 (1_52)9

bz bt
but (96) (1 — <) = = hence, y* = ) and

bz
y=der—N=p)

Therefore, the double ordinate 2y passing through the foci are
equal to 2p, that is, to the parameter.
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Eguation of the hyperbola wwith reference fo the polar co-ordinaftes.

100. Let 8 (fig. 66) be the angle formed by any radius-vector
with the positive axis of the abscissas, we shall have either
s B=—o0, or < 0, or > 0, according as the angle is equal,
greater, or less than a right angle. Suppose, now, the three dif-
ferent cases to be represented by mF'X < 90°, MFX — 90°,
mF'X > 90°, and let us draw mr and ms! perpendicular to the
axis X. We will have F'r = F/m cos mFX = cos 8, Firl =
F'm cos m'FIX =p cos 5, and o = F'M cos MFX — y/ cos 8.
Now Cr, CF/, C7' are the abscissas x of the three different
points, and C» —= CF'! 4 F'r, CF' —= CF' 4 o0 Cr' = CF/ — F/r/;
consequently, since (96) CF/ — :a, by substituting we shall ob-
tain in every case

x=1zaz -+ p cos g

but o/ = :@ — @ ; hence, substituting in this formula the pre-
ceding value of @, we will have

pl = s (ca + o/ cos B) — a

and ol (1 —ecosB) —=a (2 — 1)
LA s T
o P —1 — :cosp

the required equation.

Eguation of the hyperbola referved o the conjugate diancelers.

101. Supposing « and « to‘be the angles formed by the diame-
ters aa/, dd' (fig. 67) with CX. Since the origin of the co-ordi-
nates in the present transformation is in the centre, the general
formulas (7) giving the values of the former by the new co-
ordinates must be transformed into

y=—asin « 4+ 7 sin ©

r=—a' coso - y cosw
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2 2
which values substituted in the equation % — %—3- == nithe

hyperbola referred to the axes will give

(' cos o 4 3 cos «)? (¢! sin & 4 ¥ sin w)® 1

a? b2

or (88)
b2 [x'2 cos 2a 4 ¥'* cos 2w] — a2 [@'2 sin *a 4 ¥/ sin 2o]

a® b2 ..

x'y' (b2 cos a €cOS @ — a? sin a SiN ©)
==il

at b

but (92) #g « = - ‘Hence

a® ig a
a? SIn o 5in a = 6% Cos @ COS @
and consequently

b2 cos w €COS & — @2 sin w Sin & =— 0

therefore

b* [x'2 cos 2a | 2 cos 2w] — a2 [2'2 sin 20 - /2 sin 2w]

a? bt 1
or
24 b% cos 2o — a® sin Z%a 7% B sin 2w — 62 €08 2w
% a? b2 TR 4 a? b2 ] =1
but (9, 94)
b2 cos 2a — a2 sin 2a ST a? sin 2w — b2 cos 2. 1
a bz S o 2 a® b2 i %’;E'

hence

oh gy

Ca Cd

the equation of the hyperbola referred to the conjugate diame-
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ters, to which we may extend the same observations made with
regard to the ellipse (88).

KEquation of the hyperbola rveferrved to the asymplote,

102. Suppose (fig. 68) the asymptote rs to be taken for axis
of the abscissas, and 7/s’ for axis of the ordinates, the angle o/,
formed by the former asymptote with CX , as well as — &/ formed
by the second with the same axis, are to be derived (91) from the
formula g 2¢/ = 2 or oy = (i but from this last equa-

az’ " cos 2d az’ iy
tion we have
sin 2o/

b2z
costa TE=p

cos 2o

a2
L 1= 41

sin 2a

sin 2o/ 4 cos 2o/ _ b2 4 @
cos 2o/ T az

or

cos 2o/ 4 sin 2a! _ a® + &2

sin 2d/ b2
and, since sin 2a/ 4 cos 2o/ =1
az Hz

G e in %/ = ————
08 o/ = ——— sin %/ —
kil TR e at + b°

a . b
e e v Lt
or COsS Yo = i T s sin o = '\/ﬂ

Considering, now, that the equations (7) to pass from a system
of rectangular axes to any other become, in the present case,

x = &, cos «/ 4 ¥, cos &

y — a, sin o« 4 ¥, sin o
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and substituting the preceding values of cos «/ and sin o' we will
have

= _a_ -+ Sheineel il
NE I+ @ NG I @

from which

=a(wl+y]) y_._ b(‘l‘]_yl)
bz - a® 4 N b+ a?

T . : xz y2
Substituting, finally, these values in the equation oy o 1
of the hyperbola referred to the axes we will obtain the equation
between the co-ordinates x,, 7 of the same hyperbola referred to

the asymptotes ; that is

(Vs i b o et 1Y o 1
bhe ._|_ a2 He + a2

from which
4z 1 AR T
62 + a!

b2 %
and @Yy = t <

that is the product @, . # of the co-ordinates of the hyperbola
referred to the asymptotes is a constant quantity. Observe,
again, that since in the supposition of the equilateral hyperbola
a=b3
az
&y i — "'Q_
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Egquation of the hyperbola referrved to an asymplote iaken for axis of
abscissas, and to a diameler taken forv axis of ordinales,

103. Let (fig. 69) the asymptote »Cs and the diameter dCd/ be-
the new system of axes to which the hyperbola is to be referred,
and let 2/, 3/’ be the co-ordinates corresponding to the new system.
Since the origin of the same system is still at the centre of the
curve, the above mentioned formulas (7) will become

x = x'' cos (2/'z) 4 y" cos (y''x)
i)
y =’ sin (') |+ y" sin (y”a:‘)g

g b
Now (z''z) = sCX = «' and (10%) sin o' = *\"sz—ﬂ y COS o/ =

a b a@
————; hence sin (') —m———, cos (2/'20) = ———vor
Vi F @ &) NE + @’ i N F @

Again,.being w the angle ¢'CX formed by the diameter with the
axis X, since we consider the positive direction of the new axis
of ordinates from C to 4 ; the angle formed by Cd with CX, that
is, {CA 4+ ACd’ 4 d’CA’, will be equal to 180° 4~ « ; and con-
sequently "2 = (180° <4 w); hence sin (y'2) = — sin w,
cos (y'r) = — cos w3 which value and the preceding, being
substituted in the formulas (o), will give

2 1 ] " a fr :
x_w.vm—y CO8 w

i
e :r":/—b;ﬁ—y” sin o

but (96) 62 4 a* = :*a* ; hence

1 x!! — ' co8s w
r=—a' —y'cos o= Y
£ E
O &) R ba!' — eay’ sin w
= — — 3’ sin =
y £ & y = Ea
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4 : . r: 2
Let us now substitute these values in the equation e 3:,-. =1
of the hyperbola referred to the axes, we will obtain
(¢ — &y cos w)? (b — zay” sin 0)2 1
2 a2 F 2 a2 b2 jalk
or
b2 (a!! — «y'! cos w)? — (ba! — e ay! sinw)? ]
22 gk ike PN

from which, since
b (2 — ey cos w)*== b2 a!lz — 22 ex" Yl cos w -4 0% 2 y''2 cos *u

(bx!' — e ay'! sin ©)* = 4% 2'2 — 2¢ bax! Y sin w 4 < a* Y2 sin 20

we derive

#2 (02 cos 2w — ' sin’a) Yy 4+ Rbe (asinw — b cosw) a” y"

=g s f)g . .
and
bt cos *e — @2 sin 2w 2 (asinw — b cos «)
a? b2 G ca? b Py =1
but (93) b2 cos 2w — @ sin 2w 5
a* b2 Cd-
hence

Cd (a sin w — b cos w) Eli
yHZ Wadion > ) T = y” ol s

z
-

equation of the second degree, which resolved, will give

=y
N — Cd (asinw—>cosw)
Y ( e x4

Y .
.\/Cd (a s::lsua;—;f COoS w)* I e (e)
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the required equation of the hyperbola referred to the above men-
tioned system of axes.

Corollary. From this equation we may derive another proper-
ty of the hyperbola ; because let aa! be the conjugate diameter of
dd'; the tangent o'T drawn from the extremity o/ of the former
diameter is (58, 93) parallel to the latter dd’. Now, considering
the equation lately determined, it is to be observed first, that
when the quantity under the radical sign is positive, to every
value of @'/ correspond two values of 3/ different from each other;
secondly, if the value of a'/ is such as to make the quantity under
the same sign equal to zero, to this peculiar value of &' will cor-
respond only one value of 7'"; and finally, when the value of z”
becomes such as to cause the quantity under the radical sign to
be negative, no real value corresponds to %'. Now, since the
tangent /T drawn from ¢ is parallel to the new axis Cd of the
ordinates, it is the ordinate of that point &’ of the curve. But the
tangent cannot meet the curve but in that point; hence to the
abscissa CT corresponds only one real value of the ordinate, that
is to say, the abscissa CT is that peculiar value of &'/ by which
the radical quantity becomes zero. But the radical quantity can-
not become equal to zero, except in the case of

L .
Cd (asin w — b cos w)? s = O
st at 42

or, what is the same, except in the case of

i -
Cd (a sinw —bcosw)? .
e

2 gt b2

from which equation
1 e a b
all = — -
Cd asin w — b cos w

but in the present case 2/ — CT, hence

) : s as b
Cd a sin «w — b cos w

YR =
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and from (e) we have

@2(3 Sin w — & €0s w)

gyl —

j} £ £ a‘ b CT
hence g0
or b i B

that is, the tangent drawn from any point of the curve, and ter-
minated to the asymptote, is equal to the semi-diameter to which
it is parallel.

Scholium. If we suppose that the asymptote 7/ ¢ is referred to
the system of axes Cs , Cb ; since the equation of +/ ' referred to
" the rectangular axes CB/y, CA' isy = — fg o/ @, or (91) y = —

b e ; : :
— &, it will be sufficient to substitute instead of x any, the values

given by the preceding formulas (o), to have the equation of the
asymptote referred to the new system. And to obviate confusion
between the co-ordinates a'/ , 4 of the curve and those of the
asymptote, we will term z'", "' the co-ordinates of the latter,
and by substituting, we will obtain

- 5 b
x'' sin (2''2) 4 """ sin (y''x) = — = (a!" cos (x''x) + ' cos (y'x) )

but we observed that

sin (¢'lz) = ;/_&zé_—ka—f s cos (alle) = \/t‘;!a——f-at
sin (y'2) = — sin w , cos (¥'x) = — cos
hence
%/——.e‘jb_‘_w—y”’ sih w — —m"’vﬁ_ - y'”% COS w
consequently
Yl (b cos w-{a sin o) — O LIt b L5 26 2!

a ﬁ/b_l..,i_at 4
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and i p ol
e & (b cos w - a sin w)

) ; 1 ca* b
but supposing 2! = is @/ = — — ’
PP ga CT L that is Cdasmo—bcosw’

Ra? b2

2 sin 2w — 6% cos %o

1
] —
ik Cd a
hence (93)

yﬂf:—g—d. 2Cd = 2. Cd

that is to say, the ordinate TT' carresponding to the abscissa CT
is equal to the conjugate diameter dd’/, but Co/ == Cd = } dd'.
Hence the tangent TT! contained between the asymptotes is bi-
sected in two equal parts at @/, the point of contact.

Equations of the surfaces genervated by the lines of the second ovder
revolved abonut heir axes.

104. We observed (30) that when the equation of a curve de-
scribed on the plane ZAV (fig. 70) moveable about AZ is repre-
sented by

v=f(=);. ... (0
the equation of the surface generated by that line is
()] =a +y*- ... (o)

Now, let the lines of the second order be referred to the axes
AZ, AV of the moveable plane ZAV, and first the parabola, sup-
posing AZ to be the axis of the abscissas, and AV the axis of the
ordinates, the equation (o) in this case (63 . (g)) will become

v=W 2px
hence (o,) 2pz — y* + 2

the equation of the surface generated by the revolution of the
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parabola about its proper axis, and referred to the rectangular
system (X ,Y , Z.)

Secondly, let the ellipse be referred to the same axes AZ , AV,
and let us first suppose that the transverse axis of the curve be

2
taken on AV, the equation will then be (63 . (g)) 1;—2 -+ :Ts — 1
t
and consequently »* = a®* — a? i)—z , therefore the equation (o)

will become

hence (o,) 2
%z-(r}’-— 28) = o? - y* L, o (D)

the equation of the surface generated by the ellipse revolved
about its conjugate axis.

If we suppose the transverse axis to be taken on AZ, then the
equation of the ellipse is 1—: -+ % = 1; hence 2* = 6* —
b!
£ z* , and consequently (o)

L 2 e s e
vz\/be_%zg:%\/aa_zz

which value substituted in (o,) will give

%(aa_zﬂ):wﬁ+y*....(é,).

The equation of the surface generated by the ellipse revolved
about its transverse axis.

Finally, let the hyperbola be referred to the same axesAZ , AV,

and first suppose the transverse axis to be taken on AV. The

-3 ]

equation will be (63 . (g)) % — Z—, = 1 , from which »* =

g; (¢* 4+ 2*) and consequently (o)

a
1}2? ~/bﬂ+ prs
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and (o, ) : :

a‘d

E-(b’—i—zi):a:‘ + ¥ ... (o)

equation of the surface generated by the hyperbola revolved
about its conjugate axis.

Suppose the transverse axis on AZ, the equation will be

i y* b2
- — 38 = 1, hence v* = o (2% — a*) ; consequently (o)
and (o,)

equation of the surface generated by the hyperbola revolved about
its transverse axis.

CONSTRUCTION OF EQUATIONS.
REMARKS.

105. The finding of the roots or unknown quantities of a deter-
mined equation by geometrical construction of right lines or
curves, is called construction of the equations. Now such a reso-
lution may be obtained by means of the intersections both of
straight lines and curves ; and if the equation is of the first de-
gree, by the intersection of two straight lines ; if the equation is
of the second degree, by the intersections of the circle and the
straight line ; if the equation is of the third and fourth degrees,
by the intersections of lines of the second order. So, after having
spoken of the properties of these lines, it seems proper to apply
them to the resolution of some problems which depend on the
construction of equations of a degree superior to the second. Yet,
before coming to this application, let us construct the equations
of the first and second degree, which will afford a suitable intro-
duction to the same application.
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Construction of any determined equation of the first degver.
106. The general formula of any equation of the first degree is -
@i== Uatavilad)

in which x is given by the determined value of C. Suppose now

y=ar+b.... (¢

any undetermined equation, that is, an equation in which the
value of y depends on those attributed to o, or vice versa. Again,
suppose we substitute in (¢) the determined value of @ given by
(d), and let a , &' be quantities different from « and 4, but such
as to give the same value of y (already given by (e) ) by the fol-
lowing :

y—=ax 44 ..... (e;)

substituting here also x == C. Now (e) and (¢,) are the equations
of two straight lines ; and supposing these lines referred to the
same system of axes, they must be different from each other ; be-
cause, since @ and « are different from each other, the inclina-
tions or angles formed by the lines with the axis X are (10) dif
ferent ; and since & and &' are also different from each other,
the points of the axis of the ordinates met by the two lines are
equally different from each other. But if we suppose an abscissa
equal to C, since in this case the ordinate y given by both equa-
tions (e) , (e,) is the same, the point determined by such co-ordi-
nates must necessarily be that of the common intersection between
the two straight lines. But two straight lines inclined to each
other can meet in only one point ; hence, if after having derived
from (d) and (e) the equation (e,) in the manner described, and
after having constructed the two lines with reference to the same
system of axes, we draw from the point of common intersection
the ordinate to the axis of the abscissas, the corresponding abscissa
is the value of x given by (¢). Now it appears that the resolu-
tion of the equations of the first degree does not require so long a
process ; yet we know from this the principle on which depends
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the method of construction, which is always the same although
applied in different manners.

Construclion of any defermined eguation of the second degwee.
107. Let M =N .. (0)

be any equation of the second degree. Supposing x, , , to be
the roots or values by which the equation is fulfilled according to
the general properties of the equations, we will have

MEX, =2, , A=2,-%,....(0,)

Again, suppose AX (fig. 71) to represent the axis of the abscissas,
and let Ab , Ad/ be the linear values of x_ , 2, ; from 4 and &'
draw e , Ue! parallel to the axis Y, next with A as centre, and
Ad' as radius, describe a circular arc d'd ... The equation of
this circle referred to the rectangular axes AX , AY is

2z +yr =7t ... (0,)

an equation which will be fulfilled with the values a, , 2, , or
roots of the equation (o). Moreover, suppose the straight line
BD to pass through ' and d the points of the circle correspond-
ing to the abscissas @, , @, , and let the equation of the straight

line be
y=—ax -} c....(0)

It is evident that we cannot suppose in the two equations (o, ) ,
(0,) the same co-ordinates, without supposing at once the abscissas
x, , ¥, to be the roots of the former equation (¢). Hence, any
determined equation of the second degree may be resolved into
two undetermined equations, the one of the circle, the other of
the straight line fulfilled at once by the roots of the proposed
equation. Therefore, the only thing to be done in order to re-
solve (o), is to determine the dependence of the constant quanti-
ties of (0,) (0,) upon the given 7 and n. It is now evident that
as far as we suppose in the formulas (0,) (0,) the roots of the
equation (o), every other equation derived from them must con-
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tain the same roots. In this supposition let us square the second
of those equations, and let us substitute the value of 3* deduced
from it in the former (o,), we will obtain

z® + a® x* + 2ace 4 ct —=r®
2t (1 4 a2) 4 Race =72 — ¢

or

and
2 ac rt — 2

.‘r*-{—-l—_'_—ma::m....(o‘)

which is an equation of the second degree having the same roots

as the proposed equation (o) ; and, consequentl} according to the
properties of the equations

2 ac re—c
BB iy R e Y

hence (o, ),

. Rac re — ¢t
s 1o et Gy vy ) o

the equations between the known quantities m , n and the un-
knowna, ¢, r. Now, from these last formulas we have

=m(1 i)
2a

rt = (14 at) n -+ et

(g o e me (‘li;t-az)z

1
= et n g me (140 ]

and substituting these values in (o,), (0,)

@ty = et 14 0] )

y=am+ﬂ;_(l.—_.+ﬂ
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the equations of the geometrical loci, from which intersections
and corresponding abscissas we have the roots of the proposed
equation (0). Let it be remarked that the constant @ remains un-
determined, and consequently the resclution may be performed
with an infinite number of combinations. Now, suppose to be
taken a determined value of @, that is, (since @ is the tangent
of the angle formed by the rectilinear locus and the axis X,) sup-
pose a determined angle formed by the rectilinear locus with
X, the last term of the second (o,), as well as the second member
of the first, shall be also determined. In this supposition let AX ,

AY (fig. 72) be the rectangular axis ; since (10) ﬂ(_%—l_;_u*_) is

the linear length of the axis Y contained between the origin A
and the point met by the rectilinear locus ; let us take AZ cor-
responding to that length, and from Z lel us draw /', making
with X an angle whose tangent is equal to «. Again, since

l;i;!ﬁ [4a® n 4+ m® (1 4 a*) ] is the square of the radius of

the circle, let us draw the perpendicular Ag from A to the recti-
linear locus I’ , and from the same A let us take on Ag a linear
length corresponding to the radius. Three cases can happen in
this construction : the linear length of the radius shall be either
greater than Ag, or equal, or less. In the former case the recti-
linear locus shall cut the circle in two different points ; in the se-
cond it will be tangent; in the third no intersection will occur
between the circle and the straight line. Therefore, in the for-
mercase two different real roots fulfil the equation (o) ; in the se-
cond two equal real roots ; in the third no real root can fulfil the
equation.

PROBLEM I.

To find out the side of a cube whose solidity will be equal 1o twice
that of a given cube.

108. This problem, so celebrated among ancient geometricians,
consists in finding two mean proportionals between the side of the
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given cube and the double of the same side. For let 2 be the

side of the given cube, and let 7 , 3 be two mean proportionals
between a and 2 @ , that is,

R TBRE & 1 e i i

which proportion decomposed into two

R RO E T
. T T Y, Ra
gives first
32
g e Lﬁ ..... (0,)
and
POAYEISS
Yy =8¢ T %a°
consequently,
YR ) BT (0,)

that is to say, the cube of the first of the two mean proportionals
¥ , ¥, is double the given eube. Consequently, if we are able to
find the first mean proportional, the problem will be resolved.
But let us consider the equation (o) without reference to the
proportionals ; and let us decompose that equation into two un-
determined, in the following way : Suppose the real value of y,

by which is fulfilled (0,), to be substituted in the undetermined
equation

Y2 = danis . s.(0,)

And again, let this peculiar value, as taken from (o, ), be substi-
tuted in (o,), we will obtain

y.4ar—=2a?
hence,

@z
my:-—f-z--- "o (03)
another undetermined equation. Now (o,) and (o,) cannot ad-
mit the same variables @ , 7, except when the variable y is that
which fulfils (0,); because, first, the equation (o0,) is derived
from (0, ) and (0,) in this supposition. And it is to be observed,
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that the relation between x and y afforded by (o,) is such as
to give a greater or less value to y , according to the greater or
less value of «; therefore, if we suppose y, and z, to be two
corresponding values of (o,), and different from 3, =, and if

a® :
=5 the product 2, y, must necessarily be greater or less

az a* -
than 5 consequently, as long as o remains in the second
member of (o,), we cannot suppose there the same variables of
(0,) without supposing y to be that peculiar value which resolves
the equation (0,). Now from these observations it follows, that
the geometrical loci (0,) , (0,), if referred to the same system of
axes, will cross each other in only one point, and the ordinate y,
corresponding to that intersection, is the required value which
fulfils the equation (0,) and the required side of the cube. Let
us now examine the nature of the geometrical loci (0,) , (0;). The
former is (68) a parabola having the parameter equal to 4 « ; the
second is an equilateral hyperbola (102) referred to the asymp-
totes, which (94, C.) are perpendicular to each other. There-
fore, let AX , AY be (fig. 73) a system of rectangular axes, and
let /Al' be the parabola (0,), and mBm/ the hyperbola of which
AX, AY are the asymptotes ; from p, the point of intersection,

draw pg perpendicular to AX , pg will be the side of the required
cube.

PROBLEM 11.
To divide a given angle into three equal parts.

109. The trisection of an angle is another problem whose solu-
tion has been much sought for by ancient mathematicians ; yet, it
is to be understood of the geometrical trisection of any angle, be-
cause, with regard to the peculiar case of the right angle the so-
lution is easy. For suppose BAC (fig. 74) to be a right angle,
and take Am at pleasure, then construct the equilateral triangle
Amn , next draw Ag perpendicular to mn, the lines Ap, Ag di- .
vide BAC into three equal parts, because the angle nAm — 60° ;
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hence, nAC = 30° and nAo = oAm = 30°. Moreover, the
trisection of any angle, trigonometrically, is likewise easy ; for let
(fig. 75) BAC be any given angle, and with A as centre, and Am
as radius, describe the circle mpn ; it is plain that the division of
the angle BAC into three equal parts, depends on the equal divi-
sion of the arc mm. Now suppose np to be the chord correspond-
ing to the third part of the arc mr, and draw Ap in the triangle
nAp, the sides An , Ap, as well as the angle contained by them,
are known quantities ; hence, we may derive the third side np or
chord, and, consequently, the trisection of the arc. } <

But let us come to the exact and geometrical division which
will afford us an example of the construction of an equation of the
fourth degree ; but in order to proceed without interruption, it is
requisite to mention that @ and & being any two circular arcs of a
circle, having the radius equal to unity, we know from trigonome-
try that

(1) sin (¢ -+ &) = sin @ cos & +} sin & cos a

(2) sinae= 2sin } @ cos } a
(3) cosa=1—2sin*La
(4) cos za= 1— sin 2a (*)

Now let mpn (= a) be the arc corresponding to the given angle,
and mn (= c¢) the chord. Let » be the third part of the arc a,
and y the corresponding chord to be determined. Supposing the
radius Am = r, we have from trigonometry L ¢ = 7 sin 4 a
4 y = rsin } v ; hence,

sin d ¢ = =—

Y

sin § v 3,

again, since v is the third part of a,

(*) Devies’ Legend. may be consulted. Trig. xix, xx.
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&= 3
consequently ta=3v—w4 tw
and -
sinfe=sin(v43v)..... (o)
but (1)

sin (v —+ 4 ¥) = sin v cos } v -+ cos » sin 4 2
and (2) , (3) sinv =2sin v cos 4 v, cos v —=1— 2 sin 2} »
hence sin (v 44 v) =2sin yvcos*f v+ (1 —2sin*Li»)sin kv
again (4) cos *y p=1—sin*} v
hence
sin (v-44v) =2sin L v (1 —sin*} v) 4 (1 —2sin*} v) sin 4 »

=2sin$ v — 2sin 8} v 4 sin 4 » — 2sin *4 »
—3sintv—4sin’tov
therefore, substituting this value in (o,)

sin 4 a— 3 sin 4 v — 4 sin’} v

from which
4sin*fv4sinde—3sinfv=o0.... (o)
and substituting the preceding values (o)

4y C Sy
oy e

consequently
Y4+ —8yr=o...... (0y)

the equation in which the only unknown quantity is y, that is, the
chord of the arc v. Therefore, the resolution of the problem de-
pends upon the construction of that equation. But before pro-
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ceeding to such construction, let us transform the equation into
the following

' — 3y 2 —i—cy?'.zzo.... (0s)

Again, supposing 4° = ra , (provided x be properly determined,)
we may substitute the value of % in the first term of (o), hence

ot — 3yt f+cy=o

an undetermined equation which affords the required value of y
when there is substituted the corresponding value of @. Observe,
now, that since we suppose y®* — 7»x, we must also suppose
y* — r& = o and py® — wre = o (x being any number whatever,)
consequently the last formula will remain unvaried by adding to
it the difference uy* — wra , and we may say of the equation

xt — 3y 4 cy - pyt — wa=o

that to some value of @ must correspond the required y indepen-
dent of any value of u. But this equation represents different
geometrical loci according to the different value of u. Therefore,
substituting to w two different values, we shall obtain the expres-
sion of two different geometrical loci, which, if referred to the
same system of axes, must admit of the same ordinate when the
abscissa is properly chosen ; or, in other words, such geometrical
loci must cross each other, and the ordinate corresponding to the
point of intersection is the required value of y. Observe, now,
that the different geometrical loci represented by the last equa-
tion, which may be reduced to the form

22 (u—3)y: fey—pr=o... (0)

are either the parabola, or ellipse, or hyperbola, according to that
w is equal, greater, or less than 3, and it represents the circle
when x = 4 ; because in the first case it becomes

xt ey —3ra=— o

and then [43 (1,)] A=1, B=C =0, consequently [45. (i,)]
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P=¢+4=1,P,—=31— 3 = o0, and [47 . 1] the curve ad-
mits of only one axis, which is the case of the parabola.

In the second supposition, let, for instance, x = 5 : the
formula (0,) becomes

ot + 2y +ey—bHra=— o

andthen A—1, B—=2, C = o, consequently P, =2 ,P,— 1
and C* — AB = — 2, that is to say, the curve (47) admits of
two axes, and it does not admit (57) of asymptotes. Therefore
it is an ellipse.

In the third case supposing for example x = 2 the same (o;)
becomes

2t —1.y2 4 cy—Rra= o

hence A—=1,B—=—1, C—=o, consequently P, =1,P, =— 1,
and C* — AB — -} 1, that is, the curve admits of two axes as
well as the asymptotes, which is the quality exclusively proper
to the hyperbola.

Suppose, finally, « = 4 in which case (0;) becomes

xt + y* 4 cy—4dre—=— o

amdA=1,B=1, C=o, therefore , = F, = 1, and P, —
P, — o which (47 . 48) is the case of the circle.

Suppose, now, that the construction or geometrical determina-
tion of the unknown 7 is to be performed with the circle and el-
lipse. To this end let us transform the preceding equation of the
ellipse into the following

x*—5re 4 (%.)”_I_ 2y* +cy+ (2 :;VE_)Q: (5?’)*4_ (Q_eﬁy

o (m_%)l (y VMR 4 o ﬁ)= (%)JF (2~/§)

11
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from which, since
(1 vT+555) = [vV2 (r+505)]
=) rrta)=2 (+3)

R

Let us now transform the equation of the circle into

a* — 4 re - (27)8 = 9>+ oy (%)g= (o) +<_;_)g

If now the geometrical loci represented by (o,) (o,) are referred
to the system AX , AY (fig. 76) of rectangular axes ; let us take
A!, a point of which the co-ordinates are # — Am = 2r , y =

mAl = — _;_ , and with A’/ as centre, and \/4 re 4 %z as ra-

dius, describe the circle /rds, which is, that corresponding to (o,)
and referred to the axes AX , AY , (49). In the same way take
A" of which the co-ordinates with reference to AX , AY are

5
= Ani— ~§?:, y=nAl'= — -g— : draw A'XY , A'Y!" pa-
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rallel to AX , AY , and taking A'p — \/% r® 4 -g s Allg =

e AT
\/%5 r* + .;_6 as semi-axes, describe the ellipse pgfs. This is

the ellipse corresponding to the equation (o,), and referred to the
axes AX , AY. Because, suppose the ellipse referred to the

s
axes A/X'" , A"Y", the corresponding equation is 2—5—;%;
1 8
Ile 5
+ 55 f - = l;but(8)a/' =2 — An = o — ?r; Yl =y
i

Allp = y 4 % » and substituting, we derive the equation (o,).

If now from the intersections » , s we draw 7f , sg perpendicu-
lar to the axis X, either of them will be the required chord ». It
is to be observed, that since the equation is of the fourth degree,
there must be four intersections, except when the roots of the
equation are equal to each other.
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SURFACES OF THE SECOND OEDER.

REMARKS.

110. According to the observations made at the beginning of
the preceding book, (42 . 43), and according to analogy, the
equation of the second degree

Azx? 4 Byt + Cz® + 2 Dyz + 2 Exz + 2 Fay 4 2 Go 4
2Hy + 2Kz= Q... (4,)

containing the rectangular co-ordinates @, ¥, z, and the constant
guantities A, B, C, . ... is the most general formula of the
surfaces of the second order. Heunce the determination of the
general as well as peculiar properties of these geometrical loci
depends upon the discussion of the same equation (4,) which
may still be reduced to the same form as that given [(44) 7,] of
the general equation of the lines.

Nimpler form given o the general equalion and conmmen propeyities.

111. Let (fig. 77) AX, AY, AZ be any system of rectangu-
lar axes, and let A'm be any straight line in space. Draw from
Al, A'X!, A'Y!, A'Z' parallel to the axes, and produce the same
parallel, so as to meet the planes XAY , XAZ, YAZ in P, Q,
R. Again, draw from m to the same planes mP, mR, mQ
parallel to AP/, A'Q/, A’R/, and suppose mP to meet X/A’Y! in
2, mR to meet YYA'Z! in 7, and mQ to meet X'A'Z! in ¢, then
evidently

AlPP=pP, AQ=¢Q, AR =sR
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because they are lines contained by parallel planes. Again,
mP=mp 4+ A'P', mQ =mg+ A'Q', mR = mr 4 AR/

now mp — Alm cos Almp = A'm cos mA'Z'
mg = Alm cos Almg — A'm cos mA!Y'
mr = Alm cos Almr — Alm cos mA'X'

hence mP = A'P! 4+ A'm . cos mA'ZN

mQ =A'Q -+ A'm . cos mA'Y' .. (¢)

mR —= A/'R! 4+ A'm . cos mA'X! ]

and - APl = mP — Alm . cos mA!Z)

AQ = mQ — A'm . cos mA'Y' .. (&)

AR'=—= mR — A'm . cos mA'X' ]

Suppose, now, (fig. 18) any two points n, #/ of any surface of
the second order referred to a system of rectangular axes. The
straight line nn/ (= 2g) will of course be a chord of that sur-
face ; let this line be divided into two equal parts in o, and let
o, =or, y, = 0g, z, = op be the co-ordinates of the point o0 ;
and suppose the angles formed by nn' with the axes X, Y, Z
to be represented by a, o', o/. The co-ordinates ns, nf, nv;
ns', 'ty n'»! of the points n, #»/ are the co-ordinates x, y, z of
any two points of the surface. Considering, now, or' or g with
reference to the axes, we will have (e, )

z=2z,-+gcosdl
Yy =Y, + gcosd
x=a, + g cos a

Considering on we will have (&)

=z, —g cosd

n

=y, —g cos a/

] @

:wo—gcosa
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Substituting, now, in the different terms of (4,) the values

given by these two systems of equations, we will derive

Axz = ‘Az 4 2Agx, cosa - Ag®cos’a
And

Ar: = Axz?® —2Agx_ cosa - Ag®cos’a

Byt = By,* -} 2Bgy, cosd + Bg® cos %/
And

Byt = By,* — 2Bgy, cos o/ 4 Bg® cos o’

Czz = Cz * -+ 2Cgz, cos /4 Cg® cos ‘o
And

Cz® = Cz,* — 2Cgz, cos a4 Cg® cos e
2Dyz = 2Dy, 2z, + 2Dgy,, cos o'+ 2Dgz, cosa’ 4 2Dg* cos o cos o'/
And
2Dyz = 2Dy z, — 2Dgy,, cos o/'— 2Dgz_ cosa’ 4 2Dg” cosa/ cos o'/
2Exz = 2Ex 2, 2Egz, cos o/'4- 2Egz_ cosa - 2Eg® cosa cosa/l
And
2Exz= 2Ex_z — 2Egx, coso/'— 2Egz_cosa - 2Eg® cos « cos o/
2Fay = 2Fx_y -+ 2Fga, cos o’ 4 2Fgy, cosa - 2Fg® cosa cosa/
And
2Fxy= 2Fz_y ,— 2Fgx cosa' — 2Fgy_ cosa + RFg® cosa cosea
2Gx = 2Gx, -+ 2Gg cosa

And

2Gr = 2Gx, —2Gg cosa

2Hy = 2Hy, -+ 2Hg cosd/

And

2Hy = 2Hy, — 2Hg cos o

2Kz = 2Kz, -} 2Kg cos o

And

2Kz = 2Kz, — 2Kg cos o/
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Making, compendiously
A cos’a 4 B cos "o/ 4 C cos *a// 4 2D cos o/ cos o/ 4

2E cos a cos o/ 4 2F cos a coso/ = R
(Az,~4Fy,+Ez + G) cosa+(Fx_+ By + Dz, 4 H) cosa/
+ (Ex,+ Dy, + Cz, 4+ K) cos o// = R/
Az 4By '+ Cz '+ 2Dy z, + 2Ex 2z, + 2Fx y +

2Gx, -+ 2Hy, 4 2Kz, = R/
We will obtain from (%, ), and the preceding substitutions,
Rgt 4 2Rg + R/ = Q)
(%s)

Rg* — 2Rz + R/ = Q

(%)

Or, representing both equations by the only one, Rg* == 2 R'g 4
R’ = Q , which has [44 (Z.) ] the same form as that correspond-
ing to the lines of the second order. And from the discussion
of the formulas (%4;) we are enabled to derive the properties of
the surfaces in the same way in which, from the discussion of
(1;), we deduced the properties of the lines,

Diametral plane.
112. The second (A;), subtracted from the first, gives
4R'g=o0, or R =03
and, consequently, (%4;)
(Az,+ Fy, + Ez, + G) cosa - (Fx, + By, + Dz, +H) cos o/

+ (Bx, + Dy, + Cz,+ K) cos o = 0
from which

2 (A cosa—+F cos /4 E cosa’') 4y, (F cos a+ B cosa’+Dcosd)
+2,(E cosa—+Dcosa/4 C cos o)+ G cosa— Heoso/4-Kcosa/ =0
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and, consequently,

z,[Ecosa+ Dcosa/ 4 Ccosa/'] =
— 2, [A cosa+ Fcosa + E cosall]
— ¥y, [F cos a 4 B cos o/ 4 D cos ']
— [Gcosa- Hcosa 4 K cos o]

and making, for brevity,

A cos a 4 F cos o/ 4+ E cos o'
~ E cosa -+ D cosa 4 C cos o

F cos a 4 B cos o/ 4 D cos o
— e
E cos a 4 D cos o/ 4+ C cos o

G cos o - H cos o/ 4 K cos o
~ Ecosa+ Dcosa! 4 Ccosa

we will have
2y = ma, + nyy 4 g+ o - (h)

Let it be now remarked that m, », ¢ depend only upon the
constant quantities A, B, C, . . . and the angles a, o, o
formed by the chord an/ with the axes X, Y, Z. Therefore the
same equation (%,) would have been obtained, considering any
chord parallel to #a', and the only difference would be in the co-
ordinates @, 7., 2z, of the middle point of the chord. There-
fore the formula (4,) is the equation of the series of the middle
points of a system of parallel chords. But (29) the geometrical
locus corresponding to (4,) is a plane; hence any system of paral-
lel chords in any surface of the second is bisected by a plane,
which is termed diametral plane: and in the case in which the
system of chords is perpendicularly bisected, the plane then is
called principal plane.
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PROPOSITION.

In every surface of the second order there is always at least one
system of chords bisected by a principal plane.

113. The equations of the chord nn/ passing through o and
referred to the axes X, Y, Z are [ (35) (40) ]

__Cosa

P&y = cos o (y_yo)
: Cos a
bl 96—y A )

hence, the equations of the straight line passing through the origin
of the co-ordinates, and parallel to »z/, will be

CO8 o COS o
r = — = —z
cos o > cos o/

Supposing now the system perpendicularly bisected in this case,
we will have

cos a m COSanm}-.:(&s)

cos of a7 cogdh. T
for the equation (%,) may be transformed into

el n 7
Yo 5= g Fol TR g 90 T
and comparing this equation and those of the chord passing
through the origin of the co-ordinates with the equations of the
plane (36), and of the perpendicular drawn to it, we deduce
el A  RII Cd S . Hence, if for every
cos o/ m’ cos ol m
surface of the second order there is such a system of parallel
chords, whose angles a , o , o// with the axes, fulfil the conditions

(%), every surface admits of at least one principal plane. But
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the angles o, o/, o/ , which any chord makes with the axes, must
be such as to give (25, C. V.)

cos *a - cos *a! 4 cos 2o/ =1

hence, the real values of a, o', o/ by which are to be fulfilled
(k) » must be derived from this last equation. To know now if
this is really the case with regard to any surface of the second

order, let cos “, an &uﬂ be represented by Lt and l', , s0 as to
cos a cos o 2 v
have
cos &/ = v C0s a 5 cos a! = 2 cos a
and since

m A cosa+ F cos o 4 E cos o/

n ~ Fcosa+ Bcosa + D cosd

__Acosa— F cosd 4 E cosa
~ E cos a4 D cos o/ 4 C cos o/

—

so by substituting

m A4 Fo+4 Ev A4 Fv+4 EY @)
B el o Bpalo g 0T Ty ke Ol §

and the equations (4,) will become

1 A4+ Fo4E/ 1 A4 FofEo

v F+4+Bv4Dv?s  E -+ Dv+4 Cv
the former of which gives
F4+Bo4 Dv'= (A4 Fov+ Ev)o

Av + Fpt — By — F
5T Sisery

hence,
-ul

the second gives
E+4+Dv+4 Co'= (A4 Fvo+ Ev) v
Ev: 4+ [Fo4+ A—Clv=Dv+E

(Fr 4+ A— C) (D — Ev) 2
D — Ev

hence,

or
Ev'z

=Dv+ E
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and substituting the value of 2/ derived from the former

E [Av 4 Fv® — Bo — F]e

(D — Ev)2 s
[Fo4+A—C][D—Ev] [Av+ Fv® — By — F]
(D — Ev)® e
hence, (*)

#*The same formula may be transformed into
E[Ft? + (Av— Bv—F)]? 4 [FDv 4+ AD — CD — EFv* — AEv |- CEv]
[Av 4+ Fo?—By—F]—(Dv 4+ E)[D—Ev]*=¢

and considering each term separately,

E[F1?+-(Av—Bv—F)]?=EF* 4. 2EF (Av—By— F)v*+ E (Av— Bu—F)?

[FDy + AD — CD — EFv? — AEv -}- CEv] [Av + Fo* — By — F] =
[—EFv® L (FD— AE 4+ CE)» 4- AD— CD] [F? + Av— Bv—F]

=— EF' L+ F(FD — AE 4 CE) v + F (AD — CD)v* + (Av —

Bv — F) [— EFy* | (FD — AE —CE)v 4+ AD — CD]
the last term,

(—Dv4E)[D— Ev])?=—[DE?v’— (2D*E—E?)v*4 (D’ —2E?D)v—D?E]
making the sum
{F (FD — AE 4+ CE) — DE?] v® + (Av — Bv — F) [EFs® 4 E (Av — Bv
—F) 4 (FD — AE 4 CE)v 4 AD — CD] + [F (AD — CD) + (2D*E
—E)]v?4- (D —2E*D) v + D*E =0
the second term of which may be further transformed into

[(A —B)v— F] [EFv® | (FD + QE—EB) v + AD — CD — EF]
or
(A—B) EFv* 4+ (A —B) (FD + CE —EB)+* + (A—B) (AD — CD —

EF)»—EF?v® —F(FD 4 CE —EB)v—F (AD —CD — EF)

hence the same sum shall become
(F2D — BEF + CEF — DE?) v 4- [(A — B)(FD +4- CE— EB) + F (AD
— CD — EF) + E (2D* — E?)] v* - [EF (2B — A — C)+AD(A—-C
-—B)+D(D9—2E’—F*+CBD)]=:-—F(AD-—CD—EF)+ D*E =0

and consequently e
2 4 &euonn =
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. [(A—B)(FD 4 CE—EB) . F(AD_—CD—EF) + E(2D*'—EY) ,
D —BEF &+ CEF — DE? 2

4[EF(2B—A—0)+ AD(A—C—B) + D(D*'—2E*— F*) + CBD] _
F?D—BEF 4+ CEF — DE?

F(AD—EF—CD)—}—D“E
~ F2D—BEF + CEF — DE!  *

An equation of the third degree, which, according to the general
properties of equations, may be resolved by a real value of v,
which substituted in (/,) will give a corresponding real value of
v’ ; hence, the two equations (/) may be resolved by real values
of » and ¥/, or what is the same, there are always such real an-
gles a, o', o/, by which the formulas (%4,) may be fulfilled. It
remains now for us to investigate, if in every case the same an-
gles can fulfil the other condition, cos 2a 4 cos 2a’ 4 cos®// = 1;
that is to say, if the equations

cos o 1 cosa 1

r

cos o/  » ’cosd v
cos *a 4 cos 2a/ 4 cos 2a/ = 1

are at once fulfilled by the same angles a, o', o//. To this end
observe, that from the first and second of these equations we have
cos *a/ = v# cos 2a , cos 2a// = 2 cos 2« ; and substituting these
values in the third
cos 2a (1 42 4 0't) =1
hence,
1

V1422402

Substituting, now, this last value in the two former equations, we
obtain

CO8 a =—

v o
——— | Coswll = —
M1+t Foz? ~/1-|—v”+1:-'$
which are the required values ; because » and ' being real values,
the angles a, o, o'/ must be also real; and dividing cos « by cosa’,

cos o' =
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: 1
and cos o by cos o/, we have in the former case — , in the
v

1
latter v and the sum of the squares cos %a, cos 2a/, cos %a/,

equal to the unity. Hence, the conditions required may be al-
ways fulfilled, and in every surface of the second order there is a
system of chords perpendicularly bisected by a principal plane.

Tangent plane and norvinal line,

114. Let / (fig. T9) be any point of any surface of the second
order, through which conceive a plane passing tangent the curve
surface. Describe on that plane the straight line mn passing
through the same point 7, which of course must be a straight line
tangent the surface in /. Let o, o/, o/ be the angles formed by
mn with the axes X, Y, Z ; and observe that the diametral plane
bisecting the system of chords parallel to mn must pass through
l. For, suppose any chord parallel to 7zn to be moved in such a
manner as {o remain constantly parallel to itself, and so moved as
to become coincident with m=n, it is plain that as far as the chord
is below mn, its middle point shall be on the diametral plane, and
that the middle point, as well as the extremities of the chord,
shall unite in a common point when the chord becomes tangent.
Hence Z, the point of contact of the tangent mn, is a point of the
diametral plane bisecting the system of chords, whose angles with
X,Y,Zarea,d,a, but (2,) is the equation of this plane;
hence the co-ordinates @, ¥, = of / must fulfil the same equa-
tion ; that is, we will have

z=me~+ny+q....(0)

Suppose the co-ordinates of mn to be represented by X, Y, Z;
since mn must pass through /, the equations of mn will be (40)

X—a  Y—y Xt 3 V8 — %

cosa. - cosal 7 "cosca o cosall
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.hence, (X — x)2 A (Y —g)2 v (Z — 2)*

cos *a cos o/ cos ta/!
and supposing these ratios to be represented by », (X — a)2
=7 cos %a, (Y—7)* = rcos?a, (Z— 2)® = rcos2a; and
consequently,

(X—a)t + (Y—9)* + (Z—2)* _

cos 2a - cos *a’ 4 cos 2o/

each of the preceding ratios is equal to the last in which it is to
be remarked that the denominator (25 . ¢ . 5) is equal te unity.
Hence

(X— )t

Ccos *a

(Y—y)?

cos %a’

= (X—a) + (Y—y)* + (Z—2)*

= (X = o) 4 (Y= + (Z— 2

B2 (X (Y —9)t + (Z— 2

and consequently

B X—=2
TV A—o T = FZ—er
cos of = oy =
VX =S aR (= a =i (e ) 8
cos all = £

N E =+ (Y—y +(Z—2)"
hence, by substituting (112)

A=)+ F(Y—y+E(Z—2
TTE@—0+ D=9 FC(Z—9
__F(X—0)+ B(Y—y) +D(Z—2)
S TEE—D L+ D=9 FC(EZ—2
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et o e e
EX—a)+ D(Y—3) FC(Z—2)

and substituting these values in (o)

Ez(X—z)4 Dz (Y—y) 4 Cz(Z—2) —

? =

— [Az (X —a) + Fz (Y —y) 4 Ez (Z— 2)]
— [Fy (X —2)+ By (Y—y) + Dy (Z — 2)]
— G X—a)+H (Y—3)+ K (Z—2)]

hence
(Z—2)[C2+ Ez+ Dy + K] =— (X—a) [Az+ Fy+ Ez 4+ G]
— (Y—y) [Fz + By + Dz - H]

and making compendiously

_ Ar4Fy+-EzH4G Foe 4+ By 4+ Dz + H
TGzt Ba4-DyK. 2 CztErx4 Dy K

= n/

we will have

(Z=2) —=m! (X =) Lol (T =) o s (%y)-

The equation of the tangent plane. For in the same manner as
we considered the line mn of that plane, we could consider any
other line of the same plane passing through 7, and the difference
would have been only in the angles formed by the same lines
with the axes. But the equation (4,) is independent of such
angles; hence the co-ordinates X, Y, Z may be those of any
straight line on the tangent plane passing through Z, that is, the
equation (4,) is the equation of the tangent plane in the point
(@59, 2).

115. The perpendicular line drawn to the tangent plane, and
passing through the point of contact, is called the mormal cor-
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responding to that plane. Now, since (/4,) may be transformed
into
1 n'
(X—a)=— (Z—2) — = (Y—3)

by comparing the present equation with that already considered,
(41), and supposing X', Y/, Z/ to be the co-ordinates of the
normal, we will obtain '

U
BT e (5 (N )
n, "(kw)

X' —a=—m (Z' —2)
for the equations of the normal.

Dim‘afou of the surfaces of the second ovder in surfaces having a cen-
#re and surfaces withont a cenire,

Modifications of the most general formula.

116. We proved (113) that in every surface of the second or-
der there is at least a principal plane. Suppose, now, the system
of axes AX , AY , AZ to be taken (fig. 80) in such a manner as
to have the axes X , Z on that principal plane. In this case the
general equation (4,) shall be converted into

Azt + Bly* + Clzt 4+ 2E2z+ 2@z 4+ 2Kz = Q. . .. (o)

in which there are no longer any terms involving y to the first
power. For, supposing that there are such terms, and consider-
ing the late equation with regard to y, we could represent it by

y'+2sy-—T___0

while, if there are no terms with y to the first power, the same
equation shall take the form
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Of which equations the first resolved according to the known
ule, affords
—— g = ASGE + T

the second Y= o T

Now s and T depend on the variables « , z , hence to every dif-
ferent value of these variables correspond two values for , which
are different from each other, if we suppose in the equation (o)
some terms with y to the first power; and equal if there are not
such terms. But the co-ordinates y are the system of chords bi-
sected by the principal plane ZAX ; hence, supposing the axes
AX, AZ on this plane, the equation (o) becomes the general
equation of the surfaces of the second order.

Suppose, now, a plane Y'A'Z’ of which A/Z' , A’Y' are the in-
tersections with XAZ , XAY. Let A’X' be drawn perpendicular
to A'Z!, and on the same plane ZAX. Supposing, moreover,
the intersection A'Y/ parallel to the axis AY, so that A’Y' be per-
pendicular to AX , the lines A'X! , A'Y' , A’Z/ will constitute a
system of rectangular axes, and the relation between the co-ordi-
nates of any point with regard to X, Y , Z, and with regard to
X', Y', Z' will be given by the known formulas (27, C . II).
Still it is to be remarked, that since the axis Y/ is parallel to the
corresponding axis Y, we will have

cos (ay') = cos (ya!) = cos (y2') = cos (2y') = cos 90° — ¢
cos (yy) = 1

again, supposing A’L parallel to AZ , since XAIZ! = Z'A/XI 4
X'A'X = XA'L 4+ LA'Z!;

cos (22!) = cos (90° + (xa')) = — sin (az')

= cos (90° + (22/) ) = — sin (22)

and since LA/X = LA/X — XA/X/ = X/A'Z! — LA'Z!

cos (z2') = cos (90° — (aa’) ) = sin (za’)

— cos (90° — (z2/) ) = sin (22')
12
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and since XA'X' — LA'Z’
cos (22') = cos (zz')

the first of the co-ordinates =, , y_, 2, of the new origin A/ with
reference to A, is equal to AA’, the other two equal to zero: hence
to have the co-ordinates @ , ¥ , z of any point, with regard to the
former system, given by 2, ¥/ , 2/, with regard to the latter ; it is
sufficient to substitute the preceding value in the formulas (27) of
transformation. In this manner we will obtain

x = @, - 2’ cos (za!) — 2’ sin (aa’)
y=1y
z = @ sin (xx') 4 2’ cos (xz')
from which
2! = 2,2 4 2,2’ cos (wz') — 2w 2’ sin (aa’) 4 x,2 cos *(xa) —
22’7 cos (zm’} sin (zz’) -}~ 2’* sin 2 (:c:l:")
zz = o, sin (22) 4 .2 cos (a2') 4 2'* sin (xz’) cos (wa!) 4
#'2 [cos 2(wa') — sin 2(xa’) ] 4 22 sin (x2') cos (xa)
: vt
2t = o/t sin® (2¢) 4 2 @'z’ sin (x2') cos (22') 4 2/t cos¥(x).

Substituting, now, these values in the preceding formula (o), we
will derive the equation of the surface with regard to the system
X', Y', Z' having the following form :

A'* 4+ Byt +4C'2: - 2E"2'2 +2G" +2K"2=Q".... (o)
in which
A” = A’cos * (ax') + 2 E' sin (x2') cos (zz') 4 (V' sin 2 (x2') , B'=B’

C" = A’sin *(z¢') 4- 2 E' sin (22’) cos (%2’) 4 C’ cos 2 (x2’)
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E" =— A’ cos (za) sin (wa’) 4+ E’ [cos 2 (za’) — sin 2 (22') ] +
C’ sin (2a’) cos (za")

G"= Alz, cos (xa') + E'z, sin (xa') 4+ G’ cos (xa’) 4 K’ sin (wa')
K'= —A'z,sin (za') 4 Elx cos (za’) — G’ sin (xa') + K’ cos (zz')
Q—=—Az,* —2Gz, + Q.
Suppose, now G” = ‘E!" — o, that is,
(C'—A’) [sin (xa’) cos (xx') | + E' [cos?(aa’) —sin*(aa') |=0
(A2° + @) [cos (2a')] + (E'z, + K) [sin (22')] = o 2 g

which in every case is possible, provided in every case both
equations may be fulfilled by real values of (za’) and z, . For
in this case taking A’/X’ inclined to AX by an angle equal to (x2’)
and AA’ equal to =, corresponding to the equations (o,), we will
have G" = E” = o , and consequently (o,) converted into

Allgs 4 Bly's 4 C'lz't 4+ 2K"2 = Q" . . . (h,)

which, as the preceding, is a general equation of surfaces of the
second order. It still remains to prove that the equations (o,)
may be always fulfilled by real values of (xa’) and . To this end
let us divide the former by cos *(2z’), and the latter by cos (xa’),
which consequently will become, the first,

(C — &) tg (m*} + B (1 —ig2(ar))=o

or

C fg (vx') —1=o0

ig *(xa/) +
the second,
Nz, + @ + (Bz, + K) ig (aa) = o

Now the first is an equation of the second degree, which resolved
according to the known rule, gives

@) = — 2057 = 14 (5550)
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from which we have two real values for (wz’), which, excepting
the case of A’ — (', are different from each other, and which
substituted in the second equation will give the corresponding
real value for @ . Hence, it is always possible to reduce the
general equation of the surfaces of the second order to the
form (%), which, considered with regard to a’, may be also re-
presented by the simplest formula

dt =0, 0r =40

in which O is a function of the variables 3, 2’. Hence, to every
value of % , 2’ correspond two equal values for o’ ; that is to say,
all the chords parallel to the axis A’X’ are perpendicularly bisect-
ed by the plane Z’A’Y’, which is consequently a principal one,
but XAZ is also a principal plane and perpendicular to Z'A"Y’;
herefore, in every surface of the second order there are always at
least two principal planes, and these are perpendicular to each
sther.

Beduction of the fale general formula (o fwo cquivalent formmulas.

117. It is evident that as far as the equation (%;) represents a
surface of the second order, we cannot suppose A”, or B” equal
to zero, for in this case the corresponding geometrical locus would
be aline. For the same reason, we cannot suppose C"” and K”
at once equal to zero; hence, the only suppositions which may
be made with regard to the coefficients are, that only one of the
two C", K" is equal to zero, or neither is equal to zero ; and in
the former case the equation will be deprived either of the third
or of the fourth term ; but, as we shall presently see, supposing
all the coeflicients different from zero, the equation (/.) may be
deprived of the fourth term ; hence, two cases only may be sup-
posed, the equation (%4.) deprived of either the third or of the
fourth term. Let us now observe how the equation may be de-
prived of the fourth term, still remaining the equation of the same
geometrical locus. Suppose (fig. 81) A’X", A’Y", A'Z’ to be }he
system to which the surface represented by (%) is referred. Pro-
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"

duce Z'A’ so far as to have A’A" — Eéw 5 draw A”X" parallel to

A'X', and A”Y" parallel to A'Y’; it is plain that the co-ordinates
y and «’ of the surface referred to the former system will remain

unvaried, if the same surface be referred to the system A”X”,

"
A"Y", A’Z', and that the co-ordinates 2’ will become 2" — o

Therefore, supposing the surface referred to the new system, it
will be sufficient to substitute in (%4,) " and 3", instead of &’ and

"
and 2’ — —; instead of 2/, to have the corresponding equa-
) " P g €q

tion. But by making such a substitution we deduce

e 9 Kﬂ's
from which
X"
2
Ay afe Bry”z -+ C”z“z — S 4+ Q..... (0)

In the other case, in which the equation (4,) is deprived of the
third term, or converted into Az’ 4 B'y't 4 2K"2' = Q" ; let
as before A’X', A'Y’, A’Z’ be the axes to which the correspond-
q
ing geometrical locus is referred, and take A'AlM ik Q_Q]{_’r; from
Al draw AMX" parallel to A'X’, and A/"'Y"" parallel to A'Y’, the
co-ordinates 2, 3" of the surface referred to the new system
shall be equal to 2, %', and the co-ordinates z"’ shall be equal to

Q’ " Q'

YL hence, 2/ = 2" - SR " Therefore, to have the

equation of the surface referred to the axes A, Ay
AMZM, it is sufficient to substitute in the late equation of the
same surface referred to the axes X/, Y/, Z'; 2/, y'", instead

-
<

1" i
of o/, 4, and 2" 2%7, instead of z/, which consequently

will become
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Alltgills 4 Blyitts 4 2K 4+ Q! = Q!
from which
AMgl2 4 Byt + 2K =0....... (0,)

- Now, since all the surfaces of the second order are represented
by (%), and since every surface represented by (4;) may be re-
presented also by the two (o) and (o, ), hence, all the surfaces of
the second order shall be represented by the general equations

Ma® 4 Ny2 + P22 =V .. (A)
M + Ny* +28z=o0.. (&'IU)

Surfaces having cenires,

118, The centre of a surface is that point by which every chord
passing through it is bisected. Now the surfaces corresponding
to the equation (%) have this point in the origin of the axes to
which the surface is referred ; because, by comparing (%,) with
Ry we ind A =M, B=N,"C=P,Q=%, D=E =
F—=G=—=H =X — o; hence (112);

M cos a N cos o
M= — e, ) T — =0
P coso” Peosa *
and (4,) will become
M cos a N cos &
Zi e sy s By
& P cos o ° P cos o Yo

equation of a plane passing (29, C. IIl) through the origin of the
co-ordinates. But (4,) is the equation of any diametral plane;
hence, with regard to the surfaces corresponding to the formula
(%) all the diametral planes shall pass through the origin of the
axes to which the surface is referred, and, consequently, there is
the centre of the surface. For let us conceive any chord mn
(fig. 82), for instance, passing through that origin, the diametral
plane by which this chord with its parallel system is bisected,
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passes through the origin where of course the chord mmn is bi-
sected.

Corollary. Since all the diametral planes pass through the
origin of the co-ordinates, if the surface admits of several princi-
pal planes, all shall pass through the same origin ; and it is to be
observed, that besides the planes XAZ, ZAY which (117) are
the principal planes, XAY is also a principal plane. For, consi-
dering the equation (%) with regard to z, it may be represented
byzt =T, orz = 4 &/FT_, in which T depends upon x and 7.
Therefore, to every value of  and y there are two corresponding
equal values for z; that is to say, all the chords parallel to AZ
are bisected by the plane XAY ; but AZ is perpendicular to
XAY, therefore, XAY is a principal plane.

Surfaces without cenire.,

119. All the surfaces corresponding to the equation (4,) are
without centre. For, by comparing (%) with (4,), we have
A=M,B=N,K=8,C=D=E=F=G=H=Q=0;
hence (112)

M cos a
N cos o/
ﬂ=—T_—w
S cos o/
Gk R B T 2 i

and consequently (4,) the general equation of the diametral plane

becomes
M cos a N cos o/ S cos o

Z, == 0 ;ro...__-—o—yo.._-. 0 ....(o)

Now (29) the coefficient, of z_ and y, are the tangents of the
angles which the intersections of the plane (o) with the ple.mes
XAZ, YAZ make with the axes X and Y. Therefore, since
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these two tangents are infinite, the intersections must be perpen-
dicular to the axes X and Y, which may happen in two different
ways. Either if the diametral plane passes through AZ (fig. 83),
as, for instance, the plane mAZ, or through two lines sr, for
instance, and gp parallel to the same axis; because in both cases
the intersections of the diametral plane with XAZ and YAZ are
perpendicular to the axes X, Y. Still there is a difference to
be remarked in the two cases: that is, the intersection Am of
the diametral plane with XAZ must pass through the origin of
the co-ordinates in the former case, and s¢ never meets that ori-
gin in the second. It is also to be observed that in both cases
the diametral planes are perpendicular to XAY. Now the planes
XAZ, YAZ are principal planes; therefore in the supposition of
the diametral plane 7sgp not passing through AZ , there will not
be any point common to the three planes; hence there will be no
point through which pass the chords bisected by the three planes.
Again, in the supposition of the diametral planes passing through
AZ, there cannot be any determined point through which the
chords corresponding to those different planes are bisected ;5 be-
cause every point of the common intersection can be such a
point. Hence the surfaces corresponding to the equation (%)
are said to be without centre.

Scholium. Let us remark that the equation (4,) may be trans-

. 1 m AT '
formed into y, = e byt é‘: , and substituting in the
equations (112)

1~ Ecosa+ Dcosa 4 C coso”

n Fcosa+Bcosd +Dcosa

m Acosa -4 F cosa + E cos o’
n F cosa—+ Bcosd + D coso”’
q G cos a + H cos & 4 K cos o”
n  Fcosa- B cose 4 Dcosa”?

the values A, B, ... above determined; since, then, we have
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ol P Sk e e
n n Neoso? I n N cos o
the same (%,) will become
M cos a S cos o’

_e—— P —
Yo Nicos o " N cosa’

Nowa, o, o’ are the angles formed by any chord with the
axes. Hence such values of o, o may be always found giving
the last term of the equation different from zero. But an equa-
tion between the co-ordinates x,, y, of a diametral plane is
the equation of the intersection of this plane with XAY ; that
is, the equation of a straight line referred to the axes X, Y,
which will not pass through the origin of the co-ordinates as far

Si'cosia . 1@ :
T different from zero. Hence in every surface
represented by (4,,) there are such diametral planes not passing
through the common intersection AZ of the two principal XAZ ,
YAZ.

a8

Bifferent species of 1he surfaces having cendres.

120. In the equation Ma* 4 Ny® 4 P2* = V we must sup-
pose all the coefficients M, N, P different from zero, otherwise
the equation can no longer represent any surface. Therefore all
the different species of the surfaces represented by (%,) depend
upon the signs of the same coeflicients. And, first, we may
suppose all the coeflicients positive, in which case V of course is
positive.  Secondly, supposing V still positive, we may suppose
either two coefficients positive and one negative, or two negative
and one positive. Thirdly, supposing V = o, we can again
suppose two coeflicients negative and one positive, and vice versa.
These are all the possible cases. Because, in the supposition of
all the coefficients negative, we must admit of V negative ; but
an equation in which both members are negative does not differ
from that in which both members are positive. In the suppo-
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sition of V negative, we must suppose two coeflicients having
the sign different from that of the third, and since the equation
remains the same by changing the signs in both members, so the
last case does not differ from the second.

FIRST SI'ECIES.

121. Let all the coefficients be positive, and let us divide both
members of the equation (A) by V, we will obtain

¥w=+%J’+%===1

. AV EVE Y b 4
and representing the ratios =, w5 p by a*, bf, ¢, we will
have

M iyl D il Y

W Tt LY e 8 SN S

and consequently the preceding equation will be converted into

xe yf zz
—a'—z + ? F —_— 1 ----- (l!f-“)

To have, now, the intersections of the corresponding surface
with the plane XAZ, it is sufficient to suppose in (4,) the co-
ordinate ¥ = o, because for every point of the plane XAY the
co-ordinates y are equal to zero. Hence the equation of the
intersection will be

But this equation (63 (g) ) is that of an ellipse ; therefore the
intersection between the plane XAZ and the surface is an ellipse,
of which the semi-axes are ¢ and ¢. In the same manner if we
put in (A,) successively ® =0, z=o0, we shall obtain the
equations
2 2 2 %
Lrc=1, — 4+ ¥y

ce
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of the intersections between the surface and the planes ZAY,
XAY, which are two ellipses, the former having the semi-axes
b, c, the latter « and 4. These intersections are termed prin-
cipal.

Suppose, again, a plane parallel to the plane, for instance, ZAY.
The intersection of this plane with the surface is a curve of
which all the co-ordinates x are equal to the distance of the two
parallel planes. Hence, supposing that distance to be equal to
d. The equation (4,) will become that of the parallel intersec-
tion by substituting there d to @ ; which, in the present suppo-
sition, is to be considered as a constant quantity. But by such a
substitution the formula (%,;) becomes

Yt z2 dez A% e
§ AR e IS S e
: Sl (0]
o L + & =1

c!
E (az i da) - (a” AR ds)
which is either the equation of an ellipse, or of a point, or 4 an
imaginary one. Because as far as we suppose d < a, that is, the
distance of the cutting plane from YAZ, less than the semi-axis
a, the denominators of the variables % , z are both positive and
represent the square of the semi-axes of an ellipse. If we sup-

pose d — a the former (o) becomes ‘g -+ j—:— = 0, which cannot
be fulfilled but by y = z = o . But, if two co-ordinates are
equal to zero, and the third has only one determined value, the
locus referred to the axes is a point ; hence in the second hypo-
thesis the equation (o) is that of a point; that is, the plane parallel
to YAZ is a tangent plane of the surface. Suppose, finally,
d>a : in this case we must also suppose that the sum of
two negative terms is equal to 4 1, which being absurd, we
conclude that any plane passing beyond the extremity of the
semi-axis ¢ and parallel to ZAY, can neither cut nor touch the

surface.
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The same may be proved in the same way of the sections of
the surface produced by planes parallel to ZAX and XAY. This
surface is termed ellipsoid.

Scholium I. Suppose « = & = ¢ the formula (4, ) will
become

xt 4 y2 4 2t = a®

which (80 , C . I) is the equation of the sphere having the ra-
dius a.

Secholium II. Suppose only a = ¢ or only 6= ¢, in the for-
mer case (4, ) becomes

2% 4 22 ke 4

at TR
a2
or L m e —y) = e

which (104) is the equation of the surface generated by an ellipse
turned about Y.

In the latter case (%,,) becomes

Y= .‘_ z2 Bt
bz at o
: b2
or ot (@2 =) — gyt + 2°

which is the equation of the surface generated by an ellipse
turned about X.

SECOND SPECIES.

122. The second species correspond to the case in which two
coeflicients, forinstance, N and P, are negative, and the third, M,
positive, and from the case in which two coefficients, for exam-

" ple, M and P, are positive, and the third negative. Now, since V
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is still positive, supposing in the former case the ratios ﬁ{[‘i 3 —En 3 %
represented by a®, — 62, — c*, and consequently in the latter by
a*, — 6%, 4 ¢2 , we will also have, in the first case,

M i 1 { 1

¥ RS T o=
in the second

11 ST 1 P 1

Vi (100 ol W e S rhes) N = hiet

and the formula (%4,) shall become

X2 yz z2
a—s—‘—z ——F — . (A’lﬂ)
T2 y2 =2

or ;—F F—'I""(é:x)

Following now with regard to (%, .) the same process observed
in the preceding number, we shall obtain the principal sections of
the corresponding surface, supposing successively #=o0,y =0,
z=a0 , hence the equations

2 2 a? z2 x2 2
zs %=_1’§_F=’?“%§:1

of which the first is an imaginary one, the others are (63) equa-
fions of hyperbolas. That is, there is no section between the
plane ZAY and the surface, and the sections between the planes
ZAX , XAY and the same surface are hyperbolas, having the
common transverse axis 2¢. To have the sections of the surface
with planes parallel to XAY , XAZ, it is sufficient (121) to sub-
stitute instead of z and y a linear value 4 equal to the distance of
the parallel plane from the principal : in this way we derive the
equations

a

mﬂ ?’;2 o= a2

ast =2
P NPT T e s T
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at y*
or LI B (O WD
Y s e B T o 3 By kg
y* z* e
a? FNes ==h

T @) @4
equations of hyperbolas, the first of which has its transverse

semi-axis equal to %N/ d% 4 ¢* and the conjugale equal to
2 A d* 4 ¢* . The second has the transverse semi-axis equal to
. :

% N d® - 6% and the corjugate equal to %’V dz < bt . There-

fore, all the sections formed by such parallel planes are hyperbo-
las. And it is to be remarked, that the transverse axis of
these hyperbolas are all greater than 2¢ or 20. For since

NMNdrFct >Nt =cand MV drF bt >Nt = b; so
O v BSOS LY e s SRR

o d—]—c’)cc_aanﬂb‘\/d +b’>bb._a.
Let us come to the sections formed by the planes parallel to

YAZ. For this purpose it is sufficient to substitute o instead of
in the formula (%) , which becomes

bt c2 a® 1
y* z* sy
or be 2 2 5 c® el
@ —a)  Z@—a

which is an imaginary equation when d < a: represents a
point when d = a: an ellipse when d is greater than a; there-
fore, taking on the axis X from the origin of the co-ordinates
in the positive direction of the axis as well as in the negative, two
portions equal to @, and supposing two planes parallel to YAZ to
pass through the extremities of the same portions, the surface
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will not enter within the space contained by these two planes,
but shall begin from the points common to the planes, and to the
axis X , and beyond the planes, will extend indefinitely itself.

123. Supposing, now, successively @ — 0,y = 0,2z = oin
the equation (%,.), we obtain the intersections of the surface
represented by that formula and the principal planes, which are

a* - i : ;

that is, an ellipse and two hyperbolas, the first on the plane
XAZ , and the others on the planes XAY , YAZ.

Supposing, moreover, in the same (%, ) successively d instead
ofx,y,z, we derive the equations of the parallel sections,

xt 24 d z° 2t

i R i et e L),
ST ) C (0

zt y2 de x® y*

— — == 1— — or — i =1 o

e b i i et

28 y? de z2 y*

A A B YRR = ity

c? b2 at ct b (03)
=gfat=—dt) = (=) g

hence all the sections parallel to the plane XAZ are elliptical,
and the axes increase more and more with the distance . With
regard to the sections parallel to the planes XAY , YAZ, three
cases are to be distinguished, which being the same for (o,) as
well as for (0,), we will only consider the former. We may have
d< cor d= ¢ ord >>c in the first case; the second (o,) represents

2
a hyperbola, of which i:? (e* — d2) is the conjugate diameter.

z° ' a®
In the second, the former (o,) becomes . —%J-; =oorx= 7Y
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or &= % 7, a double equation of a straight line in the third,

3 2 at £
since as—Hx—-—‘ —— = and_ —-;—-—..y____ -
o Lt ) AL =) prrbd (i
: 4
55 Y by substituting these values in the second (o,) be-
ek ot )

ing d >> ¢, we have again a hyperbolical section.

Scholium. Suppose in (k) b= rc, and in (A;) e = ¢, the
former equation will become

x? 2* h2
-p;-;—'l :——b-g——,or;;(m!-—-aﬁ)zyz—i—z!

the equation (104) of the surface generated by the hyberbola
turned about its transverse axis. The second (%, ,) becomes

m! z2 ?2 a2
S i L e G () = a2

the equation of the surface generated by the hyberbola turned
about the transverse axis, The surfaces corresponding to the
equations (%, ,) , (4, ,) are termed Ayperboloids.

THIRD SPECIES.

124. Let us come to the last species of surfaces having a centre
which corresponds (120, 3°) to the case, in which supposing as
before two coefficients of the first member of (4,) with the sign
different from the third. ~We suppose, moreover, the second
member V = o; and it is plain that it will be the same to make,
for instance, M positive, and N and P negative, or the first nega-
tive and the remaining positive ; because on account of the se-
cond member of the equation equal to zero, we may change at
pleasure the signs of the first member. 1In the case of M positive,
and N and P negative, we will have, as in the preceding numbers,
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Bs ofs NAE ot {uil 1
M——;,N—-—_F,P___——f\-—c—;

and the equation (4,) will become

2

y* Z y*® z*

bhe o Tt {,z+ cg'_"o
x* Uk b

P A g i OF )=t
a® b2 ¢ 4 a

Xt z® (7

— —— =0, O 2=—==+* — x
a’® ¢ 2 a

the equations of the principal intersections. But the first of these
equations can only be fulfilled with y =— 2z = o ; therefore, the
intersection of the surface (%4, ,) with the plane YAZ is a single
point on the origin of the co-ordinates ; the remaining equations
are hoth equations of two straight lines. Hence, the intersec-
tions of (%, ,) with the planes YAX, XAZ are two straight lines
passing through the origin of the axes, and equally inclined on
both sides to the same axes.

To have the sections parallel to the principal planes, let us sub-
stitute ¢ in (%,,) successively, instead of 2, y, 2z, we will ob-
tain -

ye z* dt Y2 z?

ol = o s ae g 2=l
_b! — T
a® a?

It yz— 2 T yz e

?__b'g-"—‘ ) Ol‘dz TaAE =1
?03 _C.Ebz

zt 28 de ot =3 2

PRI RLY e MR
e B

13
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therefore, the sections parallel to YAZ are elliptical, and those
parallel to the planes XAY , XAZ hyperbolical.

Since the surface passes through the origin of the co-ordinates,
and extends itself indefinitely on both sides of the plane YAZ,
we may conceive that surface as having the form of a double cone
with the vertex at the origin of the axes and elliptical bases.  In
this hypothesis every plane passing through the axis AX will
make with the surface rectilinear sections passing through the
origin of the co-ordinates; hence, every other plane passing
through the same origin, and touching the surface of the cone in
any point, shall touch the same cone indefinitely. Inversely, if
every plane, touching the surface, passes through the origin of
the co-ordinates, the surface shall of course be conical ; because,
suppose (fig. 84) the surface not to be conical, and let us repre-
sent it by AL, it is evident that that plane only which touches
the surface in A can pass through the origin of the co-ordinates.
For draw from A the chord Am to any point of the surface ; now
every plane passing through Am must necessarily cut the surface,
and the plane touching the surface in m cannot pass through the
origin of the co-ordinates. Therefore, if with regard to the sur-
face represented by (4, ) every tangent plane passes through
the origin of the axes, the form of the surface will be conical.

The general equation (114, %) of the plane touching the sur-
faces of the second order in any point varies according to the dif-
ferent values of the co-efficients m', »'. Now, by comparing (%, )

1
with (4,), we have A = ~55 B = — %, C :.__:3 and D
= E=F=G=H = K=o0; hence, (114)
1 # 1
P 2 e Y 5
ml = co;r,w,:_be Rt Rt
A a*z 10 btz
¢t o =

consequently, the equation (4, ) of the tangent plane becomes

ctx

Z —z =

atz

- . c?
ey L
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2 &Z
or c—z(Z—-z):E;(X——m)—f’—;(Y_y)

from which

N
[

2 __X.O.',‘ & -y y"’
A fa T Tt a. T 73 Eis 5
and
Z.z i y z* Xz Y.y
AN AN AR B
2 3
but (4,,) — — ‘g; — %—o, hence,
gl Bigpd Ol
T ogta T N IR S

equation of a plane passing (29, C. III) through the origin of the
axes. Hence, the tangent plane of any point of the surface (4, ,)
shall pass constantly through the origin of the axes, and the form
of that surface is conical.

Relation beliwceen the surfaces of the second and (hivd species.

125. Suppose in the equations (%,,), (%,,) the same values of
@y by ¢, and let the corresponding surfaces be referred to the
same system of axes ; let the double cone corresponding to (%, ,)
be represented (fig. 85) by mAwm/n'n , and the surface correspond-
ing to (4,,) by fRd , f'R'd', the cone will be an asymptotical
surface to the other. To demonstrate this it is sufficient to prove
that the elliptical sections of the two surfaces, produced by the
planes parallel to YAZ, are continually approaching to each other.
Now the general formula by which such sections are represented
with regard to (4,,), is (122)

yz z* s
bt e iy
= (Bli==at)in = fd?— 2°)

a2
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and that which represents the same sections with regard to (4, ,),
is (124)

yz 22

that is to say, the square semi-axes of the former sections are

2 2
s (d2 — a®), % (d2 — a*) , and those corresponding to the

b2 ' ] A
latter = de, -':; d® . Let us divide each semi-axis of the first

sections by the corresponding semi-axis of the second, we will
obtain in both cases
12 — gt a!
L g d*
but since ¢ is a constant quantity, and  continually increasing,
i .
the ratio-‘% approaches continually to zero. And the ratio
between the square of the semi-axes is likewise is approaching
to unity ; but this cannot happen unless the axes of the ellipses,
and, consequently, the ellipses themselves, nearer and nearer

approach to each other. Observe, that since
& b2 c® e
—_ RS FRIEEirry ] 2 2 2
a"'(d “)<a2d and = (d a)<a£d

the semi-axes of the sections of (4,,) are less than the corres-
ponding semi-axes of (%,), and, consequently, the whole surface
(h,;) must be contained within the cone (4;,) .

The same thing, although with some variation with regard to
the relative position of the two surfaces, may be proved of the
surfaces corresponding to (%) (%,). First, observe that sup-

ik : 1 s
posing in (%) instead of — Positive and% negative, —I- negative
: pr

1 3 “ e ; ;
and 7 positive, the elliptical sections of the corresponding sur-

face will be represented (123) by
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y* 22
bs cz

= W) T (aY e o)

=1

therefore the square semi-axes of the ellipses are, in this case,
b2 c? b c
;(d*—l—a’), ;—(ds—}-a?) and ?dz, E_zd"

which, divided as before, by each other, give

From which equation we are enabled to derive the same conclu-
sion as in the preceding case; that is to say, the cone shall ap-
proach continually to the surface (4,,). But in the present case
the semi-axes of the sections of (%4,,) are less than those of (4,;)

bt 42 (e ct
for = (d2 4 a*) >§. de, P (42 + a?) >—a; d* ; hence the

double cone mAnm' . . . is contained within the surface pggg’ . . -

Idifferent species of he swrfaces withowt a centre.

126. Surfaces of the second order, without a centre, are (119)
generally represented by the equation Ma* 4 Ny® 4- 2Sz2=o,
in which we must, of course, suppose the coefficients M, N, 28
different from zero, for the reason already given (120); and con-
sequently the different species of the surfaces depend upon the
different signs of the coefficients. Now two only different cases
can happen. S may be either positive or negative ; and, first,
we may suppose the remaining M and N, both with the same, or,
secondly, with different sign. For suppose, for instance, all the
coefficients positive: it is plain that without supposing, at the
same time, z negative, we will never obtain the first member of
the equation equal to the second ; and if we suppose M and N
positive and S negative, we never will obtain the first member
equal to the second without supposfing z positive. Therefore in
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both cases the equation will represent the same surface, and the
only difference shall be in the different position of the surface
with regard to the plane XAY. The same is to be said if we
suppose both coefficients M and N negative. Hence when the
coefficients M, N have the same sign, we may suppose S indif-
ferently positive or negative. But it is moreover to be remarked
that the surface represented by (%), supposing M and N posi-
tive is the same as that represented by the same equation in which
M, N are negative. For, since the second member of the equa-
tion is zero, without making any alteration we may change the
signs of the first member, and the difference between the two
cases is only apparent. Therefore the first case to be considered
is that of the equal signs of M and N. Again, suppose S posi-
tive, and one of the remaining coeflicients positive, the other
negative, we shall obtain the same surface as we would obtain
with S negative, provided the co-ordinate z be taken with con-
trary sign. Hence, when* M, for example, is positive and N
negative, we may suppose S either positive or negative; and
since, in the case of M negative and N positive, we may change
at pleasure the signs of the first member, the other case to be
considered is that of the unequal signs of M and N, supposing
S indifferently positive or negative.

FIRST SPECIES
127. Let M and N be represented, as in the preceding num-
bers by -1; ’ %, and S by %, the equation (%, ,) will become

T2

Y2 Rz
?—i—T:O...-(O)

@
: : . 1 1 0 1
in which, making i s well as ~= Dositive, suppose — nega-
: 5
tive, and let us examine the surface represented by

b ikd A 2z

—|—%——...‘—_O....(1£,‘5)

at ¢

-
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The principal sections shall be obtained as usual by substituting
successively , y, 2 equal to zero; in this manner we obtain

By 2 25

e 62_0’ 2= —z Y= —17z

The first of which equations can only be fulfilled with r =y =o,
and consequently represents a single point at the origin of the
axes; the second and third (63 (g) ) are equations of parabolas

J ' at bz
of which 2 Ay 2 — axe the parameters. That is, the section of

the surface (%,,) made by the plane XAY is a point ; the sec-
tions of the same surface with XAZ, YAZ are two parabolas.

Let us come to the parallel sections; and first let us substitute
d to z, to have the sections parallel to the plane XAY. The
equation (%, ,) becomes

xrt A b
"+79:—

@z

T2 y!

6 T e s

2 — 2
c

that is, the sections parallel to XAY are elliptical. And since
substituting successively ¢ to ¥ and x we obtain

x* d*® 2z as 1;2 e
at TEITT e 201 MigE T T G

T 2&*{ cd? s Lo hE (z—- cd“_)
or & _..7\2-—,2? 3 = 2 a2

that is, the sections parallel to the planes XAZ , YAZ are para-
bolical sections ; from which it follows that the surface repre-
sented by (%, ,) touches the plane XAY at the origin of the axes,
and then extends itself indefinitely on the positive side, because
(4, .) may be fulfilled only with z positive.
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Scholium. Suppose in (k,,) e = b = ¢, we have

i 8 Rz
_—;t?} — —=o, or x4+ yr = Raz

equation of the surface generated by the parabola turned (104)
about its axes.

SECOND SPECIES.

128. To have the equation of the surfaces of the second spe-
cies it is sufficient (126) to suppose in the formula (o) of the pre-
1 1 :
ceding number —— y73 negative and - ‘positive. That is, the sur-
face of the second species is represented by

w!.
AR (i “— e il (’I"Is)

from which, as in the preceding cases, we derive the equations

X2 2 b
;-—%:o, oryzj:-t—;x }(o)
2z

zs-}-%z:o, orx‘—'——z }.(o

y? Rz 5 2 b2
""ﬁ""?:“’ ory=—2 }(oz)

that is, the principal section of the surface made by the plane
XAY, consists in two straight lines passing through the origin of
the axis ; the principal sections made by the planes XAZ, YAZ
; Rat 25 ;

are two parabolas having — Ta s for parameters, and in the
first of which the abscissas must be taken on the negative Z.

Now, substituting successively d for 2, y, zin (4,,) to have
the parallel sections, we obtain, first,

x® y® 2d y? x®

Fa ol DN R e s e
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that is, the sections parallel to the plane XAY are hyberbolical,
and the transverse axis is converted into the conjugate, when
d from positive becomes negative, and vice versa ; but in every

case the equation of the corresponding asymptotes will be repre-
sented by .

because, suppose d positive and equal to Am (fig. 86), in this case

s
the square of the transverse semi-axis is = & and that of the

2d shlsiis L
conjugate, e a*; and considering Y as axis of the abscissas, the

equation of the asymptotes nm , mp, corresponding to the hyper-
bola on the plane nmp , is (91)

in which == % represents the trigonometrical tangents of the

angles formed by the asymptotes with the axis of the abscissas;
but from this equation we derive the equivalent

b
Again, suppose d negative, and equal to Am', the square of the
2d ;
transverse axis will be in this case = a* , and that of the conju-

gate,g—d 4% , and having X for axis of the abscissas, the equation
c

of the asymptotes n'm/ , p'm' corresponding to the hyperbola on
the plane n/m'p' is

y:i——-——-c x



T T e Ty

202 GEOMETRY.

that is el % 8

but this equation is the same as that of the principal intersection
made by XAY; hence, all the asymptotes mn ...mn/ ... .
i mlp/ . ... are parallel to the same printipal sections
AL, AR, and all passing through ZZ' ; therefore, all the asymp-
totes parallel to AL , are on the plane determined by ZZ' and AL,
and all the asymptotes parallel to AR, are on the plane determined
by ZZ' and AR, which planes are consequently the asymptotical
planes of the surface. The equations corresponding to the re-
maining parallel sections are
x® dz Rz

g b ¢
y* dt 3
) R AT 4

which reduced to the form

B8 i .0132 cd®
g BB

‘253 cd?
y’ T 2ag+ )

C

show that the sections parallel to the planes XAZ , YAZ are of
parabolic figure. The surfaces corresponding to (%,,), (4,,)
are termed paraboloids.

Common properities of fhe surfaces of the second ovder.

PROPOSITION 1.

The section of any surface of the second order made by aplane, must
be either rectilinear or a line of the second order.

129. The surfaces, as considered in the preceding numbers, are
referred to the principal planes ; and all the surfaces of the se-
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cond order could be represented by the formulas () s (fey4)-
But suppose a plane cutting the surface in any direction whatever,
and let this plane be taken as that of a new system of axes; for
instance, the plane X'A’Y’/. To the surface referred to the new
system shall eorrespond an equation between the co-ordinates a!,
Y, #'; and since (27, Sck.) passing from one to another system
of axes, the degree of the new equation does not exceed that of
the former, therefore, in the equation between the co-ordinates
'y y', 2', there will be no terms with the co-ordinates except
those of the first and second degree. Now, to have the equation
of the section made by the plane X'A'Y', it is sufficient to substi-
tute zero for 2/ ; hence, the equation of that line shall be an equa-
tion of which the variables @', 3' do not surpass the second de-
gree ; but such an equation can only represent straight lines, or
lines of the second order. Therefore, every section of the sur-
faces of the second order made by a plane, is either rectilinear or
a line of the second order.

PROPOSITION IT.

Any straight line can meet a surface of the second order in no more
than two points.

130. From the equations of any straight Jine in space [35 (o) ]
we may obtain the value of z, as well as of y given by z. Now
it is evident that supposing the points common to the straight
line, and any surface represented (110) by (%,) , the co-ordinates
of the line, as well as those of the surface, must be the same.
Hence, we may substitute in this case in (%,) the values of  and
y, derived from the equations of the straight line, and so we shall
obtain an equation with the variables z alone, which we may con-
sequently represent by

az® 4Bz4rv=p¢

Moreover, it is evident that the co-ordinates z, common to any
straight line and to any surface, must fulfil this equation ; but an
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equation of the second degree is fulfilled by two real values only ;
hence, only two different co-ordinates z can be substituted in the
preceding equation. In the same manner we can demonstrate,
that no more than two different values of ¥ and x can be substitut-
ed in the analogous equations ; hence, only two points may be
common both to any surface of the second order and any straight
line. '

Fauations of conical and cylindrvical surfaces,

131. Suppose any curve to be described in space by the ex-
tremity of a straight line which constantly passes through a fixed
point with the other variable extremity, the surface generated
by the motion of that line is termed a conical surface ; but if the
straight line, while describing any curve with one extremity,
remains constantly parallel to itself, the surface generated by this
line is cylindrical.

Gieneral equation of any conical swrface.

132. The equations of any curve in space are (33) generally
represented by

e=f@,2=f® j :
or Z =g ()a U= ()0 o o)
and the equations of any straight line passing through a given
point are (35, Seck.)
‘r'—“‘rcza(y_'yo) 2 w_':co:af(:_-zc)
1

o 1 5
or y—yozz(w—mo),z—zozg(.r—-a:o)} vt vpi8)

Suppose mn (fig. 87) to represent a peculiar position of the
generating line , and let n be a point of the curve in space : more-
over, suppose @ and ¢ to be taken in such a manner as to have
the equations (e,) corresponding to the position mn of the gene-
rating line. It is evident that the co-ordinates of the point n will
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fulfil at once the equations (¢) and (e,), and of course in this

hypothesis the values y , z given by (¢) may be substituted in
(e,). Hence,

Y (@) — g == (@ — =,)

9 (@) — 2, == (2 — a,).

From which, by eliminating 2, may be deduced an equation
between the quantities o , ¢/ and the constant co-ordinates
T, Yos %, of the point m. Let this equation be represented by
P’ of) "= o 0 Ve
Since from (¢,) we have
i Py e e R

y—yo’ _z_zo

in which  , y , 2 are the co-ordinates of any point of mn ; sub-
stituting these values of @ and a' in (e,), we shall obtain the

equation
F[x——r ""_"’]_o....(e‘.\.)
Y55 it

between the constant co-ordinates x, , ¥, , =, and the co-ordi-
nates of any point of mn. Now, the formula (e;) is independent
of the coeflicients @ , @/, which are different according to the dif-
ferent position of mn. Therefore, whatever be the position of
that line, the variable @ , ¥ , 2z shall represent the co-ordinates of
any of its points, or, what is the same, the co-ordinates 2 , y , =
contained in (e,) are the co-ordinates of any point of the conical
surface. Therefore (e;) is the required equation.

Corollary. Supposing the curve described in a plane of co-or-
dinates, for instance, YAZ. Instead of the two equations (e) of
the curve, we will have only one represented, for instance, by

= n By oA
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It is evident that all the co-ordinates @ of the points common to
the curve and the generating line are equal to zero. Hence with
regard to such points, the equations (e ) become

1

1
Y=Y — 7 %r12=2%— 5%

i3 a
but such values are contained in (f,) , hence they may be substi-
tuted there, in which case we will obtain

1 1

Yo ";‘ro:z(zo k=¥ ?.I‘D)

and substituting again instead of ¢ and o', the corresponding
values derived from (¢,) , we will have

lams) el =p) el —a) ()]

x — X — 2,
or

Y& — 2y (zoa:-—xg_f
T—a, % z—x, et bl dy

EXAMPLE.

133. Let the equation (f) represent'an ellipse, since (63 (g) )

ye zz
“— 4+ — = 1, and, consequently,

Az Be
o %.\/Bf‘- — 22

The function y signifies in this case that the square of the vari-
able z is to be subtracted from the square of the constant B, and
the square root of this difference is to be multiplied by the ratio
A i : e

5 But to have the equation of the conical surface, it is neces-

sary to submit 2227 % % of the formula (f:) to the same opera-
S

tions of z; hence



GEOMETRY. 207

yo.r—aso_;_:bﬁ\/Bz__(z r— x, z)
T — T, r—2,
‘mehich

‘;(yow—“'o ) i % [B® (2 —2,) — (2, 2 — 2z, 2)2]

e required equation of the surface. It is here to be remarked,
hat according to the equation of the ellipse, we must suppose the
entre of that curve at the origin of the co-ordinates. Therefore,

supposing, moreover, the cone to be right, the vertex or the point

/ through which the generating line constantly passes shall be on
- the axis X, and of course the co-ordinates 7, , 2, of that vertex
must be equal to zero. In this supposition the preceding formula

becomes
A®
(@, ) = 35 [B* (@ —2,)* — (2, 2)*]
or
y! pRe (w—wo)‘ 33
B FTTE R

[+]
and transposing to the vertex the origin of the co-ordinates, or,
what is the same, substituting «' 4 «_ for x, if every thing else
remains as before , the last formula will become

or, since we may use indiscriminately @ or a’ and 2, is a constant
quanmy like A and B, substituting x to 2’ and C to x_, we have

from which

equation corresponding (120) to the third species of surfaces hav-
ing centres.



208 GEOMETRY.

General equalion of any cylindrical surface,

134. Suppose (132) the equations of the curve in space to be

Zie= i) ) = () LR ()
and the equations of the generating line (35 (o))
r=ay+b,z=az4 ¥

1 b 1 bl
or Mo e P ey B e
g a B a o

o ().

In the present supposition of the describing line constantly

parallel to itself, the co-efficients —; 5 jlr will be constant quanti-

i
ties, while %, % will vary for every different position of the

line. Now, observe, here, as in the similar case (132) that for
the points common to the generating line and the curve, the
co-ordinates of (e) and (e,) must be the same. Hence in this
hypothesis

1 ] 1| b
Y=g e—ose@=ga——
from which by eliminating 2, we are enabled to derive an equa-
tion between the constant quantities a , a' and the variables 4, ¥/,
which we represent by

Heby O) =0 ... (&,).

But from (¢,) b =2 — ay , b —= & — d/z, in whicha, y, 2z are
the co-ordinates of the generating line, which will be differently
situated according to the different values of & and . Now, in
every case, by substituting the last values of these two variables
in (e;) , we will obtain

z(@—ay,z—az)=o0 ... (2,).
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Which giving the same relation between the co-ordinates of the
generating line in every one of its positions, is the general equa-
tion of the cylindrical surface.

Corollary. Supposing the curve to be described on the plane
XAZ, and represented by

y=2(2) ... (f)

Since in this case all the co-ordinates x of the points common to the
curve and the generating line are equal to zero, the equations (e, )
with regard to such points will become

b o
Y=y 8 =—

@ a'
and since in this same case the values of 7, z given by these

equations fulfil the equation (f,); so they may be substituted
there, in which case

b o
- =2~z
and substituting for 4 and 4/ the corresponding values

=2 =0 (z—5). .- )

@

EXAMPLE.

135. Suppose the equation (f,) to be that of a parabola, that is,

y = + ~2p z hence (133) y — % = \/Ep (z_;“é)

and (y —_ %)zz 2p (z——;?,-)

the equation of a surface produced by parallel motion of a straight
line describing a parabola with one of its extremities.

14
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