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PREFACE.

THIS manual, prepared with the view of its serving as an

introduction to the study of Physical Science, was only
intended for a class of students intrusted to the care of the
compiler. The suggestion of friends that the work might

prove advantageous to others induces him to offer it to the
public.

Works of analysis —some of them voluminous —are not
wanting ; nor does our little book pretend to give a complete
development of its subject. For this reason we call it a
manual, which execludes all discussions the results of which
are seldom or never called into use in the applications. It
is hoped, however, that it will sufficiently serve the purpose
intended.

A detailed Index will contribute to render the manual more
useful. It will also give a better idea of the nature of this
little work, -

We leave it to the reader to judge whether, without detri-
ment to lucidity, our efforts to combine comprehensiveness
with brevity and exactness have been successful. '

B. SestINT, S, J.

Woonstock CoLueaE, Mp., January 18, 1871,
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W N. B. When Theorems of Algebra, Trigono-
metry, &e., are mentioned, reference is made to books

previously published by the author of this Manual.
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PRINCIPLES OF

ANALYTICAL GEOMETRY.

L. Rectilinear and polar co-ordinates of a point on a plane
surface.

Ler XX/, YY’ (Fig. 1) be two indefinite straight lines
cutting each other in A and forming any angle. Take any
point M on the plane of the two lines, or, as they are called,
awves, and from M draw MH, MK parallel to the axes. The
position of the point M is evidently determined relatively to
the axes by these parallels, which are called rectilinear co-ordi-
nates of the point M. MH, or its equal AK, represented by
@, is called the abscissa, and MI, represented by 7, is called
the ordinate. XX is the awis of abscissas, Y Y’ the axis of
ordinates, A the origin of co-ordinates. The axes are called or-
thogonal when they eut each other at right angles ; otherwise,
oblique. In every case, taking for positive the abscissas from
A toward X and the ordinates from A toward Y, the abscissas
from A toward X’ and the ordinates from A toward Y’ must
be considered negative. It is thus plain that, varying @ and ¥
from — o to + oo, we may, by means of them, determine
the position of all and each of the points of the plane.

Polar co-ordinates offer the same advantage. ILet A be a
point on the plane, and let X AX’ be a fixed straight line or
axis on the same plane and passing through A. TLet again M
be any point of the plane, and AM, represented by p, be
its distance from A. The angle MAX, which we call o,
together with p, determines the position of the point M on the
plane ; and these are called polar co-ordinates of the point M.

9



10 PRINCIPLES OF ANALYTICAL GEOMETRY.

The point or centre A is called pole, the fixed line X AX’
polar axis, the distance AM radius vector. To determine the
position of all and each of the points of the plane, it is neces-
sary to vary the radius vector from O to o and the angle o
from 0 to 360°.

II. Orthogonal and oblique rectilinear co-ordinates.

Let (Fig. 2) AX, AY be orthogonal axes, and A’X’, A’Y’
oblique axes. Any point M referred to the first system shall
have # = AK and y= KM for its co-ordinates, and, referred to
the second system, a’= A’K’, 3/ = K’M. Call ,, ¥, the co-
ordinates AB, BA’ of the origin A’ referred to the orthog-
onal axes. The angles which A’X’, A’Y’ form with AX are,
for brevity sake, represenied by (2'z), (y’z). Draw now from
A’ and K’, A’C, K’D parallel to AX, and K’C parallel to AY,
we.shall have

z=AB+ A’C+ K'D,y=BA’+4 CK’+ DM;
i ) {:z:= x, + @’ cos (2'w) + ¥’ cos (¥'x)

5 "" ¥ =y, + @’ sin (2’z) 4+ 7’ sin (y'z).

By means of these formulas, which give us the orthogonal
co-ordinates by the oblique, we may pass from one to another
system of axes.

Ovthogonal and polar co-ordinates.
Let (Fig. 2) A be the pole, and AX the polar axis, and M

any point on the plane XAY, having AM = p for radius vec-
tor, and MAK = w for corresponding angular co-ordinate.
From the triangle MK A, right-angled in K, we obtain
@ fami e
:9’ = s w,
And by means of these formulas we may pass from the or-
thogonal to the polar co-ordinates.

III. Egquation of the straight line.
As each point on the plane of the rectilinear axes has its
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co-ordinates, so the different points of a line described on that
plane have their own co-ordinates. Now it happens that the
value of the ordinate, given by the corresponding abscissa, is
found to be given under the same form for each point of the
line; for instance, we may find y = wua, or, more gener-
ally, y = f(z) for each and all points of the line referred to
the axes; y = f(=) is, in this case, called the equation of the
line or of the geometrical locus described on the plane of the
axes, whatever the form of the line may be. To give an ex-
ample: Let (Fig. 3) RR be a straight line on the plane XOY
of the orthogonal axes, and let # = OK, y = KM be the co-

ordinates of one of its points M. We shall have )52 =

tgMAX, and calling @ this tangent,

O S L i ;
P L0 o y=axr + a* AO,

Now we have from the right-angled triangle ABO, BO =
@' AO. BOisthe ordinate of RR corresponding to the origin
of the axes, and which we represent by b.

(3) y = ax + b.
But M is any point of RR/; hence this equation of the first
degree represents the corresponding co-ordinates of any point

of the straight line, and is, consequently, the equation of the
same line. We infer from this,

1st. If the straight line passes through the origin of the
axes, the equation of the line is

Hence

Yy = ax.
2d. If the same line, whether it passes through the origin
or not, passes through a point, C, for instance, having @, and
y, for its co-ordinates, together with the above equation, we
shall have y, = ax, + b or y, = ax,; and in both cases
el G(m"—'m')

the equation of a straight line passing throngh a given point

(@1, y,).
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3d. If R’R’ represents another straight line parallel to RR,
calling &’ the ordinate OB’, corresponding to the origin, since
B’A’X = BAX, the equation of the parallel will be

y = ax + b’
~ 4th. If NN’ is drawn perpendicular to RR, calling 4’/ the
ordinate, OI corresponding to the origin, its equation will be
y = gN'LX 2 +b".

But on account of the right-angled triangle ACL;, and be-

cause tgN’LX = — tgN’LO,
1 1y
— = ; hence
a

tgN’'LX = — cotMAO = — GMAOD —-

— 1 rr
y——ax—]-b

is the equation of a straight line perpendicular to one repre-

sented by ¥ = ax + b. It follows, therefore, that in order

that two straight lines represented by the equations
y=me+e¢ y=mz+ ¢

be perpendicular to one another, it is necessary and sufficient

that m'= — 1, or that the equation
m

mm’ 4+ 1 =0
be verified.
IV. Egquation of the circle.

Let » be the radius of the circle AMB (Fig. 4), C the cen-
tre, which is at once the origin of the orthogonal axes CX,
CY. Let M be any point of the periphery, and CK, KM
the co-ordinates x, y of that point. Drawing the radins CM,
the right-angled triangle CMK gives us

¥y = r® — 2%
which being verified for any point of the periphery, is the
equation of the periphery, referred to the orthogonal axes hav-

ing their origin in the centre.
But let the origin be the extremity A of the diameter AB,
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the axes AX, AY being still orthogonal, and AK, KM the
co-ordinates z-and y of the point M. Now MK is mean geo-
metrical proportional between AK, KB, and therefore 7* =
@ (2r — ), or
: ¥ = 2rx — a*;

which being verified for ‘any point of the periphery, is conse-
quently the equation of the periphery, referred to the orthogo-
nal axes having their origin at the extremity of a diameter.

But let the origin of the orthogonal axes be anywhere, for
instance in O, and let OH, HM be the co-ordinates z, y of
any point M of the periphery referred to the orthogonal axes
OX, OY, and parallel to CX, CY. Call @ and b the co-ordi-
nates OD, DC of the centre of the circle. 'We have, from the
right-angled triangle CKM, CK + MK = CM ; but CK =
OH — OD =2 — a, MK = MH — DC =% — b and
CM = #; hence

E—=eft @ =0 =7

an equation of the second degree, like the preceding, and which,
being verified for every point of the periphery relatively to the

axes OX, OY, is therefore the equation of the periphery, re-
ferred to these axes.

V. Equation of the parabola.

Let (Fig. 5) the straight lines DD/, CX be perpendicular to
each other, take a point F anywhere on CX, and let A be the
middle point of CF. ILet now the curved line MHAM’ pass
through A, and as the point A is equally distant from ¥ and
DD’ (the distance of a point from a straight line is known to
be the perpendicular from the point to the line), so let all the
points of MHAM’ be equally distant from DD’ and from F.
This curve line is the parabola, the point F is called the
foeus, DD’ is called directriz, CX the axis of the curve, and
the point A of intersection between the axis and the curve
the vertex.

Let now A be taken for the origin of the orthogonal axes
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AX, YAY’, to which we refer the curve, and let AK, KM be
the co-ordinates of any of its points M. Join ¥ with M, and
let the wariable FM, called radius vector, be represented
by p, and let the constant CF be represented by p. 'We shall
have first,
AF = AC = 1p;
and since MF is equal to MN perpendicular to DD/, and
MN = AKX + AC,
p=a + 3p,
from which p* = 2 + px + }p’,
but from the right-angled triangle MKF MTF = MK -4
(KA — AF)?; hence also
P =9+ & — pr +.1p°
From this and the preceding value of p* we obtain easily
Yy = 2pw,
which, being verified for each and all the points of the curve, is
the equation of the parabola referred to the orthogonal axes
having their origin in the vertex, the axis of the curve being
axis of abscissas. The constant 2p is called parameter or
measure of the curve. In fact, it is plain from the above
equation that, supposing the same values for @, the branches
of the curve will open more or less according to the magni-
tude of the parameter. And indeed, from the analysis of the
above equation we may infer the properties of the curve.

VI. Analysis of equations and geometrical loci.

To find out the curve or the geometrical locus to which a
given equation belongs, and to find out from the same equa-
tion the properties of the corresponding geometrical locus, is
called the analysis of the equation, and the name of analytical
geometry is accordingly given to the branch of science which has
for object this analysis. This process is evidently the inverse
of the preceding, as shown in the foregoing examples.
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The equation 3* = 2pa of the parabola, already obtained,

may also be written as follows:
L

in which p is positive. To find out the geometrical locus of
this equation draw the axes XX’, YY’ at right angles and
intersecting each other in A. Take then from A different
abscissas @, and substituting their values in the last equation,
the resulting values for ¥ will be the ordinates corresponding
to the abscissas and marking the geometrieal locus with their
extremities. It is plain, 1st, that with = o, y also = o.
2d. No real ordinates correspond to negative abscissas. 3d.
Two real ordinates correspond to each positive abscissa, equal
in length, but opposite in sign, and these ordinates increase
with  from o to o ; i. e., the geometrical locus corresponding

to the equation ¥y = == \/ Qp—':c 15 a curve which cuts the axis

of abscissas at the origin and touches the axis of ordinates
at the same point; it has a double branch, one on each side of
the positive axis of abscissas, and equal to one another, depart-
ing more and more from this axis as they do from the axis
of ordinates by their increase.

VII. Properties of the parabola.

It follows besides, that AX, called also axis of the curve,
bisects all the chords parallel to the tangent of the vertex A.
Taking from A on XX’, AF = AC = }p, and drawing
from C, DD’ the directrix parallel to YY’, it follows that
each point of the curve is equa]ly dlstant from the focus and
the directrix. In faect, MF =MK 4+ (AK — AF)? = 4?
+(o— 4pP = 2o+ & + I —pr = 2 F pr 4 P =
(# + 1py; hence MF = = 4 Ip. But MN perpendicular to
DD’ = KA + AC = 2 + 1p; hence MF = MN.

Resuming again the equation y® = 2pa, observe that it is
resolvable into the proportion

sy::y: 2
. TIY:iY:ap;
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i. e., the parameter in the parabola is a third proportional
to any abscissa and the corresponding ordinate.

Hence, calling ¢ the ordinate drawn from the focus, since
then 3p : g: g : 2p, and consequently ¢ = p, it follows that
the parameter of the parabola is equal to the double ordinate
passing through the focus.

VIII. Tangent and othler properties of the parabola.

Join (Fig. 6) the focus F with N, the foot of the normal
drawn to the directrix from any point M of the curve. Join
also I with M, and draw from M, ME perpendicular to NF,
produced to T, to meet the axis AX of the curve, as also on
the opposite side toward P. This line TP is the tangent of the
point M of the parabola. To show this, it is enough to prove,
first, that none of the points of TP are equally distant from
the focus and the directrix except M ; secondly, that all the
points of TP on either side of M are outside of the branch.

Because MF = MN and ME is perpendicular to NF,
the triangles MEN, MEF are equal; hence NE = EF, and
drawing from any point P of TP,PN, PF, these two oblique
lines also are equal to one another. But drawing from P,
PQ perpendicular to the directrix, since PQ << PN, it follows
also that PF > PQ. The point P is then not equally distant
from the focus and the directrix, and thereby not on the curve.
Now such a point may be within the branches of the parabola
or outside of them. In either case drawing from it a perpen-
dicular to the axis AX of the curve, this perpendicular has all
its points equidistant from the directrix, but only one of them
is at once equidistant from the directrix and the focus, and
this one is the point of intersection with the curve. All the
points between the curve and its axis are nearer to, and all
those outside of the branch are farther off' from the focus than
the directrix. But PF > PQ; hence all the points of TP
on either side of M are outside of the branch, and TP touches
the curve in M.
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Produce NM to X, the angle PMX’ = MTX ; but PMX’
= TMN = TMF, hence the angles at M and T of the trian-
gle MTF are equal to each other, and consequently FM =
FT. But FM = MN = CK ; therefore TF = CK, and con-
sequently TC = FK. Now AC = AF (= 1p), hence AT
= AK; but AK is the abscissa a of the point M, hence TK
= 2x. The segment TK from the point T of the axis met
by the tangent, to the point of the same axis corresponding to
the ordinate of M, the point of contact, is called the subtangent
of that same point. Therefore the subtangent of any point of
the parabola is equal to twice the abscissa of the same poind.

It follows from this that we may draw a tangent to any
point M of the parabola by drawing first a perpendicular to
the axis from that point, and taking on the axis a point twice
the distance from the foot of the perpendicular than the vertex
of the curve is. The straight line joining this point with M
touches the curve on that point.

We have remarked in the preceding process that the angles
PMX', TMF are equal to each other ; i. e.,

For any point of the parabola the parallel to the axis and the
radius vector form equal angles with the tangent.

Draw now from M, MR perpendicular to the tangent. The
segment MR of this perpendicular, between the point of con-
tact and the axis, is called the normal of that point. Now
from the equality of the last-mentioned angles it follows that
FMR and RMX are also equal ; i. e.,

The angle formed by the radius vector of any point of the
parabola and a parallel to the axis drawn from that point, is
bisected by the normal.

IX. Equation of the parabola referred to different awes.

Taking (Fig. 5) the origin of the axes, in the focus F, and
considering F X as the negative axis of ordinates;, and FX,

" perpendicular to the first as positive axis of abscissas, repre-
senting besides by x,, , the abscissas and ordinates of the new
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system corresponding to any point H of the curve, whose
co-ordinates , y relatively to the first system of axes are
AB, BH; since AB = AF — FB and BH is ordinate with
regard to the first, and abscissa with regard to the second
system, we shall have
@ =3ip—y, and ¥y = @,.
These values substituted in the equation of the parabola 3° =
2 pa referred to the first system of axes, will give us
& = p*— 2 py,

Let us now take a diameter for axis of abscissas and the cor-
responding tangent for axis of ordinates.

A parallel A’X’ (Fig. 7) to the axis AX, drawn from any
point A’ of the parabola, is called diameter. Take A’X’ as
axis of abscissas and TY’ tangent in A’ as axis of ordinates,
and let the co-ordinates of the curve referred to the new sys-
tem be represented by ', y’. Call @, y, the co-ordinates
AB, BA’ of the origin A’ of the new axes referred to the first
system of axes and « the angle Y/TX, which the tangent Y’T'
forms with the axis of the parabola ; we shall have (IL.) (2'z)
= 0, (¥'®) = «, and

&= + 2’ + y' cos a,yy =y + 7’ sin a.

Now, from the right-angled triangle A’BT, A’B or ¥, =
A’T sin a,and BT = A’T cos «, hence 1% = lg «, and y,
= BT tg «, but (VIIL.) BT = 2x,; hence

Yo = 2:139 f-g’ o,
Besides (V) 9> = 2pay, therefore, dividing this formula by the
preceding,

and since, from 17, = 2pa,, &) = y?%; we have also
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2
cos® o p cos a ]
hence, z =p—.— af Yy cos o, = — ! sin o,
4 231112a+ +9 » ¥ Smu+y

Substituting these values in the equation 3* = 2pa of the para-
bola referred to the original axes, we obtain

L gy RN
Y _28'111’ ="

From which, calling p’ the constant factor

sin® o’
y'* = 2p'a.
The coefficient 2p’ is called parameter relatively to the diam-

eter A’X’. It follows from this equation that all the chords
parallel to the tangent TA’T are bisected by the diameter.

X. Polar equation of the parabola.

Take (Fig. 5) the pole in the focus, and, for polar axis, the
axis of the curve from F toward the vertex A. T.et M be
any point of the curve. The polar co-ordinates of this point
are p= FM and MFA = w. Now MF equal to MN, perpen-
dicular to the directrix, is also equal to KA + AC = + 1p,
hence p = @ + ip.

Nowa=AF 4+ FK =3p+ pecos MEFK = Jp —p cos w.
Substituting this valuesof 2 in the preceding equation, we
obtain

p=P—-pCOSwD}:p=—~—--——P 5
1+ cos w
which is the equation of the parabola referred to the focus by
means of polar co-ordinates.

XI. FEguation of the ellipse veferred to its own axes.

Let (Fig. 8) the straight line AA’ be equally divided in C,
and let two points I, ¥/ be taken on it on each side of C, and
at an equal distance from it. Let also the curve line ABA’DB/
pass through A and A’ and let the sum of the distances of each
of its points from F and F’ be equal to AA’. This curve is the
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ellipse. C is its centre. AA’, represented by 2a, is called
transverse axis, and BB’, perpendicular to AA’, and termi-
nated by the curve, is called conjugate awxis, and represented by

26. The points I, ¥’ are called jfoer, and the ratio g—i‘({ 1),
P ’
or its equivalent ratios C?F, CTf: is called the eccentricity,

which is represented by e. Thus
CE = CF'/ = eq.

Taking now C for the origin of the orthogonal axes,and CAX,
CBY for positive axes of abscissas and of ordinates, let M be
any point of the curve, and CK, MK be the corresponding
abscissa and ordinate z and y of M. Join M with F and ¥/,
MEFE, MF’, called radius wvectors, are represented by p and p'.
From the triangles MFK, MEF’'K, right-angled in K, we have

0 45Tl B
P =9 + (@ + ea)’

Subtracting the first of these equations from the second we
obtain the difference p/* — p* = 4 eax; i. e,

(r + p) (¢f — p) = 4 eaz.
Now p/ + p = 2a; hence p/ — p = 2 ex; hence also (' + p)
+ (¢ —p) = 2a + 2ex; but (o +p) + (' —p = 2%;
therefore

p/ = @ + ex and p’? = @® + 2eax + €2h

Substituting this last value in the second (7), we obtain

a® + &2 = i + @ + é'a?;
and consequently,

@) ¥ =1 —¢) (& —27,
which is the equation of the ellipse referred to the axes of the
curve. Draw now from the foci the radius vectors FB, F'B,
we ghall have FB = F'B = a. Now BC = BF — CF and

BC = b, CF = ea; therefore * = @’ — &a’ = a@* (1 — ¢);
hence
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5y LBl
@ Q=)=
This value substituted in the preceding formula (1) gives
for the same equation of the ellipse

@) ¥=2@—a).

XII. Analysis and corresponding geometrical locus of the
equation.

Taking the square root of the last equation, we obtain
;3 APt Sl
y== = @’ —2*;

the geometrical locus of which referred to rectangular axes
cannot give but the ellipse having its centre in the origin of
the axes, 2¢ for the transverse and 2b for the conjugate axis,
which coincide with the axes of reference. In fact, making
2 = o we obtain y = == 5, and making 2 =+ a, ¥ = 0; giv-
ing to a different values from o to %= a, to each of these
values correspond two values for y, one positive and one neg-
ative, equal in length and diminishing when 2 increases. But
no real value of y corresponds to any value of @ greater than

a. The curve is therefore re-entering and symmetrical.
 Morcover, if @~ b, va*—0b* has a real linear value and

F—b

2 - - -
less than @, thus —— =~ < 1, calling e this ratio, and taking
a

on the. transverse axis CF = CF’ = v/a® — 6%, we shall have
CF ' 'CF!
ol oy (h ;
Drawing now MF, MF’ from any point M of the curve,
whose co-ordinates « and » are CK, KM, we shall have
ME = i + (CK — CFy = S (@2 + (e — Y& — )’

MP = 4 (CK + CF"F = % (@ —a) + (& + V&' — 0"

= £
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b? by
Now F(@—2) =80 —~and (25 V&@—b)f =25
&
2z v a*—b* + & — b
Substituting these values in the last members of the preceding
equations, we deduce

22 (Ez_—'__b'a) + Qv E Bt a==(f-‘-'»—‘~F- v gz B2 )a.

az

a
ST T
Hence MF —=a—=z aa b=a—e:z:
vVarF— b
fMF’=a+x-——a =@ Hylex:

and therefore MF + MF’ = 2a; i. e.,

The sum of the radius-vectors of any point of the curveis equal
to the transverse awis, which is the characteristic property of the
ellipse.

It is plain from the equation of the ellipse that all the
chords parallel to the conjugate axis, as MKDM/, are bisected
by the transverse axis, and all the chords parallel to the trans-
verse axis like MHM’ are bisected by the conjugate axis, and
all of them form right angles with the bisecting axes. This
inference may be rendered more evident, relatively to the chords
parallel to the transverse axis, by transforming the equation,
into the following :

a::=:|:%\/bz—¢.

XIII. Parameter of the ellipse.

For the ellipse, as for the parabola, the parameter is the
double ordinate passing through the focus. Either of the foci
will evidently give the same parameter.

The equation of the ellipse which we have taken to analyze
does not differ from the formula (1) XI. To obtain the para-
meter it is enough to make @ = CF' = ea in the equation; and
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taking the equation (1) for this purpose, we obtain (the
parameter being represented by 2p)

pP=(1—¢) (a* — éa®) = a* (1 — &)?;
and from the formula (2) X1I.,

b,
p=a(l—é&)= 77
from which 2a : 2b = 2b : 2p.

Thus, The parameter, in the ellipse, is the third proportional
after the transverse and the conjugate axis.

XIV. Tangent and normal.

Produce (Fig. 9) the radius vector F/M to N so that MN =
MF. Join I with N, and draw from M, MET perpendicular
to FN. This perpendicular is the tangent of the point M, for
any other point of it is out of the curve. Let P be oge of these
points, join it with ¥, F/ and with N. The equal right-angled
triangles FME, NME give us EI' = EN, hence also PF =
PN. Now from the triangle NP, F’P 4+ PN > F’N; hence
also F'P + FP > F’'N; but F'N = F'M + MF = 2q, there-
fore F'P + FP > 2a; the point P therefore is outside of the
ellipse and PT touches the ellipse in M.

Draw from M, MR perpendicular to the tangent. This per-
pendicular is called the normal of the point M. Since MR is
parallel to NF, the angles RMF, MFN are equal, as also the
angles F'MR, MNF'; but MFN = MNF, therefore RMF =
F'MR; 1. e, The normal of any point of the ellipse bisects the
angle formed by the radius vectors of that point.

It follows then that F'MP = FMT; i. e.,

The radius-vectors of any point of the ellipse form equal
angles with the tangent.

XYV. Diameters of the ellipse — Conjugate diameters.

A straight line passing through the centre of the ellipse and
terminated on hoth sides by the periphery, is called diameter.
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Let now (Fig. 10) DCD’ be one of these diameters passing
through the middle point O of the chord MM, which we shall
represent by 2¢. Draw from M, O, M’ the perpendiculars
MK, OH, M’K’ to the transverse axis AA’, and, from O and
M/, the perpendiculars ON, M'N’to MK, OH. Call «,, y, the
co-ordinates CH, HO of the middle point O of the chord re-
ferred to the orthogonal axes A’AX, B’BY, and let 8 be the
angle which MM’ forms with the positive axis of abscissas.
From the equation (3) X1I. of the ellipse referred to these same
axes, we have

1 sl

(1) ¥=06— B

AL iy Gl Stoaigeh S0 5 /R ]

therefore KM = b* — o CK, KIMY = b*— p CK’ ; knt

KM=HO + NM = 9,+ ¢sin 8,CK = CH—ON ==z, 4 ccos 3.
K/M'=HO—ON’—=y,—esin 8,CK’=CH+4 N’M’=xz,—ccos .

Making a substitution of these values in the preceding
equations, we obtain

2
(y,+c sin B)? = b* — -2-3 (@, +¢ cos B)*

. b®
(3, — o sin @) =" — — (x, — o cos BF;

and taking the second of these formulas from the first,
s ;
49, ¢ sin B=—4 Ez—,:v,c‘cosﬁ;

hence also (2 y=—

Now the angle 8 does not change for any chord parallel to
MM/, hence the last equation would be obtained in equal
manner for the co-ordinates of the middle point of any chord
parallel to MM’ ; hence the same equation represents the geo-
metrical locus passing through the middle points of a system
of parallel chords. But the geometrical locus represented by
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the equation is (ITI. 1st) a straight line passing through the
origin of the axes, hence all the chords parallel to MM are
bisected by the diameter DD’; and to bisect any system of
parallel chords in the ellipse, it suffices to draw a diameter
from the middle point of any one of them.

It follows, from what precedes, that the diameter EE’ par-
allel to MM’ is also bisected by DD/, and, as we shall see in
the next article, EE’ bisects in its turn all the chords parallel
to DD’. These diameters, each one of which bisects the chords
parallel to the other, are called conjugate diameters.

Calling now «, the angle which DCD’ forms with the posi-
tive axis CX, the equation of D’CD referred te the axes A’X,
B’Y is (IIL.) y = tgaz ; but the equation of the same line, as

2

: b* cot
we have seen above, is also y = — 5 £ @, hence fga = —
@

b cot B

e ) and consequently

2
®) Gatgh=—1

Therefore, the condition to be verified, in order that two
diameters be conjugate diameters, is that the product of the
tangents of their respective angles with the positive axis of
abscissas be equal to the negative quotient of the square of
the conjugate semiaxis divided by the square of the transverse
semiaxis.

To determine the length of the conjugate semidiameters
CD = a/, CE = ¥/, observe that the co-ordinates 2 and z of
the extremity D of CD are respectively equal to a’ cos «,
o' gina. Now D is one of the points of the ellipse represented
by the preceding equation (1); therefore, the co-ordinates of
this point substituted in (1) fulfil that equation, i. e., @’* sin® «

Z
= 2 3—3 a'? cos® a, or
a’* (a* sin® a + H* cos® a) = b* &’

In like manner the co-ordinates @ and 7, of the extremity



——
—

26 PRINCIPLES OF ANALYTICAL GEOMETRY,

E of CE, being respectively represented by b/ cos 8 and &’ sin 8,
substituted in the same equation (1), give us

b (a® sin® B + b* cos® 5) = b* @
Hence, from this and from the preceding formula, we infer

sz a2 b2

L - R -

@ a® sin® a + b° cos® a
b2 @ b*

& sin? B + b cos® .

XVI. Equation of the ellipse referred to conjugate diameters.

Let us now refer the curve to the conjugate diameters, taking
D’CX! for axis of abscissas and E’CY’ for axis of ordinates
Representing by 2/, ¥’ the co-ordinates of the curve referred
to this system of axes, we shall have from the formulas (1)
L¥:;

x=a'cosa+ y cos B, y=a'sin« + y’ sin B.
These values substituted in the equation (1) of the preceding
paragraph, first reduced to the following form,

T
(1) g 2 + b&
give c_o_:;‘",—a T E_nz_e_a) 2 4 (‘E"_ z.E E_':lll,.__@
o’ b a

+2 (co‘a o co% B sin absmﬁ) g iy

Now from the f‘ormula (3) of the preceding paragraph XV.

we infer sin a sin 8 = — —; cos « cos B, and this value sub-
Cf;

stituted in the last equation destroys its third term. With

mg'u-d to the first and second term, which are equivalent to

a? sin’ « _l; T COS a, o’ sin® i b__cp% g , the last formulas of
b* a* b

1
the preceding paragraph change them into —7 ;7 5 hence the
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above equation assumes the form
xm yrﬂ
(2 atpm=1

altogether similar to the preceding (1) which represents the
ellipse referred to the axes; and as from the nature of that
equation we infer that all the chords parallel to one of the
axes is necessarily bisected by the other axis, so also it fol-
lows from the last equation that all the chords parallel to one
of the conjugate diameters are bisected by the other diameter.

XVII. Polar equation of the ellipse.

We have found (XI.) that p + p’ = 2a¢ and p/ = a + ex.
Taking the focus F (Fig. 9) for pole and AA’ for polar axis,
and ealling o the angle MFA. Since # = CK = CF + FK
and (XI.) CF = ea, FK = p cos &, we have also z = ea +
p cos w, but from the above equations p = 2a — p’ =20 — & —
ex = a — ex, therefore

p=a—éea—epcosw;

hence (LY pe= Al 500

1+4+ecosw’

or (XTIL) on accomnt of @ (1 — &) = p =2,
P b

2 = = — .

@ P=T1Fecosa a(l+ ecosw)

Each of these equations, having no other variables but » and
p, represents the ellipse referred to the polar co-ordinates,

XVIIL. Theorems concerning the aves and conjugate dicuneters.
From the first of the formulas, (4) XV., we obtain

a” @ sin’® « + @ 8* cos® « = @’ b* = @’ b* '(sina a + cos® o),

which, divided by cos® «, and resolved with regard to #g* «,

glveﬁ

B (42— g
tg' o= P (afz __'__bz_;‘
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In like manner we obtain from the second formula
b (a* — b"?)
ok foim L s

BTG
and from these two

b at — afa’® — a?b” + o f
tga o tgz B = & b — v _ar;‘.gﬂ}_F—bi ’
4

b
but from the equation (3) XV. t¢* a tg® B = —5 hence

a' — a*a’ — a?b’ + a’'?b’? > d g
) p i By == and conse
a’?6” — b0 — a*b® + b ’ g y

ok (a” e brz) = bt — B2 (b + a’®);

from which a*—b* = (& — 8 (¢’* + b’*). Now at— b=
(a® + &*) (a* — b?), therefore

afﬂ + bfﬂ ey mﬂ + 62’
and y

4a’”” 4 4b" = 4a® + 4b%;

i. e., in the ellipse, The sum of the squares of the awmes is equal
to the sum of the squares of the conjugate diameters.
From the same formulas, (4) XV., we have

212 2
i a®b 2 a’*b®
a® sin? a + 8% cos? a = —, a’sin® B 4 b* cos® B = 5%
o
hence
a* sin? o sin? B 4+ 2B sin® o cos® B + @b cos® a sin’ B

a'bt
4 2 2.
=+ b* cos® a cos’ £=Wg.

Now from the equation, (3) X'V., we have
i 53
tgatgB + R 0,
which squared gives

bﬂ b-i
tg" atg® f + 2Agatgl — + — =0,
"and also
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a'sin’ asin’® 8 + 2¢*b* sin asin B cos acos B+ bfcos’ucos’ B=10;

hence '

a'sin® « sin? @ + b* cos® a cos® B = — 2a’h® sin « sin £ cosacos G.

This value substituted in the preceding equation gives us

a*b*sin’® a cos® B8 + a*b? cos® a sin? B — 2a*h* sin asinf3 cos « cos B
a'h?

=

Suppressing the common factor @’ and taking the square

root, we obtain the formula,

ab

a b’

Now (Trig., p. 253, 1”") sin £ cos a — cos 8 sin « =sin (8 — «) ;

hence

sin B cos e — cos B sin e =

a'b=d b sin (8 — a).
Observe that a*b represents the area of the rectangle con-
structed on the semi-axes, and @’ - &' sin (8 — «) the rectangular
area of the parallelogram constructed on the conjugate semi-
diameters ; therefore, The parallelogram econstructed with the
conjugate diameters is equivalent to the rectangle of the axes.

XIX., Equation of the hyperbola referred to its axes.

Take (Fig. 11) the point C on the indefinite straight line X’X”
and on each side of C two segments CA = CA’, CF (>CA)
= CF’. Let also a curve MAM' pass through A, and a corre-
gponding one through A/, and let the difference of the distances
of each point of the curve, on either side, from F and F’ be always
the same and equal to AA’. This double curve is the hyper-
bola, which has C for centre and AA’, represented by 2a, for
transverse awis. 'The points F, F/ are called the foei, and the
points A, A’ of the curve met by the axis are called the vertices.
Any straight line passing through C and terminated on both

CF "CF  CF,

sides by the curve is called a diameter. T i Wt TR
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called the eccentricity, which we represent by e, and since
CEF>CA,

CF . CF’
3 = —? = e >1.
Draw now from the centre C, Y'Y’ perpendicular to AA’, and
taking XX’ for axis of the abscissas and Y Y’ for axis of
ordinates, let @, ¥ be the co-ordinates CK; MK of any point M
of the curve. Since from the above equality we have
CF = CF’ = ae,

‘calling p, p’ the distances MT', M’ of the foci from the point
M, which distances are called radius-vectors, the right-angled
triangles MKTF, MKF’ give

= {p‘-’- — ¥ + (@ — acy’

¢ = + (@ + acl.

Taking the first of these formulas from the second, we have

(¢ + p) (¢"— p) = daex;
but p’ — p = 2a; hence p’ + p = 2ex; hence also adding to or
subtracting from each other these last two equations,

() p=oa+ex,p= ex—a.

Substituting in the second () the value of p’ last obtained,
that formula will become @® + €2® = y* + & + «*¢, from

which

1) = (—1) (@ —a),
the equation of the hyperbola referred to the rectangular axes
XX, YY’. Toeliminate the eccentricity from thisequation, call
¢ the distance CF'; we shall then have ¢ = ae, and consequently
i
e= %, and ¢ — 1 = ¢ = %, Let now b represent the mean

geometrical proportional between ¢ + a, ¢ — a, we shall have
b = & — d?, and therefore

bZ
2) &€—1= =
This value changes the equation (1) into




PRINCIPLES OF ANALYTICAL GEOMETRY, 31

3B Y= - (2 — a®).

To keep the analogy with the ellipse, taking on each side of
YY’ from the centre CB = CB’ = b, the segment BB’ of
Y Y'is called the conjugate axis of the hyperbola.

XX. Analysis and corresponding geometrical locus of the
equalion.

Irom the last equation (3) we obtain the following:

y=xl ST,

from the analysis of which we infer, 1st, that no real value
of i corresponds to the values of @, either positive or negative,
from 0 to @. 2d. That the ordinate y = 0 corresponds to
the abscissas ©# = ¢, * = — a. 3d. Two real ordinates, one
positive and one negative, but of equal numerical value, cor
respond to the values, either positive or negative, of 2 when
its numerical value is greater than @, and the numerical value
of y increases indefinitely with that of z. Referring, therefore,
the geometrical locus represented by the above equation to the
orthogonal axes XX'’, YY’, we find it to cut the axis of
abscissas at the distances @, — « from the origin, and recede
thence from the axis of ordinates divided into four symmetri-
cal branches, two above and two below the axis of abscissas.
Taking on the axis XX’ two points IV, I’ equidistant from
the centre, the distance being CF = CF’ = v'& + & (>a),
CF CF/

50 that — =
a a@

—>1, and representing as usual by e the

ratio S&E’ CF = CF’ = ae; from the right-angled triangles

MFK, MF'K with a process similar to that followed for the
ellipse, we shall find for the positive values of both M, MF,

MF = ex — a, MF/ = ex + a.
3
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Hence MY/ — MFEF = 2a, which is the characteristic property
of the hyperbola. It may be well to remark that the formula

from which we obtain the value of MI gives indifferently ¢ —
ex and ex — a, but as in the case of the ellipse ¢ being <1
and @ never greater than «, the positive value of MFE can be
given only by @ — er, so in the case of the hyperbola for

which e >1 and @ never less than a the positive value of MF
is only obtained by ex — a.

XXI, Parameter of the hyperbola,

The parameter of the hyperbola, like that of the preceding
curves, is the double ordinate which passes through the focus;
2p representing the parameter, p is the ordinate corresponding
to the abscissa CF = ae. Substituting, therefore, in the equa-
tion (1) XIX., ae for @, the same equation gives us

PP = a? (¢ — 1)%;
hence from the equation (2) of the same paragraph
b* b*
2 R b o
as for the ellipse. - Therefore, since from this last equation,
2a:2b::2b: 2p.

For the hyperbola, as for the ellipse, the parameter is the
third proportional to the transverse and the conjugate axis.

XXII. Tangent and normal.

Let M (Fig. 12) be any point of the hyperbola, and MF,
ME” its distances from the foci or radius-vectors.

Take on
ME’, MN = MF, and connecting I with N, draw MT per-

pendicular to NI. MT is the tangent of the point M of the
curve. Taking, in fact, on ecither side of M a point P on
TMT’, and connecting it with T¥, I/ and N, we shall have
PF = PN and PF’ << PN + NF’; hence PF/ — PF < NF.
Now, NF/ = MF!/ — MTF = 2a¢; hence PF’— PF < 2q, P
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therefore is not one of the points of the curve. The same
result would be obtained for any point of MT taken on the
side of T’, hence none of the points of TT, except M, is on the
curve, TT’is, moreover, altogether on the convex side of the
curve, a condition to be fulfilled in order that TT” be a tan-
gent. Taking, in fact, any point between the transverse axis
and the curve, on the concave side, and drawing from it a
perpendicular to the axis produced on the other side, until it
reaches the curve, connecting then the point of the curve met
by this perpendicular and the point from which the perpen-
dicular is drawn with the foci, we shall find the difference of
the distances of the last point greater than that of the radius-
vectors of the point of the curve ; hence the same difference is
> 2a. Now the difference of the distances of any point of TT’
on either side of M from the foci is << 2a; hence all these
points and consequently the whole straight line TT” is on the
convex side of the curve.

From the equal triangles NEM, FEM we infer the equal-
ity of the angles formed by the tangent with the radius-
vectors. To draw, therefore, from any point of the hyperbola
a tangent, divide by a straight line the angle formed by the
radius-vectors of that point into two equal parts. It is easy to
see that producing FM to N’ and drawing from M, MR per-
pendicular to the tangent, (MR is called the normal of M,)
the normal also divides into two equal parts the angle formed
by the radius-vectors; i. e.,

The angles formed by the radius-vectors of any point of the
hyperbola are bisected, one by the tangent and the other by the
normal.

XXIII. Asymptotes of the hyperbola.

The asymptote is a straight line approaching indefinitely to
a curvilinear branch or branches without ever reaching them.
The hyperbola admits of two of these asymptotes, which ure
the indefinitely produced diagonals UX', VY’ (Fig. 13) of
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the rectangle DED’E’, constructed upon the axes 2a, 2b of
the curve.

Let, in fact, CK be the abscissa = corresponding to KM,
the ordinate y of the curve, and to K1, the ordinate %, of VY,
the prolonged diagonal /D of the rectangle. Irom the equa-
tions of the hyperbola referred to its own axes, and of the
straight line referred to the same axes, we shall have at once,

y—_\/ﬂ'——:?ﬁ—_w'

and consequently,

z+ vVt — a.

It is plain from the first two equations, that whatever be @
the corresponding 7, is greater than », and from the last equa-
tion, that the greater is @ the smaller is the difference v, — .
Hence CY’, even indefinitely prolonged, is altogether outside
of the branch AM of the curve, but approaching to it more
and more, the more the branch of the eurve and the diagonal
recede from the centre. The same demonstration is applicable
to the other branches. Hence the hvpelbola admits of two
asymptotes VY’, UX/’, each approaching in ol)posute direc-
tions to two of the branches of the curve.

sz—Jr--(E;—(w—Vﬂ»*’—dé) ol

XXIV. FEquation of the hyperbola referred to the asymptotes.

Representing by « and — a the equal angles which the
asymptotes CY’, CX’ form with the axis CX, and represent-
ing by @', ¥’ the co-ordinates of any point M of the curve
referred to them, as @, ¥ represent the co-ordinates of the same
point referred to the axes of the curve; we shall first obtain
from the general formulas (1) 11.,

x = @' cos a + Yy cosa, y =y sina—a’sin a,
these values substituted in the equation (3) XIX.,, which can
easily be reduced to the following :

L
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will give

cosla  sinu cos’e sina
R
cose  sin‘a
2(—(5-3—- e .—) 'y = 1.
sin® b*

1 4
Now ——— = {g* @ = —; ; hence
cos® @
sinfa cos®a
e
v wilh AL
and, consequently, sin® « = — costa; hence

b”.z) __cos’ a

si112u+cos’a=cos”u(1+— =
] «@

(a® + b*).
cos® o

1
T S and therefore

Now sin? « 4 cos® « = 1; hence
sina  cos® « 2
__6.2__.. a"‘! = G2+ bs.
Thus the preceding formula becomes
42"y’
@+ b

=I’

or,

which is the equation of the hyperbola referred to the asymp-
totes. Now a® + b* or ¢? is (XIX.) the square of the distance
of each focus from the centre; therefore z'y’ = ( 202_)‘: ;i.e.,in the
equation of the hyperbola referred to the asymptotes the pro-
duct of the co-ordinates is constant and equal to the square of
one-half the distance of each focus from the centre, If the
axes 2a, 2b be equal, in which case the hyperbola is called
equilateral, the angle formed by the asymptotes is a right
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angle, and the equation of the eurve referred to them becomes

2
o
mr"y! fr— .

2

XXV. Polar equation of the hyperbola.

From the characteristic property of the hyperbola expressed

by the equation p’ — p = 2¢, and from the first equation (')
XIX., we obtain

p=p/ — 2a = ex — a.

Calling now o the angle AFM (Fig. 11) formed by the
radius-vector of any point M of the curve with the axis XX/,
which we take for polar axis, we shall have

x=CF 4+ FK = ae—pcosw;
hence
p=e(ae—pcosw)—a=a (& —1)—epcosu;
therefore, == i_———]).
1+ ecosw

Now (XXI.) @ (¢# — 1) is the semiparameter p of the
hyperbola; hence,

RTIES M
1+ ecos w
which is the polar equation.

P=

XXVI. General polar equation.

Comparing this equation with the polar equations of the

parabola, X., and with that of the ellipse, (2) X' VIL, we find
that the same formula,

1+ ecosw
represents the ellipse, the parabola and the hyperbola, accord-
ing as the eccentricity e is << 1, = 1 or = 1 ; p representing
the semiparameter of each curve: the pole is taken in the

focus or in one of the foci, and the angle w commences on the
side of the nearest vertex to the pole.
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XXVII. FEquation of the cycloid.

We call cycloid the eurve BAB’ (Fig. 14) produced on the
plane BEAB’ by a point B of the circular periphery BNE,
while the circle, touching constantly the straight line BB/,
revolves until the point B comes again into contact with the
straight line in B’. The rolling circle BNE is called the
generaling cirele, whose diameter we shall represent by 2e.
The straight line BB/, which is = 2e =, is called the base of the
curve ; and AA’ perpendicular to BB’ and passing through the
middle point A’ of the base, is called the axis of the eycloid,
and the extremity A of this axis, verfex of the curve. It is
plain that the axis is equal to the diameter 2¢ of the gener-
ating circle.

Placing the origin of orthogonal axes, to which the eycloid
is to be referred, in the vertex A let the axis AX of abscissas
coincide with the axis of the curve, and let AY parallel to
BB’ be the axis of ordinates. Let also «,  be the co-¢rdinates
AK, KM of the point M of the cycloid corresponding to the
position DMD’ of the generating circle. The diameter DD,
whose extremity D’ is the point of contact with the base, is
necessarily perpendicular to the same base, and consequently
parallel to AX.

Call now « the arc of the circle having unity for radius,
and measuring the same angle measured by MD the supple-
ment of MD’. From the genesis of the eycloid we have

BA’ = DMD/, BD’ = MD’;
hence
HK = BA’ —BD/ = DM = c«;
hence, also,
#=DH=cv sine = ¢ (1 — cos a),
y=KH + HM = ¢ca + esina = ¢ (« + sin o).

Now MH = HD’-HD = (2¢ — 2) & = 2z — a® or MH =
V20—

v2ex —2’. But MH = ¢ sin «, therefore sin « = = ;
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hence from the second of the last equations

O L
_*_7269’6 Z) + V2w — 2,

which is the equation of the cycloid referred to the above-men-
tioned axes.

Yy = ¢ arc (sin=(

XXVIIIL. Rectilinear and polar co-ordinates of points in
space.

Conceive three planes XAZ, ZAY, YAX passing through
the same point A (Fig. 15); AX, AY, AZ being their mutual
intersections. Il.et now M be a point in space, i. e., placed
somewhere out of each of the three planes. The position of
M relatively to the three planes or to A is in this case deter-
mined by means of three co-ordinates, as follows: Draw from
M, MH parallel to AZ, called also axis Z, until it reaches the
plane XAY in H, MK’ parallel to AY, or axis Y, until it
reaches the plane ZAX in K’ and MDD’ parallel to AX, or
axis X, until it reaches the plane YAZ in D’. These three
parallels determine the position of M in space relatively to the
three planes ; for the same three parallels cannot simultaneously
belong to any other point. Now, the two parallels MK’, MH
determine the position of a plane parallel to ZAY, which pro-
duced, will cut the axis X, and let KX be the point of inter-
section. In like manner the parallels MK’, MD’ and the
parallels MD’, MH determine the positions of planes respec-
tively parallel to XAY and XAZ, and each of them produced
will cut the axes Z and Y, the first say in A’, the second in
D. Connecting now K with K’ and H, A’ with K’ and D’,
and D with D’ and H, we obtain a parallelopipedon, and con-
sequently MK’ = HK and MD’ = AK. Therefore to deter-
mine the position of M relatively to the three planes, it is
enough to draw the parallel MH, or co-ordinate z, and from
H, HK or co-ordinate y parallel to AY, and take in connec-
cion with them the segment AK or co-ordinate « on the axis
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AX. These three co-ordinates determine the position of M
relatively to the origin A of the axes. These co-ordinates
will be regarded as positive or as negative according as their
directions are toward X, Y, and Z, or toward the opposite
sides. Varying the values of these co-ordinates , ¥, z from
— o to 4+ o we can evidently obtain the position of any
point in space. The axes AX, AY, AZ are commonly taken
at right angles, in which case the co-ordinates are said to be
orthogonal.

In this supposition join A with M, A being taken as pole,
AM is the radius-vector p of M. Call 4 the angle which p
makes with AZ, and o the angle which AH makes with AX,
which is the angle formed by the planes ZAH, ZAX. These
three elements p, 4, o, determine the position of the point M in
space relatively to the centre A, and to the axes, for three
given values of these elements cannot belong simultaneously
to more than one point, and taking p from 0 to + oo, 8 from
0° to 180° or =, w from 0° to 360° or 2=, the position of every
point in space can be determined by means of them. These
are the polar co-ordinates of points in space. We may from
these co-ordinates obtain the rectilinear co-ordinates of the
same points, or vice versa. In fact, we have from the right-
angled triangles AKH, AHM, X

AK = AH cos w = pcos (90° — §) cos w = p gin 8 cos w,

HK = AH sin w = psin 8sin v,

MH = pcos .
Now AK, HK, MH are the rectilinear co-ordinates z, ¥, z of
M; hence

T =psindcos w, y=psindsinw, z=pcosd.
From the same right-angled triangles,
AM =AH + MH =AK +KH + M,
MH

MH=AM cos MAZ; hence cos MAZZ7&T+R"'@'KI i
HEK  AK : 2 sin HAK @ coer HAK 3 hence g HAK — Iﬁé
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Substituting the corresponding wvalues, the same equations
become

p = v aE ;r/‘ + 2%, cos 0 = —z—-—— tg v iy
% vV + o + 27 @

XXIX. Fquation of the plane.

Lt (Fig.16) AX, AY,AZ be three orthogonal axes, and BCD
an indefinite plane in space, which meets the axis AZ in Cand
cuts the planes ZAX, ZAY along the straight lines BCF,
DCI. ILet MH, HK, KA be the co-ordinates z, 9, @ of any
point M of the plane. Since the plane determined by MH,
HK is parallel to ZAY, the intersecctions UL/, T1” of MHK
produced, with the plane of the axis AX, AY, and with the
given plane BCD, are respectively parallel to YI, DI. Inlike
manner the intersection KV of the same plane MHIK with the
plane of the axes AZ, AX is parallel to AZ. Hence UKV
= YAZ=90° and UI'T=YID. Call g the segment AC of
the axis AZ between the origin and the point met by the plane
in space, m the tangent of the angle XFB, and = the tangent
of the angle YID. Concerning the straight line I’T, referred
to the axes KU, KV, we shall have (3) III., MH = » - KH
+ KE; i e,

z=ny + KE;
but with regard to I B referred to the axes AX, AZ we have
KE =mnx + q;
hence

z = mx + ny + q,

an equation between the constants m, n, ¢ and the co-ordinates
@, y, z of the point M of the plane; but M is any point of the
given plane; hence the last equation is the equation of the
plane, and for any wvalues taken at pleasure for = and y, we
may obtain through it the value of the third co-ordinate z,
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Should the plane pass through the origin of the axes, then ¢
= 0, and the equation becomes in this case

2= mx + ny.
Representing m by —-%—, n by — ]—é-, and g by — P—, the
last and the preceding equations are easily changed into
Az 4+ By + Cz 4+ D=0,
Az + By 4+ Cz = 0;
the first of which represents any plane at all ; the second, any
plane passing through the origin of the axes.

XXX. Fyuations of the straight line in space.

Let (Fig. 17) any straight line RR’ in space be referred to
the orthogonal axes AX, AY, AZ. Draw from any point M
of RR’, MH perpendicular to the plane of the axes AX, AY,
and MN perpendicular to the plane of the axes AY, AZ, and let
PP’ be the intersection between the plane of the axes AX,AY
and the plane determined by the line RR’ in space and the
perpendicular MH, ILet also QQ/ be the intersection between
the plane of the axes AZ, AY and the plane determined by
the line RR’ in space and the perpendicular MN. These
two intersections PP/, QQ’ are called projections of the
straight line in space, the first on the plane XAY, the second
on the plane ZAY. ILetnow AK, KH, HM be the co-ordi-
nates @, 7, z of the point M. The first two 2, y belong also to
the point H of the projection PP’ referred to the axes AX, AY,
and the two y, z belong also to the point N of the projection
QQ/' referred to the axes AZ, AY. Now, (3) IIL, let

y=ar + b, y=az+ b
be the equations of the projections each referred to the axes of
its own plane. By means of them the straight line RR’ in
space may be also represented. For taking the value of any of
the three co-ordinates, by means of the two equations we
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obtain the other two, and all the three co-ordinates belong to
one of the points of the line in space.

To conclude these sketches of analytical geometry, we may
remark that as a plane surface in space, so also a curved sur-
face may be referred to the orthogonal axes. Its equation,
however, would be found of a degree higher than the first.
And as a straight line in space can be referred to the same
axes and be represented by the equations of the projections of
the line on two of the planes formed by the same axes, so
likewise a curved line in space can be referred to these axes,
and represented by the equations of the projections of the curve
in space upon two of the planes of the axes.



PRINCIPLES OF

INFINITESIMAL CALCULUS.

PART 'I.

DIFFERENTIAL CALCULUS.

I. Infinitesimal quantities ; different orders and expressions of
the same.

WE call that quantity infinifesimal which is conceived to be
less than any given quantity of the same kind, however small.

Representing by « an infinitesimal quantity, which we shall
call of the first order, the powers o, o, o', . . . o* of the same
quantity will be infinitesimals of the second, of the third . . .
of the nth order; inasmuch as in the series of these quanti-
ties each must be regarded as infinitely less than the preceding
and infinitely greater than the following.

Thus if any quantity 8 divided by the infinitesimal « gives
the finite quotient %, 2 must be regarded as an infinitesimal of
the first order ; and if

;g i
>

—_— ==

o (23

6 —
ﬂs 5
%y 0, « « «» @ must be regarded as infinitesimals of the 2d, 3d,

. . . nth orders.

Hence the infinitesimals of different orders can be expressed
as follows:
B =xo, y=xa’, 6 =xa® ...0=xa";
that is,
43
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The product of a finite quantity by an infinitesimal of any
order is an infinitesimal quantity of the same order.

We must add to these preliminaries the following principle,
generally admitted in the analysis of infinitesimal calculus,
and found to be correct in all its physical applications, i, e.,
Infinitesimal quantities disappear when compared with finite
quantities, or when compared with infinitesimal quantities of a
lower order, which comes to the same as to say, two finite
quantities which differ from each other by an infinitesimal
one, vr two infinitesimal quantities which differ from one

another by an infinitesimal of a higher order, are or may be

considered as identical. In fact, it follows from the definition

of the infinitesimal quantity, that the difference in both cases
is less than any quantity which can be assigned.

I11. Functions.

A quantity is called constant or variable according as it has
a fixed or variable value.

Variable quantities may and do frequently depend on each
other, and then they are said to be functions of one another.
Thus, for example, if by changing the value of the quantity @
the value of another quantity ¥ is also varied; y is called a
function of @, and wvice wersa. That y is a function of x is
expressed by the equation

y=f @)

In this equation @ is called an independent variable, inasmuch

as we make y depend on any value arbitrarily given to x. If

we should make @ vary according to the arbitrary values given

to ¥, then y would be the independent variable, in which case

the dependence of @ on v would be expressed by the equation
v = F (),

the capital letter I being used instead of f, to signify the dif-

ferent form of the funection, as @, % . . . would be used for other
functions differing from the preceding.
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These are called explicit functions, to distinguish them from
the implicit, in which the function is not immediately given
by the independent variable ; as, for instance, in the equation

Yy — 20y —a =0,
in which ¥ is a function of @, but not immediately given by «.
If the equation be resolved, we then have

y=x+tva+ 2*;
i. e., ¥ given immediately by 2; and representing @ &= v a + 2*
by Fa, y = Fz is the explicit function of @ deduced from the
implicit one by means of the resolution of the given equation,

III. Differentials.
Let

el £ e =

@
be two equations between a and g, which also represent
two different functions of 2. By increasing @, the function
9 increases in the first and decreases in the second equation,
and wiee wversa, whatever the increase of 2 may be. In
every case, however, an infinitesimal change of @ is neces-
sarily attended by a change of ¥ equally infinitesimal. Repre-
senting thus by dz, dy the infinitesimal variations of 2 and of
9, we deduce from the preceding equations the two following :

yEdy=a(@=xde), yxdy= - =;

and supposing, as is often done, that da represents the increase
as well as the diminution of the variable @, and dy the inerease
and the diminution of the function; the above equations are
more simply written as follows :
y+dy=a(z+do), y-i-dy"m—_f—d-x;

dx is called the differential of a, and dy the differential of % or
of the funetion of @. IFrom the last and the given equations
it is easy to sec that
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dy.= a (@ + da) — ax, or dy = ——-b—— -.-_E
@ 4+ da T

And generally supposing the given equation to be y = f (@),
we shall obtain

dy = f (2 + dv) —F (2);

that is,
The differential of any function of x is equal to the difference
between the first and the second stale of the function, the second

state being the resull of an infinitesimal change of x in the given
Junction.

Differential ealeulus has for its object to determine the dif-
ferentials of given functions. But before we proceed to give

the principal and most common rules of this calculus, the fol-
lowing theorems require to be demonstrated.

IV. Preliminary theorems.
Let n be a positive whole number increasing indefinitely
and having for its limit infinity, i. e., a value superior to any as-

signable value,and take the binomial (1 -+ ;1-;)", in which, when

has reached its limit, l is necessarily infinitesimal, We
n
know from algebra (see Treat. § 69) that
(1+ T};) 1+ﬂ +n(n——-1) 1 -n{n-—-l) (11——2)

B P S T TS TR
A Yo e P PR
A Sl n

The second member of this equation can be easily transformed
into the following :

PR e e o
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in. which all the factors 1—-%, 1-%,----1—‘1'"‘

, are

positive, and their number and values increase with n; hence
1 i : %

also ( 1+ ;;)" increases in value with n. But whatever n may

be, each one of the same factors is less than 1 ; hence

1 R | 1 R
Sl et d A e s

and consequently

1 1 1 1
(1+¥)ﬂ<2+§+ﬁ+...+ﬁ:???
and with greater reason
1 1 1 1 1
(1+ ;;)“<2+*2—+‘—2?+ "§§‘+"'+'2_u‘___‘1'

1 1 1 1 1 1 1
NO‘W—2_+§E+"'+FI=§_(1+E +§§-o‘+§n—__2),

and (Treat. § 63. ex)

1 i 1 1
1+-§+—2-y+"'+2m__-_-,=2_2vz<25

therefore we have at once,

(1+%)“>2, a}md (1 + %)"*{3;

and although by increasing », (1 + —% )* increases also, still it
cannot increase so much as to become = 3. The value, there-
fore, of (1 ~+ %—)“ is represented by a number between 2 and 3.

The letter e is used to represent this number, and its approxi-
mate value obtained by substituting in the above formulas,

for m, positive numbers greater and greater, is 2,7182818;
that is,

e = 2,7182818 . ..

Hence, however great the value of n may be, even if it be
4
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infinite (infinity is represented by the sign o¢), in which case
% is infinitesimal, ( 1+ %)" will be equal to € ; nay, then only

does it acquire the exact value of ¢ when n = oo. Thus we
have

(1t =6

or, representing the infinitesimal —— by «w,
o

1
(1 - w)“’ = e.
1st. Therefore, The binomial (14 w),in which « is infinitesimal,
raised to the infinite power x , gives for result e = 2,7182818 . , ,
(]

1
Take now with (1 —w) @, an infinitesimal quantity «,

oL
such that 1 — w = ) and consequently —w = — Ti%
we shall have
JE v gl 1 I 14+ a 1
Q—a)y o =(;33)7 = = hp iy 40T
(1 i DE) 5

14a __1+a 1
but (1-]-0.)“ =1 4+ o)s ﬂ—(].-i—a)(l—[—a)ﬂ

and (1 + a) « = ¢, therefore (1 —w) ® = ¢ + «e, and neglect-
ing the infinitesimal,

(1)

2d. That is, The binomial (1 — w), in which w is infinitesimal,

"y
w

= &,

raised to the infinite negative power — ot , gives for result
)
e= 27182818 ...

We admit the circle to be the limit of an inscribed polygon
the number of whose sides increases indefinitely ; we must con-
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sequently admit also the circle to coincide with the inscribed
polygon of an infinite number of sides. But the sides of this
polygon are necessarily infinitesimal. Therefore an infinitesi-
mal chord in the circle (the same may be said of any other
curve) coincides with the are. Iet us now represent by 28
the infinitesimal are coinciding with this chord. The chord
being equal to 2 sin 8, we shall have 2 sin 8 = 2 8, and con-
sequently SIEB =

3d. That is, The ratio between an infinitesimal are and its
sine is equal to 1.

V. Differentials of algebraic functions.
Let f(2) represent any of the following functions :

(22
I. o) o= 20 L T aE e R TV 20
2

According to the definition (111.) we shall have
dl@axz)=atzxtdi—(a=+tz)==dz;
that is,

1. The differential of a == z is the same as that of == z; and
since supposing z = ¢ (), we infer d (¢ £ ¢ (v)) = = d ¢ (),
The differential of @ == ¢ () is the same as that of ¢ (x).

From the second we have

daz = az + adz — az = adz; i. e.,

1. The differential of the product of a variable by a constant
is the product of the constant by the differential of the variable ;
and since making z = ¢ () we obtain

dao(2) = ad ¢ ().

So also the differential of the product of a function of x by a
constant, equals the product of the same constant by the differen—
tial of the function.

We have from the third

a a a adz

dimiamE T T



50 PRINCIPLES OF INFINITESIMAL CALCULUS.

111. The differential of a constant divided by a variable equals
the megative product of the constant by the differential of the
variable divided by the square of the same variable ; and taking
2 =¢ (@),

The differential of a constant divided by a funetion of x equals
the mnegative produet of the same constant by the differential of
the funetion, divided by the square of the funetion.

Lastly, from z* we obtain, in the supposition that « is a whole
number,

d* = (z+ dz)* — 2 = 2"+ az’~1dz + BAE Y #a it

2
ok (e w2
Or, neglecting the terms multiplied by the differentials of the
orders superior to dz,
dz g ds s

from which, regarding z as a simple independent variable or
as a function of &, we infer that,

1v. The differential of the power of a variable x or of the power
of a function of x equals the product of the index by the given
power diminished by one unit, and all multiplied by the differential
of the variable or of the funetion. 'The same rule is applicable
to the case of @ being any number whatever. From the first
equation, dz* = (z 4+ dz)* — 2%, we deduce the following:

s dz\ .
dz® = 2 (1+iz_) sigmes g1 )],
dz

=
“

Now (1 -+

)*—1 is an infinitesimal which can be repre-
sented by 4, and thus

(1+E)y =1+
Applying logarithms to this last equation, we have
aZ(l—I—%) =1(1+ 6)
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HE
a.nd a —v(z—(T—:!_——'é-)— =
But from the first equation we have also
4 ( j R )

2 =2t =2"8 X @ —— Z(1+e)

from which
dz z dz
B L ol B it ek i
4 a == (ch_l.

&z dz I+ 0) %Z(1+a)

B d do\ 5 1 s
howél(1+f)_l(1+ z)d and L I(L+8)=1(L +¢)7,

and dz being infinitesimal, and consequently d—z infinite as well

as -j—, it follows from the 1st theorem of the preceding number

that
1
(1 g dZ)ds (1+ 6)_3_'= e;
hence i(;,; = a0
and consequently
dzf = aztT1 de,

whatever be the numerical value of the constant a; therefore
The differential, ete.

The functions whose differentials we have found embrace
all the cases of algebraic functions. Let us now find the
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VI. Differentials of transcendental functions.
Let f(2) represent any of the following functions :

I Iz, II. @' 1IIL Sin z, 1IV. cos 2, V, lg=z, VI. cotz
VIL are (sin = z), VIIL arc (cos = z), IX. arc (g = 2),
* X. arc (cot= z),

Are (sin = 2) signifies an arc whose sine is z, and in like
manner the last three functions signify an arc whose cosine or
tangent or cotangent is z.

Taking now the differentials, we have from the first

dlz =1(z + dz) — lz; but'l (z

; hence

diz=1(1+ %),
dz

L

1 lz 1 2z dz 1 dz\ %
butgz!(l-i-?)—_—;aél(l-}- ?)=?Z(1+_) 3

a dz _ 1
i dz dzz( L

hence dlz = I—edz

and taking e for the base of the lorra.rlthms, as is commonly
done,

dil _iz’
z

hence regarding, as usual, z as a simple variable or as a func-
tion of another variable w,
1. The dqﬁ'erentaal of the logarithm of a variable or junctwn

of a variable is obtained by dividing its differential by the same
variable or funclion.

From a° we have
do* = &t % — af = a* (a% — 1).
Now a? —1 is infinitesimal, and may be represented by ¢,
so that a®* = 1 + 0; and taking the logarithms



DIFFERENTIAL CALCULUS. - b3

o+,
la
hence da’:a*-e=a,’-d———-z€°—-dz-
(L+20) 7’
but d-z- 1h - i (@) = I(a) - = la;
G S+ L+
therefore

dat = a’la dz; 1. e.,

1. Thedifferential of the exponential quantity a* is the product
of the same quantity by the logarithm of the root a multiplied by
the differential of the exponent, whether it be an independent
variable or function of another variable.

We may come to the same conclusion by a more speedy
process.

Make a: =y, apply logarithms and take the differential,
we shall have

dlog@* =dlogy = dy -_—.(-{E'-:;
Y @
hence ;
da* = a*d log @ = a*d * z log @ = o' la dz.
From the third and fourth functions we have
dsin z = sin (z + dz) — sin z,
d cos z = cos (z + dz) — cos z.
And (Trig., p. 252)
sin (z + dz) — sin z = 2 cos }(2z + d?) sin }dz,
cos (2 + dz) — cos z = — 2 sin §(2z + dz) sin }d=.
But from theorem 3d (1v) we have sin }dz = }dz, and 2z + dz
may be regarded as equal to 2z; hence
dsinz=coszdz, dcosz=—sinzdz; i.e,

1r. The differential of the sine is equal to the product of the
cosine by the differential of the are.

1v. The differential of the cosine is equal to the negative pro-
duct of the sine by the differential of the are.
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From the fifth and sixth functions we have

sinz sin(z 4+ dz) sinz
dtgz=dcosz_cos(z+dz) Cos 2

cosz cos(z+ d2) cosz,
dcotz = ds

inz sin(z+ dz) sinz’
hence (Trig., p. 2563)
4 g sin (z + dz) cos z — cos (z + dz) sinz _ sin (24 dz—2)
cos (z + dz) cos z cos (z+dz)cosz
sin dz
= cos (z—f—dz)cosz'
But sin dz = dz, z + dz is equivalent to z; hence

s’ z

Ll

dz
d tg 2= ——p—-
By a like process we obtain

dcotz = —

- sidcie.
sin?z’ %

V. The differential of the tangent equals the differential of the
are divided by the square of the cosine.

vi. The differential of the cotangent equals the megative dif-
ferential of the are divided by the square of the sine.

Calling » the arc whose sine or cosine is z, with the equa-
tions y = arc (sin = 2), ¥ = arc (cos = z), we shall have the
two following :

z=s8iny, z=cosvy,
and dz=cosy.dy, dz= —sin y.dy;
hence dy or

: dz dz

darc(sm-—.z)—a)@, dmc(cos—z)—-—siny.

Now cosy = v'1 —sin’y =+'1 — 2%, siny = v1—cosy=
vl—%,
therefore
dz dz .

drarc(sin =z2) = ——— d- COS = 2) = — —— yiie,

(S ) \/1-—22’ arc( ) \/1—22, ]
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vir. The differential of the are whose sine is the variable z, is
equal to the differential of the variable divided by the square root
of (1—2).

vur. The differential of the arc whose cosine is the variable
z, 18 equal to the negative differential of the variable divided by
the square root of (1 — 2°).

Calling now y the arc whose tangent or cotanﬂ*ent is z, with
the equations y = are (tg = z), y = arc (cot = z), we shall have
the two following:

z=tgy, z =coty,
and (v., VIL.)

At L et vy
: cos® y’ sin® y’
hence dy or
4 1 dz dz
L = &) == 2 = —— L —. =
d:arc (tg = z) = cos’ y * dz seczydz g el e
i dz
S o AT S T HE I e G
d arc (cot = z) = —sin’y-dz (mec“ydz T oy
Al i e
-_‘1 +zs’ ey

1X. The differential of the arc whose tangent is the variable
7,18 equal to the differential of the variable divided by (1 4 2°).

x. The differential of the aic whose cotangent is the variable
z, 18 equal to the negative differential of the variable divided by
@+ 2%).
VIIL. Differentials of the swm, product, and quotient of different

Junctions of the same variable x.
Let now the following functions of the same variable 2 be

given,
v="F(z), y» =f(x)’ &= 4’(“’)’

and let & be their sum} i. e.,
s=F (@) +/ () + 0 (),
we shall have
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du=T (z + do) — F (2), dy =[f(x+ do)—f(x),
dz = ¢ (@ + dx) — ¢ (@),

and also

ds —F (z + dz) — F (2) + f (@ + dz) —f(2) + ¢ (x + do) —
@ (@)

Therefore

ds —du + dy + dz; i. e.,

1. The differential of the algebraic swm of different functions

of the same wvariable is equal to the sum of the differentials of
each function.

Let now p be the product of ¥ by z; i. e., let
p=y z2=Jf() X ¢(@®),
and consequently,

Pt =2 = [f @F [e @

now

p* =Uf + 12;
also (VI. 1)

dp* d d?
dip* = 33,—1-’ aip L =

g’ P g
and (V. 1v.)
i dpz — 219 dp, dyﬁ = 23; dy, d? = szz;
2p d, 2ydy , 2zdz
therefore ._15_2.1’. s 7 i s

P ¥ ®
that is, since p = y 'z,
d(y*z) = 2dy + ydz,
or  d[f(@) e (@)] = e(@)df (@) +Sf(@)de(2); i e,

1. The differential of the product of the two functions of the
same variable is obtained by multiplying each function by the
differential of the other and adding together the two products.

It is known from algebra that a positive quantity raised to



DPIFFERENTIAL CALCULUS. &7

a power indieated by any exponent, either positive or negative,
gives always a positive result., Now the base of logarithms is
positive in every system ; hence negative quantities admit «
no logarithms but imaginary ones. To avoid the incon-
venience of these imaginary logarithms, the equation p = %2
has been squared in the process of the preceding theorem.
To give an example of the same theorem, let ¥ = 2° and z =
sin@. We shall have

p=2a?*sin z and dp = d (&** sin ) = 32" sin & dz + 2 cos z da.

Let, lastly, ¢ be the quotient Y f Eq:; From g = Y we infer

z
Y= q zand
dy = zdg + qdz;
hence
2’dg= dy-—qdz = d _.zdz:. Zdy:@’
and therefore dg = zdy ';:_Ef?_z
e gf @) _e@df@)—f(x)de (w)
o(x) Lo (2)J

11. The differential of the quotient of two functions of the same
variable is obtained by taking the difference between the product
of the denominator by the differential of the numerator, and the
product of the numerator by the differential of the denominator,
and dividing this difference by the squa:«'e qf the denominator.

Let, for example, the quotient be ( y we shall have
d 2*  6a’log (v)de—2a°dx _ 2a* (3log (x) —1)c¢ da:
log () log* (z) & log* »
VIII. Successive differentials and their orders.

Let, for instance, Y = a%
we shall have (V. 1v.)

dy = na"—! de.
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The differential da of the independent variable being taken
as a constant and always the same in the succeeding differen-
tials ; from the above differential (which is another function of
«) again differentiated, we shall have (V. 11. 1V.)
d(dy)=mn(n—1)a"—2da"

d (dy) is represented by d?y and the following differentials
by d®y, d'y, ete. Thus following the same process, the first
and the succeeding differentials of y = a" are given as follows:

dy = da"* = na"—?! dx,
d’y = d’z"* = n (n—1) x"—2?lgz9', e

I. { Py =d%" = n(n—1)(n—2)a"—2da,

* 8 a s ‘a & » = = s =

dy=dar=nn—1)(n—2)...n—n—1))d"
These successive differentials are called also differentials of
various orders, 1st, 2d, 3d, . . . nth. 'We may remark that in
the above example the last differential is constant, and conse-
quently d*+?y = 0.

The line placed above dz in the differentials of the second
and following orders is to distinguish the power of dx from
the differential of z raised to a power. Thus, whereas da”, for
example, represents dx raised to the power a, da® signifies the
differential of @ raised to the power a.

Let, secondly, y = a®,
we shall have (V1. 11.)

dy = a” ladz,
and consequently, ladr being constant,
d*y = a*lada’, ete., . . . i. e.,
dy = da” = a*la dz,
g Py = d*a® = a*Pa dx’,

dy = dra® = «lradz”.
Let, thirdly, ¥ = sin z, we shall obtain (VI. IIL 1V.)



DIFFERENTIAL CALCULUS. 59

dy = d sin = cos  dz,

dy = d*sin @ = — gin @ dz’,
III. s g =8
&’y = d’ sinx = — cos & da,
dy = d'sin z = sin e dz, . ..

Let, lastly, y = log (z). We shall have (VL. 1.)
iadtp o Tigits
hence (V. 111. 1V.)

e do: i w22d, 2
dz?=——x?dx2,andd3y= o1 L e SLC —w-gdw’;

hence

(dy = d-log () =‘i_'”,

e Togt b b2,
y = @+ log (o) = — %2,
1-2da’
i Jd"y = d’log (2) = ———531 ;
5 A
dy = d* log (v) = 1-2 43‘{"’,

1:2-3...(n—1)dz"

(d"y = d* log (%) = =

In the last of which formulas the negafive sign occurs when n
is an even number.

IX. Derivative functions and their orders.

Let us resume the formula y = 2" and its successive differ-
entials (VIII. 1.) 'We shall easily deduce from them the fol-

lowing equations :

2,
%Z_ = mﬂ—-l’ d:j: = n (n pukitr} 1) xn—-i’,

3 .
%=n(ﬂ—1) (n—2)a"—2, .. j—;: n(n—1)...(n—(n—1)),
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all of which, the last excepted, are functions of #, and being
derived from the original function y = a7, they are called
derivatives of that function.

Let now y = f () be any function of x. The first, second,
and following derivatives of this function are represented by

£ @) £ @) --~f"" @); i e,
W~y @, T—f"’() ;f’:’,=ﬂn> @),

and are callerl derlvat-wes of the 1st, of the 2d,. . . of the nth
order.

Thus, The derivative function of any order is given by the
ratio between the corresponding differential of the primitive func-
tion and the corresponding power of the independent variable.

But from the last equations we obtain

dy = f" (@) dw, dy = " (@) &, « . . dry = F (2) &
hence

The differential of any order of a given function is given by
the product of the derivative of the same order by the correspond-
ing power of the differential of the independent variable.

Since in these last equations f’ (), '/ (x), . . . or the equiva-
lent ratios g%, 3{29;, . . . perform the office of coefficients ; they

i
are also called differential coefficients of various orders, Itis
plain, from what precedes, that the derivative functions are
obtained by finding the successive differentials and omitting
in them the differential dx of the independent variable and its
pO\Vel‘S.

X. Maclaurin’s formula.

Suppos(, the funetion f () to be capa'ble of bemg developed
into a series arranged according to the increasing powers of x
as follows:

f(ﬂ.‘)=A0+A1$+Azmz+A3ws+A.,ﬂ}4+...

in which A, and the coefficients A,, A;, . .., which are inde-
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pendent of & and constant, are unknown. The object of Mac-
laurin’s theorem or formula, as it is called, is to find these

coefficients,
It follows from the definition of the differential (ILL.) that

the differential of a constant quantity is equal to 0;

hence dAg=dA;=dA;=...=0,

and d2A; =d2 ' 8Ag3=...= 0;

hence, from what has been said in the preceding number and
from the rules 11. and 1v. of No. V., we shall have with the

primitive function
f(ﬂ:)"—“Ao"f‘Aim"f'A»_ﬁEz-’--..

the derivatives

S (@ =A + 202+ 3A2" + 4A22 + ...

S/ (@)=2A,+ 2-3Ax+ 3-4A2° + ...

J"(x) =2-3A;+2:3-4Ax + ... ete.
In all these equations # may have any value, without affect-
ing the constants Ay, Ay, ..., but making # = 0 in the primi-
tive and derivative functions we have
J(0)= A, f/(0)=A,, f/"(0)=2A,, [’ (0)=2*3A,,...

hence the constants A, A,, ... are given by the primitive
function and by the derivatives, making in them 2 = 0. Sub-
stituting the values of the constants thus obtained in the primi-

tive, we shall have
@) =F O+ 2f O+ 5 7 0) + 5o /7 (0) + -+

which is Stirling’s formula, more commonly known as Mac-
laurin’s. It answers the purpose of developing functions
into series according to the increasing powers of the variable.

Let us see some applications, and let, first, f (¢) = ¢*. We
then have (VIIL. 11.) f/ () = €7, and consequently also "/ (z)
=f" (@) = ... =¢; and therefore, taking = = 0, f (0) =
S(0)=f"(0)=...=1; hence
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2 4
(1) e*=1 +x+%-+ —2%+£-'—4+...
and making in this formula 2 = 1,
1 1 1
semdet o i g ety
by means of which the value of ¢ (I'V.) can easily be obtained
as nearly as desirable by increasing the number of terms of
the series.
Let, secondly, f (x) = sin 2.  We have (VIIL 111.)
f (@) =cos @, fU(x)=—sinw, [ (a)=— cosz,
FHEAe) = Bino G &%

+...

and making @ = 0,
f(0)=0, f/(0)=1, f’(0)=0, f"(0)y=—1,
f”” (O) = 0, f(v) (0) T 1 .
Therefore
ST AR AP " e
(II-) smy=ux 2"_"'3+ ‘2—'?'3—‘4:75 . s's
Let, thirdly, f (2) = cos 2, we shall have
S (@) = —sina, [ (x)=-—cosz, [’ (x)=sing,
Jo) () =cosz,. ..
hence
7 (0) = 1,5157(0) 250, L {0 me L 1 (0) = 0,
O TGy R=Eg S0
and consequently

a® a
(III.) cosx = 1 -§+m—.sc

XTI. Taylor’s formule.

Let us take the function f(z + 4), in which A represents an
addition made to z, either positive or negative. Considering
this addition as variable and the undetermined quantities, B,,
B,, B, By, ... independent of % in the supposition that
S (z + k) is capable of being developed into a series arranged
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according to the increasing powers of 2, we may, as in the pre-
ceding paragraph, represent f(z + &) by the series B, ++B,A
+ B)i* 4+ Bsh® + ..., in which By, B, B,, . .. necessarily
depend on @. Supposing now A variable, and taking the suc-
cessive derivatives of f(x + k) relatively to % alone, making
then in the primitive and in the derivatives A = 0, we shall
find, as for Maclaurin’s formula, the equations

B,=/(), Bi=f' (@) Bimgf" @), Bs= sofUta), . ..
and consequently
F+B) =1 @)+ hf @) + f”( 3 3f’”( 2) +..

which is Taylor’s formula, by means of which we obtain the
second state of a function developed into a series of terms,
arranged according to the increasing powers of the addition &
made to the variable in the function f ().

1st. Let, for instance, f (x) = vz, we shall have (V. 1v.)

j g i Jourt A 1
! = oy e = — Lo
('E) 9 L 2‘/—-’ f ( ) 4 x 2 4\‘/.’3.,‘3:
s ¥
fm(x)=§m_-§.=t%““

hence, if in the given function v/& we change z into 2 + A,
Taylor’s formula will give us

h h? i h?
2ve 8V ' 16V

Vo4 h=vz+

2d. Let a]sof(fz:) i, we shall have (V 11, and 1v.)
w
3 35

f? (:U) 2‘/53-’ f.H'( ) = _3, f}'!f (—B) EIE Rt 5'4_—7‘;-_:”
oy 8054
sl s
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Therefore, according to Taylor’s formula,

i _H_Im___l_i 3 2 (b Al R? 8
Vo a Ve G P TG TR T B A e o
i

; X e T
making now @ = 1, and h = — 22,
i v 1 gi\Re g e
R S Fo S A TR
367
BA-B.BE T
as we would obtain by applying to ~711—3, or to its equal

1

(1—4) 2, the development of the Newtonian formula.

Taylor’s formula rests on the fact that f (= + &) is capable of
being developed into a convergent series having f(x + &) for
limit of its convergency. If this fact be not verified, the
formula must necessarily fail to give the value of the function
represented by an unlimited series. This is precisely the case
in the last example if z be supposed greater than 1. For

whereas \-/—-1 - for any finite value of z has a finite and

fixed value, the series increases in value in proportion as it
increases in the number of terms. But if z <1, then (Alg.
§ 47) the series 1 + 2* + 2* 4+ 2* + ... indefinitely pro-

tracted, has for its value i-—l—?; it is, therefore, a conver-

gent series. With greater reason, therefore, the second mem-
ber of the last equation is a convergent series, whose terms
are the same as 1 4 2° 4 2* 4+ ..., all multiplied, except
the first, by a constantly diminishing fraction. For the coeffi-
cient of the third term is the coefficient of the second multi-
plied by a fraction, the coefficient of the fourth term is the
coefficient of the third multiplied by another fraction, ete.
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— is ex-

Thus, in the supposition of z << 1, the function 7

actly represented by the series of the second member of the
above equation indefinitely protracted.

XII. Mazima and minima of functions of a single variable.

Any real function f(2) can always be represented by the
ordinates of a curve CC’ (Fig. 18) corresponding to abscissas
representing the different values of x. Iet now % be a posi-
tive and infinitesimal quantity, and let the value @, of 2 be
represented by the abscissa AK. From K take KK’ = KK’/
= h. If we find that the ordinate KM = f(,,) is greater
than the preceding K’M’ and the following K’/ M*/, it is called
a maximuwm of f(x); if, on the contrary, KM be found less
than K’M’ and K”’M"’, it is a minémwm of the same function ;
i. e., any function f(2) will be a maximum or a minimum for
a particular value @, of 2 according as we shall have

@) > (@ = 1),
or F@n) <J(@n =),
or in other terms, according as we shall have

{f (wm &= h) — f (2m) < O,

(r.) <or
S (@n == k) — f (@n) > 0.

Taylor’s formula enables us to find whether and when these
conditions are verified ; for in the case of & being positive we

have from this formula

(7 o+ B)—f (@n) = Bf” (on) + 17 (om) +

2 -
(11.) J and when % is negative

F m—B) —f (o) = — h" Gem) + 5 17 o)

I : A
s (@) + el O B

h? It
- ﬁfm (zm) + f?@fﬁ (Tn) —-..

L
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Now the sum of infinitesimal quantities of different orders can
have no other sign but that by which the infinitesimal of the
lowest order is affected ; hence the first members of the equa-
tions (11.) cannot have the same sign unless f/ (@,) = 0; but
if "’ (w.) does not vanish with f” (,), then the first members
of the two equations will be affected with the same sign, posi-
tive or negative, according as f’/ (x,) > 0 or < 0, and f (2,)
will be a minimum in the first case, and a maximum in the
seccond. In case that with f/ (z,) = 0, f"’ (ax) also should be
= 0; then, in order that f (2,) be a maximum or a minimum,
S (2,) also must vanish; and supposing that " (2,,) does
not vanish with the preceding derivative, f(xn,) will be a
maximum when f* (@,) << 0, and a minimum when f** (z,) >
0, ete. In general, let f¢ (x,) be the first derivative which
does not vanish. If n be an odd number, f(2,.) is neither a
maximum nor a minimum. If # be an even number, then
J (@n) is a maximum when f™ (2,,) << 0, and a minimum when
J (2,) > 0. But the same value @, which, in this case,
malkes a maximum or a minimum of the primitive function
S (@w), falfils the equation f/ (z,) = f"" (m) = ... ="V (z,)
= 0, therefory, taking only the first and last member. The
values @, of @ which can render f () a maximum or a mini-
mum must be looked for among the roots of the equation
y
1@ (=30 =0
which equation must always be verified whatever be the index
(n) of the derivatives of a higher order than the first,which
does not vanish.
Let, for instance,

f(@) = a* — 62° + 9z — 3.

To see if this function admits of a maximum or a minimum
let us make the first derivative equal to zero; i. e., f/ (z) =
32° — 12x + 9 = 0. If there is any value capable of making
a maximum or a minimum of f () it must certainly be among
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the roots of this equation, which is reducible to the following :
2 —4dz + 3 =0,

and which resolved gives us

T = 1y and’ o, = 3.
Now the second derivative is, in our case, f'" (z) = 62 — 12,
which does not vanish by substituting in it for 2, @, =1, 2,
= 3. It is, besides, negative for the first of these two values,
and positive for the scecond; therefore the function of =

2’ — 62" + 9x — 3
acquires a maximum value when @ = 1, and a minimum when
= 3. With the first of these values substituted we have
[(2za) = 1, with the second f(w,) = — 3.

XI1I., Values of functions which assume an undetermined form.

The ratio F (a) = f( ;mfty assume the undetermined form
%’ when for a part-:cu[ar value of @ both functions f (#) and
@ (#) become zero. We may ask if such a form can corre-
spond to a definite value, and how this value can be known.
The finding of this value will be a reply to both questions.

From the given equation we have I () ? (&) —f(z) = 0;
hence (VIL. 1. 11.) the derivative

@) F/ @)+ F (@) ¢ (2) —f" (@) = 0.
But there is, by supposition, some value of & which makes
¢(z) = 0. Substituting in the above derivative this particu-
lar value of @, we shall have, in this case, I'' (z) ¢/ (z) = f’ (),
and consequently for the same value
4
(o) (L8 2 Oy f @),
e e
But if the derivative f’ (z), ¢’ (x) should also become equal to
zero for the same value of @, and so likewise the following
derivatives till the nth order exclusively, we would then have
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F(z) = il 2 i G T e.,

¢ (@) " ()’
1. The true value of the ratio between two funections which

assume the wundetermined form —g when a particular value of x

" is placed to them, is given by thé ratio between the derivatives of
the same order which are the first of those which do not vanish
simultaneously when the same particwlar value of x is placed in
them.

Let, for example, f(z) = 1 — cos x, ¢ (z) = °, we shall

have
'(2)=sinz, ¢ (@)= 22, [f/’(@)=cosz, 9'(z)=2,

and consequently, first, I (z) = = -—a;os ?, which becomes -g-
sin @ 0

when @ = 0. Secondly, F (z) = =y which also becomes )

when 2 = 0. Lastly, F (2) = 5’3—1 = 'é" when 2 = 0; hence
when & = 0
1—cos @ 0 1
F(’L‘)n:—mg =T)--_—§.

The ratio F('v)—f E gnmy alsoassume the undetermined form
-2 for some particular value of 2. 1In this case we shall have
1 1 1 = :

= d - g
f('t:) g 0, an 'lISOf @ ) s (,L) Now the deri
’
vatives of ‘% and ( T are (V. 111.) — ;z Etg and -——E,;—Ez),
therefore, from the prece:lmg theorem,
i) e la)

T e e e BT
7@

and multiplying each member of the equation by F @)
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f (=) (o= B e -f " (=),

e@ '\ P (=)
Therefore, if for the same value of = the derivatives of f(2)
and ¢ (@) should become infinite till the nth order exclusively,
the ratio of the given functions will be determined as in the
preceding case by the formula

T (@) J® ()
FE =@~ == @@’ "

11. The value of the ratio of two functions which for a par-
ticular value of x becomes X is given by the ratio of the two first
derivatives of the same or der which neither vanish together nor
together become infinite with the same value of x.

Let, for example, f(2) = log () and ¢ (x) = cot (x). Sup-

posing @ = 0, we have log (#) = — o, cot & = oo ; thus for
iy b f(a,) Iog(m)_____p_o Ml ino
the particular value O of 2, 50 bl s @) oo aking

now the derivatives, we obtain (VI. 1. VL) f/ (2) = % and

P f e >

¢ () = — si_;‘*‘wa-:; hence'{’-:TE—::—')) = — mr:c_'v equal to %, forz =

0; but the derivative of — sin®* @ = — 2 sin « cos 2 and the
¢ (x) 2 sin x cos

derivative of z is 1 ; hence e iy =0, or

F(z) = I%Og?%) =— 2 =0 when 2= 0.
It may also happen that one of the functions becomes 0 for

a certain value of @, and the other becomes oo for the same

value, It is easy to see what, in this case, would be the deter-
mined value of f(( )) but the value of the product F (z) =

S (@) o (x) would have the undetermmed form 0 co. Now

f@e@)=f(2): ——qa()f() %, Thus the

¢ (-'L)
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present case is reducible to one or other of the two preceding,
and

11, The product of two jfunctions which for a particular
value of x becomes 0° oo, is obtained from the ratio between the
derivative of one of the factors and the quotient resulting from
unity divided by the other factor,

Thus, let f(x) = @ and ¢ () = log (). The product
@ log (2) becomes —O * oo when @ = 0. Now the derivative of

log () is L and the derivative of = is — l_z, therefore when
@ @ @
=0
1 1
Jf(@)o@)=rlogr=—0"00 = St sy L ien — 0.

Besides the preceding, three more undetermined expressions
deserve our attention, i. e., 0°, &% 1%, which the function
F (o) = [f @]+,

assumes, when, for certain values of 2 both functions f () and
¢ (%) become = 0, or f (@) = o and ¢ ()= 0, or, finally f ()
=1 and ¢ (#) = o. It might also happen that with f(z) =0
we would have o(2) = oo, from which would result another
undetermined expression 0”. But let it be observed that
from the given formula we deduce I F () = ¢ (@) I[f ()] =

log [f (2)], hence log [ E.f_(-ﬂ]
1 >
o (2) F(2)=e ¢(x) ;for from thisas well

as from the given formula we deduce [ F (2) = ¢ (2) [ f(2)].
log [f (2)]
1

Thus F@=[f)t®@=e ¢ ().
Commencing with the last case, we have

i

F@)=0"=¢ T —_0in every supposition.
In the first case F (z) = 0° = g“'ﬂg for h_ﬂ.:-li@ = — 2
¢ (2)
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F(z)= "= ¢* for ]ﬂ.!‘_[Tf@ = 4+ 2

In the second, 2
e ()
2 0
In the third, F@)=1"=¢® “« ‘« i e 5

Therefore the determination of the expressions 0° o’ 17 is
obtained by the same expedient by which the preceding unde-
termined expressions have been determined. To give an
example of each of the last three cases, let,

1st, f(x) = @ (z) = 2. We shall have

log (2)

()= =¢ + = 0"=¢— % when 2 = 0.

i gy SRS 1
But = is the derivative of lg , and — l.., the derivative of =5
f €T

log (z) _ 00, . b
lleucc——_l_—— &,——-’;.F———x_—-ﬂwhen'z:
@
=0and e~ %= £ gl 1;i.e, when =0

Iilen—oc3= 0} = 4:

2d. Let f (o) =a, ¢ (¢) = -:%, and suppose @ = oo, we shall

_l log = 1
have F () =2*="=¢ * =¢" when 2z = 0. But — is
2

8

the derivative of log (), and 1 the derivative of a; hence

loi(“’_') e gg =) LB 0 when # = o. But ¢’ = 1. Therefore

when @ = oo

1
F(e)=2"= oo® = 1.

3d. Let f(z) ==, ¢ (¢) = T_-];_-_m' Taking # = 1 we obtain
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1 log (=) o

F)y=21"*=1"=¢l—% = /. Now ?:(l;_ is the derivative

of lg (¢), and — 1 the derivative of 1 — @ ; hence :llo—g—-(—? -

ik .
-———;=—1whcnx=1;1.e., when z = 1

2 1
F@)=a—?=1"=¢"'= e’

XIV. Chord of an infinitestimal are of a eontinual curve.

Let DABD’ (Fig. 19) be any continued curve. Divide the
arc into three parts at pleasure, DA, AB, BD, and draw
the corresponding chords, producing the first to T, and
the last until it reaches the first in C. From this con-
struction we have TCB = CAB + CBA. Calling ¢ this
angle, and designating by «, b, ¢ the sides CB, CA, AB
of the triangle CAB, we have (Trig. §§ 20 (e;) and 12)

=+ b® + 2ab cos s.
And since (Tr. § 20) cos ¢ = 1 — 2 sin® § ¢ also,
= (a + b)® — 4ab sin® 1z,
easily reduced to the following :
Vo Oph s 4 dab
(¢ + b7 (a + b)*

- ‘:_bb)z is equal to 1 — (---—-— Yisicel,

sin® %s,

in which the coefficient

less than unity.

Now, in a continual curve the smaller the arc DABD’
becomes, the smaller also become the angles CAB, CBA, and
when the arc becomes infinitesimal the angles also become
infinitesimal, and & likewise, which is equal to their sum.
Therefore, in this supposition, sin® 3¢ is an infinitesimal of the
second order, which, in the last equation, being besides multi-
plied by a coefficient << 1, can be suppressed, giving us thereby

B
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cs
(a +0f
is infinitesimal, the chord AB does not differ from the sum of
the sides AC, CB, it differs much less from the are AmB sub-
tended by it. Hence in any curve An infinitesimal continual
are and its chord coincide with each other, or their ratio is equal
to unity.

It follows from this theorem that The chord may be taken
instead of the corresponding infinitesimal arc ; and since, in this
case, the chord necessarily coincides with the tangent, it fol-
lows also that Any curve may be regarded as a polygon of an
infintte number of infinitesimal sides which produced will be as
many tangents of the different points of the curve.

=1,0re =a+ b. Batif, when the are DAmBD’

XV. Tangent, subtangent, normal and subnormal of any plane
eurve.

Let CC’ (I'ig. 20) represent any plane curve referred to the
orthogonal axes AX, AY, and let y = f(2) be its equation.
Let also TTV be the indefinite tangent of any point M of the
curve, and MP a perpendicular to the tangent from the point M
of contact, the co-ordinates @ and y of which are AK, KM.
The segment MT of the indefinite or geometrical tangent of
M, contained between the point of contact and the axis of
abscissas, is called tangent of the point M. In like manner
the segment MN of the perpendicular MP contained between
the same point of contact and the axis of abscissas, is called
normal of the point M. The tangent is represented by ¢, the
normal by ». Of the two segments TK, KN of the axis of
abseissas, measured from the points met by the tangent and by
the normal to the ordinate of the point of contact, the first is
called subtangent and the second subnormal of the point M,
and are respectively represented by ¢, and n,,

To determine the length of these four functions, observe,
first, that calling X, Y the co-ordinates of the tangent referred
to the axes of the curve, and X/, Y’ the co-ordinates of the
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normal, and (£x) the angle MTX, since both lines pass through
the point M, and one is perpendicular to the other, we have
(A. G. III. 2d, 3d) for the equations of these lines
1
S —— = ot S " i EiER _ — s —a—
Y—y= X—a)tg), Y—y=— (X —2)
Take now from M the are MM’ infinitesimal, whose co-
ordinates AR/, K’M’ will be respectively represented by
@ + dxv, y + dy, and drawing from M on M’K’, MD parallel
to AX, we shall have also MD = dx, DM’ = dy. The arc
MD, being infinitesimal, may be regarded as rectilinear and
coincident with MT’, therefore (IX)
tg (tr) = tg M’MD = —--——f’( )5
hence from the preceding equations

K= =(X_"v)f’ (1'): Y’_J"""_(X’_m)ff( )

The abscissa X corresponding to Y = 0 is — AT, and the
abscissa X! corresponding to Y’/ = 0 is AN ; hence making
in the last equations Y and Y’ == 0, we shall obtam

r hafiy ] it r (%)
AI'-I—:c-—f,(m), AN — 2z = yf' (x);
i e, 2 ':f—,%qi n, =y f’ (7);
and since from the right-angled triangles MKT, MKN
MT = o /RM' + TK> MN= \/ KM + KN,

so also, for the values of the tangent and of the normal,

t= Yy + 8% n=Y9¥+np
1 i 440
or t = 3" \/1 + m’ n = y \/1 + f’z (:t,'-).

These and the preceding formulas, being altogether general,
can be applied to the lines of the second order.

1st. Functions of the parabola. Commenecing with the para-
bola, whose equation is (A. G. V.)
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e %y
i. e, f(x) = v/2pz, we shall have (V. 1v. and IX.) f/ (2) =

_P_ — P hence, since in the parabola (L. ¢.) p = 2 + 1p
designates the distance of the focus from the point (z, y) of the
curve, we shall have

9
t,=§=2m, n,=1p;

i. e,, the subtangent of any point of the parabola is equal to the
double of the abscissa of that point, as we have already found
(A. G. VIIL.) with a different process, and the subnormal is
constant and equal to the semiparameter. Concerning the tan-
gent and the normal, we have from the preceding general

equations

t='y\/1 —I—;‘é: V2px + 4a* = V'dz (x + 3p) = vV dxp,

2 I L 8 Y SR YT Al
n=y\/1+ §§= V2pz + pP=v'2p (v + Ip) = V' 2pp;

i. e, The tangent of any point of the parabola is mean geometri-
cal proportional between the focal distance of the point of con-
tact and the quadruple of the abscissa of the same point. The
normal of any point of the parabola is mean geometrical pro-
portional between the focal distance of the same point and the
parameter.

2d. Functions of the ellipse. The ellipse referred to its
own axes is represented (A. G. XI.) by the following equa-

tion :

b s -
Y = E\/a‘—w‘;

hence, in this case, f (2) =£— via'—a* and (V. 1v.) f/ (2) =

bx

A

and from the equation (2) (A. G. XI.)
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@ — b* = a’¢® From the above general formulas we obtain
for the ellipse

2 2 = 2

a’*—x a b

f, = — =——+4x n=—=;
@ e

i. e., taking into account only the absolute value, The sub-
tangent in the ellipse is equal to the difference between the ab-
scissa of the point of contact and the square of the transverse
semiaxis divided by the same abscissa, Hence the subtan-
gent is independent of the conjugate axis. The subnormal is
equal to the product of the abscissa of the point of contact by
the square of the conjugate divided by the square of the trans-
verse semiawis. Consequently the ratio of the subnormal and
the abscissa of the point of contact is constant in the ellipse.
The general formulas of the tangent and mormal become

for the ellipse

Bl = a2
t=y\/1+a_&1{;§&?_i).$% Vg P s " o

5-% vViat— (@ — b%) 2*;

but @®> — 6® = a’¢®, hence

2 Gkt sy
t= 3-% v — &P,

bt Y : .
n=y\/1+7(c—52—'£_——_2—)=a\/-t-a—;—2v’a—(a3_bz)w"

€T 144

Yy o s
gl e el

b VI ErETe. |
but y = = (,/az —2%); hence
-5 va—az;
a

i. e., The tangent and the normal of any point of the ellipse are
given by formulas analogous to the equation of the curve, chang-
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ing in the latter for both of them x* into €°x®, and for the tangent
also the coefficient % into {—:— . -ii

3d. Functions of the hyperbola. The equation of the hyper-
bola referred to its own axes is (A. G. (3) XIX.)

z

¥ = (et A

hence [ (z) = _-—b:E——_ , and observing that from the equa-
@ \/a;g — (52

tion (2) (A. G. XIX.) &® + §* = a*¢, following the same pro-
cess as for the ellipse, we shall find

1
2’ —a? @’ b?
f, = =p—— =2,
x x @
and
a Y 35— b js=——
t=—,-i-\/e"a:’—ca"', n=— vVér: —ad’,
Bl & a

from which follow exactly the same inferences as for the
ellipse ; hence the preceding conclusions with regard to the
functions of the ellipse are applicable to those of the hyperbola.

XVI. Differential total and partial of a function of different

independent variables.

So far, we have supposed functions depending on only one
variable. Let us now pass to see how differentials of functions
containing more than one independent variable ecan be ob-
tained, Let, for example, u be a function of the variables a,
¥, %, independent of each other, and having the following
form :

— @log ()
- sinz

The total differential of p is the difference between the value
of the given funection and that which the same function assumes
when we change all the variables by an infinitesimal quantity,
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or (3) the difference between the first and second state of the
function when each one of the wvariables undergoes an infini-
tesimal change. Thus, representing by du the infinitesimal
change of p, resulting from those of all the variables, we shall
have

e 2 08 (@ dedyls - wlog ()
i sin (z + dz) sin z
If all the variables are not changed, but only one of them,
the change which p undergoes in consequence of that of the
variable is evidently a partial differential. 1t is represented by
d.p. when @ alone is changed into 2 + da, or by dyuw, d,u. when
y or z alone is changed. In this supposition, we shall have

Hi = (@t log @yveplogiyye g e Hlog [y - dh) - |

sin 2 sin z sin z
@ log (1L) bl log (v) o ]ng_gy}-
sinz 2 sin (2 + dz) sin z

More generally, If the function s be represented by f (2, y,
z), the total and partial differentials will be expressed as fol-
lows :

do— f (z + dx, y + dy, = + 42 —f (2, 3, 2),
dopo = f (@ + d, y,2) — f (2,9, %), dye = f (%, 9y + dy,2) —
J@ 2, dp=f(xyz+d)—f(2,y2).

Concerifing the partial differentials, they are obtained ex-
actly as the differentials of the functions of only one variable,
considering the other variables as constant. It remains, then,
only to see how the total differential can be obtained. Before
we proceed to this, observe that the differential of y = f (@) is
expressed by dy = f’ (x) de. Now, the derivative f’ (z) is a
function of f(2). Suppose, for example, f (x) = v/'2pz, from

which f/ () = \/é% . A change of any of the three factors

2, p, @ contained in f («) will be evidently attended by a cor-
responding change in jf”/ (v); and if the change be infinitesi-
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mal, the change in f/ () also will be infinitesimal. Thus, sup-
posing, for example, that we make an infinitesimal change in
the coefficient 2p, the derivative will be f’ (2) == 4, differing
from f” () by the infinitesimal quantity é. Hence to the
equations
y=Jf@), dy=[f'(x)dz
we may add another,
dy, = [f" (&) + 7] da,
corresponding to the same value of the independent @, when in
the given function f(2) some other element besides 2 is sub-
mitted to an infinitesimal change. Now, from the last equa-
tion we have dy, = f' (¢) da = d*de. But §*dz is an infini-
tesimal of the second order, therefore dy, = f' (x) de = dy;
i. e., the differential of ¥ = f (¢) remains unchanged whether
the other elements of the function do not change together
with @ or be they also submitted to an infinitesimal change.
Let us now apply all this to
p=f (2,7, 2),
differentiating first p with regard to @, we have
das = f (@ + do, 3, ) —f (2,9, 2)
differentiating then f (z + dw, y, z) by v, we shall obtain the
same result as by differentiating the given p by ¥; i. e.,
du = f (& + du, y + dy, 2) —f (@ + da, 3, 2).
Lastly, taking the differential of f (x + dw, y + dy, z) with
regard to z, we shall again obtain the same result as by taking
the differential of the given p with regard to z; i, e,
dﬁ:.:f(:?,‘ an, dﬂ"} Yy S dcf/i z+ (k) _f("c —+ (ﬂ!«', Yy = dys z);
adding now together these three differentials, we obtain
Ao + dype + dop = f (@ + do, y + dy, 2 + d2) — f (v, ¥, 2) ;
but the second member of this equation is the total differential
dy ; hence
dp. = dop + dype + .y,
The same process is applicable to any number of variables,
6
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therefore The total differential of a function of different varia-
bles is equal to the swn of the partial differentials of the same

Junections.

@ log (y)
T sinz
taken above as an example of a function of different variables,
we have (V. and VL)

Applying it to the case of p = , which we have

A == M) da, dyp = —— dy, d:p = _}j}g_(’g}__goiz dz;
gin 2z y sin z sin® z
hence
d :L_log_(y) log (J) v + -x— dy — m_]og_'(_y.‘___? 0082 de,
sin z 8in z 4 sin z sin” z

XVII. Derivative functions.

Reealling to mind what has been said (IX.) concerning
derivative functions, it will be easily admitted that (:;E' d;"u'
oY

..

,are the partial derivative functions of u = f (2, y, #) with

regard to @, v, z. These same functions are also represented
by f'z (2, 4, 2), f'y (@, 9,2), f': (%, 9, 2). Thus,

depr. = f'2 (2, y, 2) do, dyp = ', (2, 9,2) dy, d:p = f':(2,7,2) dz,
and consequently the formula du = d.p. + d,» + d.p may be
represented also by

di = f'z (%, y, 2) dw + [y (2, y, 2) dy + [z (0,9, 2) I

or by
1.
dy. = d.u dx + d_,,y. dy + _(._% dz.
dx dy

Nay, since the partial differentials with regard to a, vy, 2 are
sufficiently indicated by their respective denominators, the signs
2, 4, z affixed to d may be and are ordinarily omitted. Repre-
senting thus the diﬁ'ercutial of p more simply we have

dw (l,u.
dp. == d S de + 5 dy + (fu.
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In like manner, following the analogy of the differentials and
derivatives of various orders of the functions of only one varia-
ble, we represent by d*uw, d’,u, d’w, the differentials of the
second order of w relatively to @, ¥, and z, and by d.d,u, d.d.u, or
d.d,d.u the differentials of u, first with regard to y and then
with regard to z, or first with regard to z and then with regard
to @, or first with regard to z, then with regard to y and then

with regard to a, ete., by succeeding differentiations. Also
the corresponding derivatives will be represented by
2 2 d2 72
e [ (e . hence

J'a (‘”} Y, z):f”s' (mJ' ¥ z), ete., or by e Y 8?’ d2? (‘@’ ..
Bos = fe (@, 9, 7) da? = ? &,
Py =f"y (2,9, 2) dy* = Jg dJ ’

o’
= [, (2, 9, 2) dz —ﬁdz,

and

A= g;_ dedy, dudp= -2 duds, . . .

‘Whatever be the order kept in the successive differentiation
of ., first with regard to «, for example, and then with regard
to y, or vice versa, the result is the same, for from the differen-
tials

dop=f (z + dz, y, 2) —f (%, 3, 2),
dyp.=f (2, y + dy, z) —f (%, ¥, 2),
we obtain
d, . =f(x + dz, y + dy, 2) —f(x,y + dy,2) —f(z + dz, y,2)
+J (@9, %),
ddyp=f(x + de,y + dy, z) —f (& + da, y, 2) —f (z, y + dy, 2)
+ £ (@, 2)-
Now the second members of these equations are identical;

dyd.p = d.dyp.
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For example, take again p = - log (J) We shall have

T Binz
dyd = d, 08 W dz_ dyds
BI0"S ysinz

xdy dxdy
ysinz  ysinz

With the preceding observations, it is not difficult to find
the formulas by means of which we may obtain the successive
and total differentials of a function of different variables, ILet,
for example, p.= I (2, ) be a function containing two inde-
pendent variables, z and . 'We shall have for the differential

of the first order
du = d.p + dyp = ‘m - dw + d’“‘ {_y,

d.dum = d,

and for the differential of the Hccond or(]cr
(Fl’-“ = d, (d.rf-'-' e dy}-") o= dy (dx.'-" = dyp')o

Now d, (dep + dyp) = &op + d.dyp, and d, (dop + dyp) = Py
+ d.d,w; hence
: d*u d?u d pa
&= d? ;.L-f-dﬂ.:.—!—?.ddy,u—-—-d'w -+ y-dy +2 d:i:dy
If the given function F (2, %) be constantly equal to Zero or
to any constant quantity C, dp = &% = 0; i. e,

2l b e
a“+z@*@

&’ 2 e dz“‘ o,
d‘? -+ /203 +2 a’.Ld_;-—-O.
But in this case one of the vaua.bles, y, for example, is fune-

dy 5 dzg/
tion of the other ; hence dy = 5 I do, &Py = ¥ % do*, and the first

of the last two equations becomes % dv + Z?u. j!/ de = 0. The

second term of the second equation, or its equivalent d?p =
d¥", (x, y) dy, in which dy is variable with 7, is the differential
of a product of two functions of ¥ ; hence
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dPu o
&p=F", (, y)clf+f" (z, y) d% —a?dy‘—l-@d"'y
_ dPudy’ du &%y
d'_fda. e d‘;d.cd‘

This value substituted in the above second equation, together
d*u I? d*u. dy?

with that of dy in the third term, gives o L dy? do®
f;j (5;! di* 4 9 (}f 5 "?f da® = 0, in which d«® is common

factor as de is common factor of the corresponding preceding
equation ; hence, in the supposition of y = f(x), we infer from

the above equations
du.  dy

ll dy “de
duw dy? | dw d*y _dp. dr;

2&2"'@ T dy & T Y dedyde T
Now ()\.V) Dl‘f’ (#) = tg (tx). Placing this value in the

last 0(111%11'10]1-‘:, ;md I (2, y), or simply F, instead of g, we obtain
from the same

a0
da’+‘ te (tr) = 0,

(D),
et @+ 2 T () =

XVIII. Singular points of plane curves.

We eall singular those points of a curve which present some
peculiarities inherent to the character of the curve. Such are
the multiple points double, triple, ete., i. e., those through which
pass different branches of the curve, each having a different
tangent. An example of this kind is represented by Fig. 21.
Points of regress or eusps are likewise singular points. They
are those in which a branch of the curve stops to begin, as it
were, another branch, both branches having in the same point
a common tangent, whether the two branches turn mutnally
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their convexity, as in the first example of Fig. 22, or one of
them turns the convexity to the concavity of the other, as in
the second example of the same figure. Isolated, or eonjugate
points, are also ealled singular points. They are entirely sepa-
rated from the branches of the curve, although their co-ordi-
nates fulfil the equation of the same curve. In treating of
these classes only of singular points, we shall avail ourselves
of the last formulas (D) of the preceding paragraph.

Let F (2, y) = O be the equation of a curve referred to
orthogonal axes, and let (4z) be the angle which the geomet-
rical tangent of the point (2, %) forms with the axis of abscissas.
The formulas (D) co-exist with I (2, ¥) = 0, and must be
simultaneously verified for each point (x, ) of the curve.
Now the first (ID) is verified either when both terms are equal
but affected with opposite signs, or when each term is sepa-
rately equal to zero. When the factor tg () admits of differ-
ent values, as in the case of multiple points, since for the same
values of 2 and », the derivatives % (db do not change, if for
one of the values of tg, (fz) the two terms mutually eliminate
each other, they will not for another, unless we suppose both
derivatives equal to zero. A similar observation is applicable
to the case of tg (tr) imaginary, which happens for isolated
points ; i. e., unless both derivatives be equal to zero, the equa-
tion cannot be verified. Thus, if the equation F (2, y)= 0
belongs to a curve which contains singular points, the co-
ordinates of these points may be found among those which

fulfil the equations

PrYSLa e = _— =

( ’) (! v 2 dy 0
In this supposition, the second (D) becomes

2R 214
(D) .- G + T 18 () + Tt () = O,

from which, substituting the values of z and y deduced from

’F
(D!)} lf dJ;

IE s A I

does not disappear, we obtain two wvalues for
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lg (tz), either real, and equal or unequal, or two imaginary
values. In the first of which cases, the point (2, ¥) would be
a point of regress, in the second, a double point, in the last, an
isolated point. Should the terms of (D,) disappear by the
substitution of @ and y obtained from (D,), in order to find
whether the curve admits of any singular point it would be
necessary to have recourse to derivatives of higher order. But
let us see an example of each of the three cases just mentioned.

Let, first, F (2, y) = y* + 2* — 2* = 0, from which %1_; = 42°

— 2w, %i = 2y. Hence, in the present case, the equations (D,)

become
40 — 2% =0, 2=0,

from which @ = 0, y = 0, which fulfil the equation and belong
to the point of the curve passing through the origin of the
axes, which may be a singular point. To see if such be the
case, let us take the partial derivatives of the second order,

f &K a1 d*F A
which are o 1227 —2, 2% = 0, P = 2, and placing in

d*F d*F d’F
them 2 =9y =0, — = —2, —— = 0,—— = 2, hence the
I=5% T redy . dpE :
equation (ID.) is, in this case,
— 2 + 2tg® (tr) = 0,

and, consequently, tg (tr) = 1, tg (fr) = — 1. The origin of
the co-ordinates is, therefore, a double point, and the branches
of the curve have their tangent forming an angle of 45° on
each side of the axis of abscissas. The form of the curve is

similar to that of Fig. 21.
Let, second, ¥ (2, y) = ay* — 2* = 0, from which ;—ig =

2 E}i?

—3a?, i = 2ay ; hence for the equations (D,)

— 32° =0, 2ay=0,
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and, consequently, # = y = 0. Taking the partial derivatives

of the second order, and making in them 2 = y = 0, we
dz i 29 21
X L3 0, -ddgi = 2a; hence (D.)

find 53 et P 6x =0, Tl

2a tg? (tz) = 0,
and, consequently, tg ({r) = == 0. Hence the point of the curve
corresponding to the origin of the axes is a point of regress,
and the branches of the curve have, in that point, the axis of
abscissas for common tangent. This curve is called a cubic
parabola, and is represented by the first Fig. 22,

dF

Let, third, F (z,y) = y* — @' + a™2* = 0, from which dx

= — 42® + 2a%z, glf = 2y, and, consequently, for the equa-
Y

tions (D,)
—42* + 2’2 =0, 2y = 0;

consequently in this case also @ =y = 0. Taking now the
partial derivatives of the second order and making in them
d°F

*F
o= = btai (——=—122 Q2a° = 2 T =
x = y = 0, we obtain e x” 4+ 2a 2a’, ody 0,

EII-_F = 2, Thus, in this case, we have for (D.)
o
2a* + 2 tg? (tr) = 0;
hence tg (tz) = == av/ — 1. The point, therefore, correspond-
ing to the origin of the axes, is an isolated point.

XIX. Convexity and concavity — points of inflection.

As the derivatives of a given equation I (w, ) offer a crite-
rion to find out if the corresponding curve admits of any sin-
gular point, so the derivatives of y = f (x) offer a criterion to
determine whether the corresponding curve turns its convexity
or its concavity to the axis of abscissas.

Let (Fig. 23) M be a point of the curve represented by
y = f (x) having AK, KM for its co-ordinates & and y, and let
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KK’ be an infinitesimal increment dz of 2. We shall have
AK’ = 2 + dx, and the corresponding ordinate K'M’ =
S (2 -+ dz). Represent by » and w the abseissas and ordinates
of the tangent of the point M, and let w, be the ordinate cor-
responding to the absecissa AK’. It is plain that from M for-
ward, the eurve will turn its conecavity or its convexity to the
axis of abscissas according as M'K — NK is negative or posi-
tive, that is, according as
J(@+ de) —u, < or > 0.

Now the equation of the tangent is (X V.)u — y = (v — 2) f/ (),
therefore u, — y = (& + dex—=a) f' (z) = f' (=) dz, or v, = f (@)

+ [/ (z) da.
Taylor’s formula gives us, besides, (XI.)

f @+ do)=f @)+ @ de + 3" (@) & +
gu—.lguf”’(m)d_-.z:z+
Hence, subtracting from this the preceding,
x + de) —u, = Lf" (x 35:2-}-—1—_)"”" 2)dz + ...
2:3

Now the sign of the second number depends on that of the
first term, or rather on that of the factor f// (z). Therefore,
supposing that f*/ («) does not vanish, f (2 + da) — u, will be
< or > 0 when f” (z) is << or > 0. Therefore, if the deriva-
tive of the second order of ¥ = f (x) is negative, the curve from
M forward turns its concavity to the axis of abscissas, and if
the same derivative results positive, the curve turns its con-
vexity to that axis. If £’/ () vanishes, the eriterion will be
taken from f//7 (), and if this also vanishes, from f* (), ete.

Should the branch of the eurve from M toward the axis
AY, change the bending of its curvature, the point M is then
called a point of inflection, and the branch of the curve turns
its convexity toward the axis of abseissas on one side of it, and
on the other its concavity. The derivatives of the equation
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of the curve, which we shall continue to represent by v = f(2),
will reveal to us if M is a point of inflection, which is one
of those that belong to the class of singular points. ILet
(Fig. 24) M be a point of inflection of M/ MM, and TT’the
tangent corresponding to M, which, without ceasing to be a
tangent, must necessarily cut the curve in M, Taking KK’
= KK’” = da, and representing as before by w, v the ordi-
nates and abscissas of the tangent, by %, the ordinate corre-
sponding to AK’ or AK’; since the differences M/K’ — N’'K’,
M”K"” —N"”K’ must be necessarily affected by a different
sign, the signs also of f(z + dv) — w, and f (z —dx) — u,
must be different from each other. TIn order to see if and
when this condition is verified, and consequently if the curve
admits of one or more points of inflection, let us resume the
equation already obtained above.

f (2 + do) —u, = Lf" () dv + Q%Ef’” (=) s Pl e
from which, changing in it dz into — dx,
f@e—da) —u, = 3f" (x) do” — 11_3 S (@) doo® 4. oe

These equations show that the differences cannot be affected
with opposite signs unless f*/ () = 0. Hence, if the. curve
admits of any point of inflection, the co-ordinates of that point
must fulfil the equation f”/ () = 0, and, consequently, vice
versa, the co-ordinates of the points of inflection must be
found among those which fulfil the same equation. It is not
sufficient, however, that real co-ordinates @, . fulfil the equa-
tion f”/ () = O to enable us to infer that the curve admits of
points of inflection, if the same co-ordinates @,, ¥, annul the
derivatives of higher orders, except when the first derivative
which is not annulled is of an uneven order, 3d, 5th, ete.
‘When, therefore, the equation y = f(2) is such that for certain
real co-ordinates @., ¥m, the derivative f’/ (#) becomes zero,
and the first of the subsequent derivatives which does not
vanish is of an uneven order, the curve admits of as many
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points of inflection as there are pairs of co-ordinates @n, ¥, for

which the said conditions are verified.
Let us take, for example, the transcendental curve repre-

sented by the equation y = f (#) = sin z, from which (IX. and
VIIL 1at.) f7 (x) = cos @, [/ (¥) =—sinwz, /" (¥) = — cos a,
S¥(2) =sina, ete. The first condition to be verified is that
S (z) == 0 be resolved with real values ,, of 2. Now a, =
0, =%, = 27, = 4w, = . . . are all real roots of f’/ (x) = O.
The second condition is that £/ (a) or f¥ (@), etec., is the first
of the derivatives which does not vanish when @, is placed in
them, But, in our case, f/"/ (v) = —cos v = — 1, + 1,—1,
+ 1, —ete.,, when @ = 0, = », = 2+, = ... Hence the curve
represented by # = sin @ admits of an infinite number of
points of inflection. The form of this curve is partly indi-
cated by Fig. 25. Its tangent, at the origin of the axis, bisects
the angle formed by the same axis: for tg (tr) = f’ (x) = cos z,
and ,with @ = 0, cos 2 = 1; hence tg (fz) = 1 = tg (45°).
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INTEGRAL CALCULTUS.

XX. Indefinite Integrals.

THE object of integral calculus is opposite to that of differ-
ential. It consists in finding the function from which a given
differential has been obtained. Integral and differential are
correlative. Thus, as adx is the differential of ax, so ax is the
integral of ade. The integral of a given differential is desig-
nated by affixing to it the symbol /; which signifies sum, as the
letter d, adopted in differential calculus, signifies difference.
S adx signifying the same thing as ax, we may write the
equation

(D) o o S ade = azx,

the first member of which indicates, the second expresses, the
integral of adx, and the equation is read Infegral of adx is
equal to ax.

Let us here observe two things: first, that as (IX.) f/ (z) de
represents the differential of any function of @, f (z), and as
d f(x) and f’ (@) de signify the same thing, we shall have
JSdf (@)= _/f (x)de = f (2); i. e., the integral of a differential
only indicated, is obtained by suppressing both signs / and d.
Secondly, that as, C being a constant, d (f (2) + C) = (V.)
d f (x) equal, in both cases, f’ (z) da ; ff’ () dv may be given
by f(x) + C, as well as simply by f(2); i. e.,

0 Sf (@) de = f(2) + C,
/! (@) dz = (a),
S (@) + Cis called complete, and f (&) incomplete, integral of
S (@) de. In both cases, however, the integral is called indefi-

nite, for the reason to be given in a following number.
90
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XXI. General theorems.

Resuming again f(x) and its differential f” () dw, we shall
have besides d f (z) = f’ (z) dz and /f" (&) do = fd f () = f (2),
also, representing by @ a constant,

a/ff’ @)de = a/df(z) =af(2);
but from d f (x) = f’ (@) dz we have also ad f (2) = a f’ (z) dz
and ad f(x) = da f(2); hence

Saf’ (@) dx = fdaf(z) = af (x).
Therefore Safl(z)ide=a/fi(e)de;i. e,

1st. Constant factors of a given differential to be integrated
may be placed outside the sign of integration.

We know (VII. r.) that d [(¥F () + f (@) + ¢ (2)] = d F ()
+ df(2) + d ¢ (x); hence also /[dF (x) + df(x) + do(x)] =
SA[F (x) + f(z) + o (2)]; but /d [F () +f(2) + o ()] =
F@)+ f(@) + o(@) and fdF () = F (x),/d f(2) = f (z),
Jdo(x) = ¢ (2), therefore
JIdF (x) +df(x)+ do(2)] =/dF (z) + fd f () + /do(x);
ie;
2d. The integral of the swm of different differentials is equal
to the sum of the inlegrals of each term. Thus (V. 11, and V1.
ur, and I.)

_/‘(arlv —becosadr + ¢ %) = ax — b sin @ + ¢ log ().

We have (V. 1v.) domt+1 = (m + 1) a™dx. Therefore
S+ 1) ande = fde™+1=am+1, Now /(m + 1) a"dx =
(m + 1) f2"dz, therefore

Sady =

pm+1
m+1

3d. The integral of x™dx is obtained by suppressing dx,
adding 1 fo the exponent m, and dividing x™+?* by m + 1.

Thus, for example,
S 3de = 3 f2Pdw = o,

; 1. €.,
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T

2
SV P Ao [ de = _gi V.

XXIIL. Immediate integration ; integration by substitution ;

integration by parts.

These different methods of integration are used, now one,
now all()tllcl‘, accol‘ding as cil‘cun’lst.an(:es may Suggest,

I. When the given differential is such as to show imme-
diately the function from which it has been obtained, as in the
cases examined, Nos. V. and VI., the integration is ob-
tained immediately without having recourse to any rule, and
on this account, the integration is called immediafe. Thus, for
example, we know (V1. 1v.) that sin ada is the differential of
— cos 2 ; hence we conclude immediately

/S sin xde = — cos a.
In like manner (V1. 11.) we obtain immediately
S @'l (a) de = a*;

1
. x R 1
and since a”dx 1@ a’l (@) dz, also
Lo
Satde = D a’.
Also (VI. vir., VIIIL, IX.)
dx % D

T are (sin = ), /— e arc (cos = z),

dx

e

11. When the given differential does not show from its form
the function from which it has been obtained, it is then by
means of substitution so modified as to take one of the
known forms, and the integral is then found. This method
is accordingly called method by substitution. Let,for example,
@ (Va*—a?)dx be a given differential. Make o — 2° =3,

= arc (tg = 2).
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and consequently de = — g{f Thus /2 (Vd® —2?) doz =

t
b 82

e 27
—f.a,“(v"z)—-—-—i‘fzz 2=—%—35 = g Therefore

2
So (V@ —at)de =} (&® — :1:2)'“3’_.

But'let == ——_E-m;—: be the given differential. Make % — z;
L @
I e, @ = az, consequently do = adz, we shall have /== dv
\/az — a’.x
adz c?z dz
= i'ﬁﬁ—_‘"_ d: - Now(VI. v 0
S S = ( J+ =
= darc (sin = z) and ——f_?f_ = d are (cos = 2). Therefore
vVi1—2*
o H e are(sin= &
v aE—a? a’’
—- d.?:_ = arc (cos = =
\/(5 & i

Let ﬁmlly the given (hﬁ"t,rentmh be cos @ sin® xdz and
sin x cos® wde. Malke for the first of them sin 2 = z, and con-
sequently cos adae = dz, for the second cos z = z, and conse-

quently — sin @dr = dz; we shall have
sin® @

Scos x sin* adx = f2%dz = }2° )

cos®

Ssinzcos® adr = f— Pdz = — }P = — 5

Changing in these formulas z into 1,
3 1
sin® %’c A i o el cos. iz

JSeosdwsin® fx dix =

But d}x = }dx, and the constant coefficient } being brought

out of the integral sign, the same equations will be changed

into the following .
Jcos tx sin® ede = § sin® Ja, /sin }a cos® jade = — § cos® § a.
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111. Integration by parts is effected when, instead of inte-
grating the given function, the same is resolved into two parts,
each one of which is integrated separately. This method is
based on a formula which we establish as follows: Represent-
ing by # and z two functions of the same variable #, we have
(NI ) d (y'z) = zdy + ydz; hence

ydz = d (y - z) — zdy;

i. e., the product ydz of a finite by a differential function of
@ is resolvable into two differential terms, the integration of
which, if more conveniently obtained, may be taken instead
of that of ydz, to which it is equal, Now the last equation
gives us
Sydz =y z— [zdy;i. e.,

The integral of the product of two funetions of the same variable,
one finite and the other differential, is obtained by taking from
the product of the first funetion by the integral of the second, the
integral of the product of the second integrated by the differential
of the first.

Let, for example, v — & X dx or its equal (\ / f:—;— 1) xdz

be a given function to be integrated; we shall have
F
S Y& —at X ci.’:c=_/'('\/ gz—l) vde = — (V. 1v.)
a’ x
N = 1)d 5

The latter member is represented by the above general for-
mula, hence

2 ." 2 :rﬂ 2 2 L
AVETG = (VB S G
\’ )§—f2 2( _1)—_2_‘3_,5'

Now(V.11r1. )ci!'— =———r]v———2ﬁfd = —2—(—%?5— Hence
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a’dz
M/ e Ve /7

= jeva® —at +—~_/' =

&xr
= are (sm = —), there-
(2]

but we have found above / ‘/_i{_—
@ — T

fore
S(Va@ —a*)de =} [-’vv a’—a* + a* arc (sin = E)]
@
b
Let, for another example, (a®* — 2%) * do be the given func-
]

Observe first th 1t (aﬂ —a%) ? =(a®—a?)x

tion to be integrated.
=

(ﬁ'—r)*ﬂ’ftau—a)—% va' —a°, also a?
=agx 2 vVda—z 2 ; hence

3
(@—2)? do=a* V(@ —2) dze — & X & V(@ — o) do.
3

Now 2 V(@ —a%) de = — d % (&> —2?)*; therefore
3 L
S —2) de = a* /v (@ —P)de + L S d(a®—z")7;
the last integral of this equation is again represented by / ydz,
3 3

and consequently = @ (a* — 2% ? — f(a* — 2% *dex. There-
fore,

_/am'c)‘dx—aﬁf\/(a "}dx—[—{;*z:(a——x)

3
R, o

/(@ _:""2) 3 da,

32
from which, taking the common factor /(a®—2?)* dx of the

first and last term, alone in the first member,

3

S — ) ® de = fa /(@) do + o (@ — ) 7
but, from the preceding example,

NIy i B e A ==Y 4 araro wsinl (- 2y

SV(@—2°) de = }[x V(> —2") + @’ arc *sin ( a)]’

hence, finally,
7
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3
S(@ —a*)* de = §a’z v/(a® — 2°) + §a‘arc " sin (= —)

3
+ } x{a® —a%*.
The same method of integration by parts is applicable
immediately to the differentials @ *sin ade, @ - cos xdr; i. e,
observing that (VI. 111. and 1v.) sin 2dx = d — cos 2, cos adz
= dsin 2z,
S sinede = fa d—cos® = — X COsST—

(1st) J/— cos wdx = sin @ — x cos ,
st.
JSxrcos xde = S dsin @ = 2 sin @ — /sin ady

= cos & + « sin @.

From these two equations we infer the following :

/2@ *sin 22d2x = sin 2o — 2 cos 22, / i@ sin Jaedle = sin o
— da cos da,

S 2% cos 2ad2x = cos 2x 4 2z sin 2%, [/ 12 cos jedir = cos 3
+ 3@ sin iz,

which, bringing out of the differential and integral signs the

constant coefficients 2 and §, are easily changed into

S sin 2ade = } sin 2z — L@ cos 2,

S @ cos 2xdx = % cos 2w + Lz sin 2z,

S @ sin dadr = 4 sin o — 2z cos Lz,

S cos txde = 4 cos v + 2 sin da.

Let, for a last example, sin® adz, cos® xdx be the differen-
tials to be integrated. First, they may be resolved into two
factors as follows: sin®@ - sin adw, cos® @ * cos wdw ; but sin xdx
= d— cos @, and cos wde = d sin . Thus
Sein*ade=/sin’a* d—cosa. = —sin*x cos @ —/—cos & d sin’a,

= —sin® x cos @ + 2 /cos @ sin @
d sin @),
= —sin*x cos & + 2 fcos® 2z sin adr,
= — sin® 2 cos @ -+
2 /(1 — sin® @) sin ada.
Now / (1 — sin® 2) sin adz = / (sin xde — sin® xdy) =

(24)
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— cos @ — / sin® adz; therefore /sin® xdv = — sin® @ cos =
— 2¢co0sx — 2 /sin® zdr. Hence

Ssin® ede = — } sin’ @ cos x — § cos a.
In like manner we shall have
Jeos’ ade = fcos® @ * dsin @ = cos® wsin x — fsina * d cos® @,
and with a process altogether like the preceding we find
JScos® zdy = } cos® @ sin @ + § sin 2.

These and the preceding integrals become completed by adding
any arbitrary constant, C, to them.

XXIII. Definite or limited integrals.

Let C be any arbitrary constant and y = f (z) + C be any
continual function of z, we shall have dy = f’ () dz. Now
J () may be talen, as it is in reality, for the sum of infinites-
imal elements dy as many in number as there are infinitesimal
elements da in the 2 of f(2). Calling now a, the particular
value of 2 which makes f (2) = — C, we shall have f (z)) = 7y
— = C, and consequently
y=J (@) —f (@),
in which g, which is the integral of f’ (x) dz, represents the
sum of as many infinitesimal elements dy as are the infinitesi-
mals du contained in the difference @ —a; for the sum of those
clements which would make f(2) = f(2,) is destroyed by f(2;).
But so long as @ has no fixed value,  or /f’ (2) de remains

undetermined. It will become determined when @ receives
a particular value, for instance, . Now to designate that
the  corresponding to the integral of f”’ (x) dv represents the

sum corresponding to & — a, or to a,, — @, we affix to the sign

/ the two values of the variable as follows: 4 “ or s “m_ and
L L0 .

we consequently write ;

() S S (@) dw = f (@) —f (a0),
() S, " () d = f () —f (o),
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in both of which we must remember f (2,) replaces any arbi-
trary constant C.

Further to illustrate what has been said above, make a, +
de = z, ©, + dov = a, ’Lz—f—d.l} %3 oiia o it h G = T
we shall have

S @+ dn) — f (@) = f (o) do = o = f () — f (a0),
Flo b ey () = 1) do = = o) — (e
S (@2 + de) — f (@) = [ (@) dov = dys = f (w5) — f(22),
S (@n—1+ d”)‘“f('vm-—l) ""f (:1':,,;_.1) dz = dJm-—l—f(xm)

—S (Tm—1);

dyfy + dy, + . o o + AYpo—1 = f (@) —f () ;
but dy, + dy, + ... + dym—1 is the sum of all the elements
of y from y = g, to y = ., corresponding to those of @ from
X = a,to & = a,; i, as stated above, is = 0; hence the sum
of all the elements is y,, or the difference f (2,,) —f (2,). Now
Ym == /f (¥n) dz, which is represented by 5 “m f () da; there-
)

fore the equation (11.), in which @, represents any determined

hence

value of @, which changed into another 2, will give Sy S (@) da
Ty

= f (,) — f (@), and consequently
i ’: I (@) de — fm‘:" I (@) dee = f(2,) —f ().

But f (@) = Ympf (®2) = ¥u 5 hence f (@,) —f (@) = Y — Yny
which contains all the infinitesimal elements dy corresponding
to those of @ in the difference @, — z,. Hence f(@.) —f(an)
is the limited integral of f’ (#) dz between 2, and 2, and ac-

cordingly represented by _/f”' ‘i) desice.,
Lot 3

(11r.) /ri I (@) d = f (@n) — f (@)

We infer, therefore, from what precedes:
1st. The integral of a differential expression I (x) dx taken
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between two determined limits, #s the sum of all the values which
F (x) dx receives by the infinitesimal variations of x from one
limit to the other.

2d. The integral of the same expression is given by the differ-
ence of the values which its indefinite integral, abstraction being
made from the constant, receives when we substitute in @ the
values of x corresponding to the two limits.

To illustrate these theorems, let, for example, RR’ (Fig. 26)
be a parallel to the axis of abscissas OX of the orthogonal
system YOX, and consequently perpendicular to OY. The
ordinates of the different points of RR/ are necessarily all
equal to the constant segment OR, which we shall call /;
y therefore does not vary with 2, but the area limited by OR,
RR/, OX and the ordinate of a point of RR’, varies with the
abscissa of that point. This area, therefore, is a function of
@, which we may represent by y. Now the same area is the
product of the constant ordinate & by the variable abscissa.
Hence

y = hax;
and since, in our present supposition with 2 = 0, % also is
equal to zero, no constant is added to fw, or the constant, in
this case, is zero.

Let now KK’ = d#, we shall have dy = KM/, and the in-
tegral of KM’ (= hdz) is the area IXR. But if in the equa-
tion y = A, instead of @ = OK we would take & = OB, the
integral of Adz would be the area BR ; in each case, however,
the area is evidently equal to the sum of as'many infinitesimal
areas KM’ = dy as there are infinitesimal elements dz in @ =
OK or = OB. Now OK and OB are any two absecissas, and
to distinguish one from the other we may call the first @, and
the second @,. @, — @, is then the segment BK of the axis
of abscissas between the ordinates y., ¥., and the area KA or
(@n—an) I s = @y o —a,h, which is the sum of'as many elements
dy as there are infinitesimal elements dz in the segment x,,—x,
= BK, i. c. the integral of XM’ no less than KR, with this dif-
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ference, that the latter area is taken from @ = 0 to @ = n, and

accordingly designated by _/'d'c"‘ hdx ; the former is taken from
@ = @, to @ = a,, and consequently expressed by ff"‘ hdz; and
as in the first case qu""" hdx = ha,, so in the second

/.:c,,,, hdx = hx,, — hz,,

Ly
which corresponds exactly with the preceding theorems.

We may now proceed to apply the last theorem to some par-
ticular functions. But first let us observe that an altogether
indefinite integral may be expressed by the integral limited
by one term. For taking the integral of /7 (2) da from @, to

2, we have /f: J! (@) de = f (2) — f («,) and consequently
o

d /20 F @) de = d f (@) — df () = (2) dz,
and
LI @) e =/ d 2 f (@) de =/ f7 (¥) de;

but

SF @) de =) + C and /7 7 (2) de = J () —] ()
in which — f (2,) represents any arbitrary quantity C; hence

LI @) de =/ S (@) dv,

@, being that particular value of @ which renders f(z) = —C.

Coming now to the applications, let

1

== 1——-— d, s aide

= dz, P prigr

be the given differential functions. %,_ dx or %1 is (VI. 1)

the differential of 7 (z), therefore the indefinite integral
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of 5- dxz is I (z) + C; hence the integral of the same function
from 2 = a, to any value of @ of this variable is
2l
,/:vu = de = log (x) — log ().

, 18 (VI .3x.) the

The second function, or its equal ———;
@ —x

differential of% arc (tg =%). Therefore its indefinite in-

tegral is -é— are (tg = %) + C; hence the integral of the same

function from @ = 0 to ¥ = @ is

& gl i ] giandon o 2.
fO mch- — are (tg =1) - e (tg = 0).

Now arc (tg = 1) = 45° = g, arc (tg = 0) = 0; therefore
QR w
a—2¥ "1
d i A am+1
The last function is (V. 1v.) the differential of ] ; hence
sm 41
its indefinite integral is :r F1 + C, and consequently its defi-
nite integral from ¢ =0 tox =1 is
' 2 il Sl O |
‘/0 Z dJ/ = ;n—_'-l.

XXIV. Differentials of an are, of an area terminated by an
are, of a sector, and their corresponding integrals.

1. Let (Fig. 27) the plane eurve CC’ be referred to the
orthogonal axes OX, OY, and let ¢ be an are of it taken from
A, a determined point whose co-ordinates are x, ¥, to another
point M variable and whose co-ordinates are any two « and .

Let also ¥ = f(2) be the equation of the curve and KK’ an

infinitesimal increment dz of . Drawing the ordinate K/M’,
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and from M, MD parallel to OX, the sides MD, DM’of the
infinitesimal right-angled triangle MM’D will respectively be
equal to dx and dy. The infinitesimal are MM’ = dr, which
may be regarded as coinciding with the chord, will be equal

W e sermy v IR BN s e Y z
to Vida® + dy* = ( 1+ d::c-'g) dx, and since == ' (@), the
differential of the arc ¢ is
de = (V1 +f" (2)) dz,

and consequently the integral
Sy VIF @) dw =0

taken from the absecissa 2 = @, to any other @, gives the recti-
linear measure of ¢ for any plane curve ; hence the last formula
answers the purpose of rectifying plane curves,

Let, for example, AM (Fig. 28) be the cycloidal arc ¢ taken
from the vertex where is the origin of the axes, to the point
M whose co-ordinates are 2 and . The equation of the cy-
cloid referred to the rectangular axes and as already determined

(XXVIL,A.G.)isy=crarc(sin =22 =2 4 VoG

c
in which 2¢ represents the diameter aa’ of the generating cir-
cle. Taking the differential of this equation, and to simpli-
fy the operation make v/2cx — 2 = z, we shall have, first,

i

: z 2 : g e
y = e arc (sin = —c—) +- 2. Therefore (VI.viL) dy=c¢ /1____%
g
+ dz = (ﬁc =+ 1) dz. Butz= v'2cx — 2*; hence ## =

(e—2) dx
v 2ex — a?

10 (4 (c—2z)
g (Jézt‘gg_,_ = +1) S ds

2ex — z* and dz = . Therefore

A —
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(‘3""'"37 )\/an,—-fv‘
20-—-_-.:_:“ 2¢ —

finally,

and consequently f/ (z) or
dy _ o\ [2c—=
de i

Hence for the eyeloid the arc ¢ is given by

o (VI+/=@) daf:-——-_/'x (\/'2"‘ — =) das=

Zc

€
_/;: = v, dioe
2e dx da
Wy
But da, 2¢ ¥ \f.';;'

Vi 2" dL—-f\/_c 20V 7 = 2V %0 fd Vs = 2V 7

thucﬁ}m, from the ln eceding number,
fru -;Ea';z:=2v 2e 7 — 2V 2¢" 2.

Taking @y, = 0 or the abseissa of the origin A of the axes, and
for 2 the abscissa AK corresponding to the point M, so that
e= AM, we shall obtain .
AM = 2v27¢ - AK.
Now 2¢ is the diameter of the generating circle, and the chord
AC which joins the extremity A of the diameter with the
point C of the circle met by the ordinate KM, is mean geo-
metrical proportional between the diameter and AK ; there-
fore V2 ¢+ AK = AC; hence the arc AM of the cycloid is
the double of the chord of the generating cirele joining the
origin of the axes with the point met by the ordinate of M.
But if AK should become equal to the diameter 2¢, we would
obtain AB = 4¢; i. e., the rectilinear length of the cycloidal
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are from the origin of the axes to the base is twice the diam-
eter of the generating circle; hence the whole length of the
cycloidal line is four times the same diameter,

1r. Let, secondly, o be the area of ABKM (Fig. 29), termi-
nated by an arc ¢ of the plane curve CC’, by the ordinates y,,
y of the extreme points of the same arc, and by the difference
@ — @, of the corresponding abscissas. Taking, as before, KX’
= dwx, the infinitesimal area between the ordinates of M and M/,
dzx and dv, is the differential of o, and consequently MKK/M’=
da, MM’, as infinitesimal, 01[1(:111("5 with the chord ; hence du
may be regarded as a trapezoid whose height is e, ‘md Yy +
dy the parallel bases, therefore do = § (y + y + dy) de = ydz
+ ddyde. Neglecting the second term as an infinitesimal of
the second order, we shall have

do = ydex,
and representing as usually by = f (@) the equation of the
curve referred to the orthogonal axes OX * OY, also
da = f (@) dz.

Now the integral of this function, taken from =z, to @, gives us
a; l. e,

o = ‘/.Tmu f (’L‘) da.

Let, for example, the given curve be the ellipse referred to the
axes of the curve, and whose equation is (XII, A.G.)y =

!1 vai — m-” we shall have
¢

o = 2 6 va'—at da =%fw v o —at de,

o @
Now (XXIIT. 111.)
S (V@ —a)  de = 3 [avVa> —2F + a? - are (sin = %)]
Taking 2, = 0 this integral becomes zero, and taking 2 = a it

becomes 1a** — ; hence

2

Eas) 0“2 g pere A
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But the area between the limits # = 0, @ = a, is the fourth
part of the area of the ellipse ; hence, calling. A the area of the
whole ellipse, mab will represent this area; or, since (XI. (2),
A.G)ab=a*vV1—¢,

A =rab=ra®>V'1 —¢.

Let another example be taken from the ecycloid, which

(XXVII., A. G.) is represented by the equations
z=-c(l—cosw), y=c(w+ sinw);

from which dz = ¢ sin wdw and ydv = ¢ v sin wdw + ¢*sin® wdw

$ar ;cﬂ_w) dw. But yda

= (Trig. § 18 (g")) ¢® w sin wdw + ¢* (

is the differential d« of the area; hence the area of the semi-
eycloid, which corresponds to the definite integral of yda taken
from @ = 0 to @ = 2e, is given by
2¢ 2¢ 5 c? ¢® cos 2w ¥

cc=_f0 yd;t:=f0 [c’wSJn wdw -+ 5 d-d————z— Iw],

but (XXT. 11.) the last member is resolvable as follows :
2 2
c"’_/'gcw sin wdw + 32/.02(: d:.:—%fozccos 2.

Now with # = 0 also w = 0; with 2 = 2¢, w = «; hence

foz" @ sin odu = /7o sin wdu = (XXIL 1r. 1st.) =
fozc dw -_—-fow du =, _/'020 cos 2udn = ‘/OW% c0s 2ud 20 =

%_/‘DW cos 2w d 2w = (VI. 111.) } sin 27 =0;

therefore

a=c(x+3m)= o

Now « represents the area of the semieycloid. The area, there-
fore, of the whole cycloid is
20 = 38w ¢’;

i. e., three times the area of the generating circle.
If the axes, instead of being orthogonal, form any angle 4,
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and the area AEHM =a be terminated by the oblique co-

ordinates AE, MH (= %); the infinitesimal increment MHIL/M’

= da, corresponding to the infinitesimal increment da of the

absecissa OH, may be considered as a parallelogram, neglecting

the triangle MM’D as an infinitesimal of the second order.
- Now the area of this parallelogram is HH’ - MK ; and HH' =

dr, MK = MH " sin d = y "sin §; therefore

do. = 3 * sin 0 da.

Thus o = sin ﬂ/::n yda ;
Lo 1)

which is a formula more general than the preceding to obtain
the area of a plane surface terminated by a curved line.

1rr. Let O (Fig. 30) be the origin of the axes OX, OY, to
which the plane curve CC’ is referred, and the pole of the
polar co-ordinates, having OX for polar axis. Taking A for
an invariable point, let @y, 7, be the rectilinear co-ordinates
OB, BA of that point, and po, ; the polar co-ordinates OA and
AOX of the same point. Let also 2, y, and p, w be the recti-
linear and polar co-ordinates of the movable point M. The
curvilinear sector AOM, which we shall represent by «/, in-
creases by diminishing w. The same sector is also equal to

AOB + ABKM — OMK =% 4 « — % hence (VIL 1.

2
and 11.) do! = d "E‘g-" + da—d _ﬂy = do — 3/_6'?1,_—5 :‘cr.?g/. But de
= yda ; hence do’ = ﬁl—%ﬂy But if we suppose « and o

to increase together, taking nmamely the variations in a retro-
grade order, the signs then of da and dy will be changed, thus

do?. ot Y90 — wdy

5

in which the upper sign is taken in the first, and the lower sign
in the second supposition. '
To express the same differential by means of polar co-or-
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dinates, let us take the well-known formulas 2 = p cos w, y =
psin , from which dz = cos w dp — p sin wdw, dy = sin wdp +
peos wdw, HHence

xdy = pCos w sin dp -+ pz cos® wdw_,

ydx = p sin w cos wdp — p* sin® wdw,
therefore
ydo — ady = — p* (sin® @ 4 cos® w) dw = — p* du ;

hence
do! = = Lp*dw;

in which the upper sign is taken when a and w increase or di-
minish together. The area of the sector or o is therefore given
by the second, or by the third member of the following equation :

of = £} [T ydy —ady = = ;2/02’ p* d.
b )

Let, for example, the-circle be the curve in which the sector
is taken from w = 0°, to w = 360°; p in this case becomes a
constant if the pole be taken in the centre, as we suppose it to
be, and equal to the radius #; hence

Oz
el g,;’a"g_/ dn = -M'z,
0
as we know from geometry.

XXYV. Circular eurvature ; osculatory circle and radius of
curvature of a plane curve.

Representing by » the radius of a circle in contact with a
straight line, the same cirele approaches to, or recedes from, the
tangent according as the radius 7 increases or decreases. In
other words, the curvature of the circle varies with the radius,
but reciprocally ; it increases, namely, or decreases with the

S | : :
ratio —, which ratio may consequently be taken to represent
r’ :

the curvature of the circle having » for radius. The curva-
ture of the circle being the same everywhere, it will be repre-

1
sented everywhere by —. Now any plane curve may be con-
T
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sidered as composed of infinitesimal circular elements, and the
cirele corresponding to each element is called the osculatory
circle of that element; and consequently, » being the radius of

. e
the circle, — gives the measure of the curvature of the same
r
element. But the curvature of plane curves different from the
circle is different at different points, consequently — is a varia-
7

ble quantity for these curves.

Let (Fig. 31) CAC’ be any plane curve whose equation is
y = f (&), and let MAM’ be one of its infinitesimal elements
bisected in A. To determine the radius of the osculatory cir-
cle of this element, observe, first, that the tangent of the curve
corresponding to the middle point of AM coincides with the
element AM; and the tangent corresponding to the middle
point oft AM’ coincides with the element AM’. TLet T¢ T/¢
be the two tangents, and m, m’ the points of contact. Call
(tx), (") the angles which the same tangents form with the
axis of abscissas, and (#’) the infinitesimal angle which they
form one with the other. Now the perpendiculars mD, m/D to
the tangents meet in the centre of the osculatory circle, corre-
sponding to MAM, and MD is consequently the radius of this
circle. Representing by ds, AM = AM’ = mm/, the quadri-
lateral mDm’A gives us

mDm' = 180° — mAm/ = (i').
Therefore, taking the are corresponding to (#’), in the circle
having 1 for radius, and calling the arc also (&), we have
({ordr el e

hence o= fﬁ.
o
But (#') = (to) — (t'x) = — [(’z) — (tv)] = — d (tz) ; and since

(XV.) tg (iz) = f’ (2), tr = arc (tg = f’ (2)); also (XXTV.1.)
1
de = [1 + £ (2)]* da 5 therefore

— [1 +ff2 (ﬂ»)]-z dx £1158 ___I;]-_'Ff’z_(:ﬁ]_
et g e =7 @) (VI1.xx) :

3
2

J7 (@)
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This equation gives the length of the radius of the oscula-
tory circle, or radius of curvature corresponding to any point
(z,y) of any curve, in a form easily applicable to particular
cases. '

Let us take, for example, the parabola for which we have
f(z) = v 2px, and consequently f/ (z) = ‘—/%i = j}();-) = {}’

v L R

29 e T

for the parabola is

Hence the radius of curvature

-

ram R JEN R 3 3
et __(_ 7 :,,z) _@&+p)? _ @Cpz+p?)°

2 pz a4’ 1}2

-

Now (XV. 1st) v'2px + p* = n, which is the normal of the
point (@, y) of the parabola. Therefore for the parabola » =
3

O : ;
— ; 1. e., The radius of cwrvature of any point (x, y) of the para-

bola iz equal to the cube of the corresponding normal divided by
the square of the semiparameler. Now, p being constant, »
varies directly as 7*; and », which has the minimum value
= p, when @ = 0, increases with z indefinitely. Ience in the
parabola, the greatest curvature is at the vertex of the curve
for which the radius of the osculatory circle is equal to the
semiparameter ; and the curvature of the branches diminishes
continually as the branches recede from the vertex.

XXVI. Erolutes and involutes.

Conceive a thread, flexible and inextensible, applied over
the curve CDB (IFig. 32) so as perfectly to coincide with it
from C to B. . If this thread be gradually removed from the
curve, 8o that the removed portion be rectilinear, on the same
plane as the curve and tangent to the curve, as DM, for in-
stance ; the extreme point M of the thread thus evolved traces
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out another curve, which is called the involute, as the one from
which the thread is evolved is called the evolute. T'rom the
same evolute different involutes may be obtained, taking
threads of different lengths, as, for instance, CDL, which, when
applied to the eurve, goes beyond B to A, BA being tangent
to the curve in B, and the involute corresponding to this
thread being ALI/A’. Now whatever be the involute ob-
tained by the evolution of the thread, the centres of the oscu-
latory circles of the inwvolute are all along the evolute, each
and all of whose points are centres of these cireles. ILet, in
fact, the extremity M or L. deseribe, by the evolution of the
thread, the infinitesimal arc MM’ or I.I.. The length of the
evolved thread, in passing from the first to the second posi-
tion, varies only by an infinitesimal quantity ; hence the are
LI/ will coincide with that of a circle deseribed by a radius
having its centre in D, between the contacts of the first and
second tangent, and LLD or MD for length. Now what we
say of the infinitesimal element LI or MM’ is applicable to
each and all the other elements of the involutes. Hence all
the centres of the radii of curvature of the same curves are
along BDC, of which each point is one of them. We come to
the same conclusion by a different process. T.et AA’ be any
portion of curve, whose curvature diminishes from A to A’.
Supposing that A A’ turns its concavity toward the axis AX, the
tangents of its different points will form angles with AX, con-
stantly diminishing from A to A’. Now the radius of the
osculatory circle of each point of the curve is perpendicular to
the tangent corresponding to that point ; hence the radii of the
osculatory circles, corresponding to the points L and 1./, will
form an angle with each other, and representing by LM, L/M’
these two perpendiculars, they will meet somewhere at a greater
distance from I than D, the centre of the osculatory cirele
corresponding to I, on account of the diminishing curvature
of AA’ toward A’. Now if we take I.I/ infinitesimal, the
prolongation of LD, from D to the point of intersection with
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the normal from I/, is also infinitesimal; hence the same
point is the centre of the osculatory circle of I.”. Observe, in
fact, that a circle may be described which passes through L
and I/, whatever the arc LI/ may be, having its centre some-
where on the prolongation of I.D. DBut when LI/ becomes
infinitesimal the prolongation of LD also becomes infinites-
imal, the arc of the circle coincides with the element LI of
the curve, and the point of intersection of the two normals
from I, and 1./ is the centre of this circle, and particularly the
centre of the osculatory cirele corresponding to I.”. Following
the same process for succeeding points, we obtain a polygon
of infinitesimal sides, the points of concurrence of which are
centres of osculatory cireles of the different points of the curve
AA’. | But a polygon of infinitesimal sides coincides with a
curve, and each infinitesimal side coinecides with a tangent to
this curve. Again, this same side, produced, forms the radius
of the osculatory circle of the point of the given curve met by
it. Hence the centres of the osculatory circles of AA’, which
represents any curve different from the circle, form another
curve BDC, and the radii are the tangents of this curve taken
from the points of contact to the points of AA’ met by them,
the points of contact being the centres.

The law with which the curvature varies is different for dif-
ferent eurves; hence each curve has its own evolute. Let us
see two examples in the evolute of the parabola and in that of
the eycloid.

I. We have seen in the preceding paragraph (XXV.) that
the radius of the osculatory cirele of the vertex of the parabola
equals the semiparameter p. Now the axis AX (Fig. 33) of
the parabola is perpendicular to the tangent corresponding to
the vertex A. Taking, therefore, on the axis, AB = p, B is
the centre of the osculatory circle of the vertex A, and one of
the points of the evolute ; the axis AX is besides a tangent of
the evolute in B. Taking now any point I. of the upper
branch, whose co-ordinates are # = AH, y = HL, let LN be

8
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the normal corresponding to that point, and (XXV.) taking

3
NZ
LD = @m—;;i)—, D is the centre of the osculatory circle

corresponding to L.

To find the equation of the evolute let us refer it to the
orthogonal axes having their origin in B, and the axis of
abscissas coinciding with the axis AX of the parabola. Rep-
resenting by @, 7, the co-ordinates of the evolute, drawing from
D, DH’ perpendicular to AX, we shall have for the point D,
z,= BH’, y, = II’'D. Draw from D, DD, parallel to AX,
and produce ILIT until it meets this parallel in D,. ILet, lastly,
N be the point of the axis AX, met by the radius LLD. LN
is the mormal of the point I. which (XV. 1st) is equal to

1
(2px + pg)-;'j- , HN is the subnormal and (¢b7) = p. Now from
the similar triangles LHN, LDD, we have LN : LD :: NIL:

DD,, LN:LD::LH:LD,; i. e.,
Sip s

s : %)z &
2pz + p*)? : - 28 (20w) LD, s
from which
HH' = 22 4+ p, LD, = ‘~/2p:1: Ak % \/Z;p;v;
and consequently, since BH’ (= «,) = HH’ — HB = HH’ +
AH — AB, and DH’ (= y,) = LD, — LH;
2z =
z, = 3z, y, = 5 v 2pa.
Bubstituting in the second of these equations the value of @
taken from the first, and squaring the members of the result-
ing equation, we obtain

A

Y =2—7‘é—)x,,
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the equatlon of the evolute of the parabola of the second order,
which is itself called a parabola, but of the third order or
cubic, It has two symmetrical branches, one on each side of
the axis AX from B toward X, the branches turning their
convexity to the axis, and ending in a cusp at B, where AX

is a tangent to both branches. -
1. We have (XXIV. 1.) for the cycloid, Zf:;: “)lc—;—if,

taking the origin of the orthogonal axes in the vertex, or ex-
tremity, A of the axis AA’ (Fig. 34). But let us take the
origin of the orthogonal axes at the extremity B of the base
BB/, taken as axis of abscissas, BY’, perpendicular to the base,
being the axis of ordinates. Let now M be any point of the
cycloid, whose co-ordinates 2/, »’, with reference to the new
system, are BK’, K’M. Now BA’ = x¢, ¢ being the radius
of the generating circle ; hence MK, or the ordinate y of M,
referred to the,axes AX, AY,is equal to A’'B —a/ = ex —2’:
the abscissa of M referred to the same axes or @ = AA’ — A’K
=2 —y’. Hence dv=— dy’, dy = — dz’. .Therefore, sub-
stituting these values in the above equation, we obtain

d"‘/ 26 —_ 1;

[1+/7(2)] T

f”( ) e
gives (X'V.) the value of the normal n, and the second gives
(XXV.) the value of the radius » of the osculatory circle of

Now the first of the two formulas y V1 + f7 (),

any point of a plane curve. In our case f”* (2/) = ( )

ot JC AR, [

y
2e dy’ 2¢
21" (@) f" () da’ = g0 di, A = == () dz’ ; hence

@) = _.‘72 * Therefore (X'V)

Do
o 2?, and this equation differentiated gives
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n=MN =y’ VI + 7)) = vy
3
A

3 [aoy
A L Y
jh’ (:v!) e
hence » = 2n; i. e., the radius of curvature of any point of the
cycloid is the double of the normal of the same point. Now
the normal corresponding to the origin B is = 0, and the
normal corresponding to the vertex A is = 2¢; therefore the
radius of curyature corresponding to the origin is = 0, and the
radius of curvature corresponding to the vertex is = 4e. Pro-
ducing therefore AA’ to A, so as to have A’A, = 2¢, and pro-
ducing the normal MN of the point M to D, so as to have
ND = MN, the evolute of the semicyecloid BMA is a curve
which passes through the points B, D, A,. To determine the
quality of this curve, let the arc BD = ¢, and referring the
evolute to BA’ taken for axis of ordinates, and to BX,, taken
for axis of abscissas, and representing by @, , the co-ordinates,
we shall have, with regard to the point D, @, = BK, = DD,,
and y; = DK,. Now, since ND = MN, the triangles NMK’,
NDD, are equal; hence MK’ == DD, i. e., ¥’ = &,; but the
arc BD = MD, and MD = 2v'2¢)/, therefore
¢ = 2V E«_F,_ ‘

Now this value belongs (XXTIV. 1.) to a cycloidal arc having
for axis BB’ = 2¢ = AA’. Therefore the evolute BDA, of
the semiecycloid BMA, is another evolute equal to the latter,
but inverted. In like manner, the other semicycloid B’A has
the corresponding evolute B’A’, which is again another semi-
cycloid equal to B/A.

XXVII. Integration by series.

‘When a differential f/ (2) de cannot be accurately integrated,
the integration may be obtained by means of a series as near
as desirable to its exact value, provided the conditions, which
we here subjoin, be verified.




INTEGRAL CALCULUS. 115

Let X, X, X;. . . represent different functions of the vari-
able @, and let f’ (), from @ = @) to @ = &m, be capable of
being developed into a converging series X; + X, + X3+ ...,
i. ., into a series the terms of which diminish in such a manner
that, by increasing indefinitely their number, the sum of all
approaches ever more to the fixed and determined limit f7 (2).
In this supposition we shall have
Jgf”‘j’ () dz =_/§:"" X, dz —i—/;:"' X, dz —!—_/;:’"' X ol s S

To simplify the case, let X, = A, X, = Bz, X; = C2? ete.
The preceding formula will be changed (XXIII. (r.), (11.),)
into the following : :

A t;:’” (@) de = A (2n— 2) + 3B (@2 — %) + 3C (@’ —a°)

= ailte
Consequently, making @, = 0, and taking 2 for 2,

/avf’ (x) de = Az + 3Ba2® + 3C2° 4+ ..
And this series represents the definite integral of f” (z) dx
between @ = 0, and @, approaching more and more to its exact
value the greater is the number of terms that are taken.

By this method of integration we may develop into series
those functions which are expressed by definite integrals.
Let us see it exemplified in the following cases ; and

1st. Let log (1 + 2) be a given function of . From the
fist case (XXIII.) we have log (1 + z)—Ilog (1 + )

=/;: ; 'i?"x ; and consequently, with 2, = 0,
dz g 1

) == x—————: —— et
Bl Gl S i O

Now (see Alg. § 67), supposing 2 << 1, -1%5’ =1—z4 2f—

@' 4 .. .; the series of the second member being unlimited, the

condition therefore to be verified, in order to have / (;B ].—_j_——-d;v
z
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expressed by a convergent series, is verified, provided o < 1;

i. e., in this supposition,
a2 3 4

2 s da @ & @&
+

./0 1_*_,1’ :v__z"_!""?—"—"f alaey
therefore within the same limits,
2? :1'3 !

2d. Let the given function be arc (sin=wa). Now (VL vi1.)
dz

d are (sin = @) = -—————, therefore
1—2*
o dxr e
-/(-J e b arc (sin = ).
But (XI. 2d,) if 2 <1,
% 3 3-5
e ] B d LS o ik I
R g + 3a® 4 572 +2'4°6%+
Hence
arc (sin = @) =fg (1+ ;«:c’+2—§—aa:‘ +§§:%x5+ ) dx
1 3 3-5 o

A _,Bs 0
Athgg® s Y p e gy
By means of this series we may find the value of the semiperi-
phery = of the circle having 1 for radius as nearly as desirable.

% . o o
For. take 2 = %, the corresponding arc is —-; hence

1 3 35
=G tgmmtor st
=3, 1415926 ...
3d. Let also the given function be are (tg = 2). We have

(VI. 1x.) d*are (tg = @) = 3 i - ; hence

2 dr
‘/6 1_-?_.';3 = arc (tg = x)_
i

But ifm{l,m=1—mg+x‘—x5+w8—...
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Now the arc of a tangent << 1 is necessarily < —:— There-

fore, for the positive ares from 0° to %, we have

:7.1‘0(tg-——-x)=/'(;u(1—---:z:2--{--:e:‘—:z:"—!r-:tr"—----...)da:=.\fr;-—':’:)’.i.3

a® '
+~5~——?+...

The complement of arc (tg = ), when @ << 1, is an are
%. Representing by z its tangent, the value

between -~ and
4
of this tangent ranges from z= 1 to z= o ; hence l S
=

Also are (tg = 2) = g- — arc (tg = @), and since tg @ =

i 1
—; consequently

fg(90°—ay *
1
arc (tg = 2) = %—~arc (tg= ?) ;

1 1 1 1 | &y
and are (tg=}“)=?_:§i+§;5_7_‘g

a L4
— to — we have

Therefore for the positive ares from 3 5
ks 1 1 1 1
are (tg = 2z = 3 Tt e ER R T

XXVIIL. Inlegration of differential equations of the first order
and degree, and between two variables.

An equation between two variables is an equation in which
enter only two variables and their differentials. To integrate
differential equations means to find a finite equation between
the variables of which the differential is a result. The order
of the equation is the same as that of the differential of the
variable taken as function of the other. For instance, the
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rariables being v and =, if ¥ be considered as function, of z, if
the differential of y entering in the equation, be of the second
or third order, the equation also would be said to be of the
same order ; and since the order of the derivative follows that
of the differential, so also the order of the equation is taken
likewise from that of the derivative of the same function. The
degree of the differential equation is taken from the power of
the differentials, either dx or dy, or both. We limit our dis-
cussion on differential equations between two variables, to
those only of the first order and degree, such as
(@) @ (:U, y) de + x (z,y) dy = 0.
Now the equation (¢g) may be the result of the differentiation,
for instance, of f (@, v), which we shall represent by p, or the
elements contained in (g) may be combined together otherwise.
In the first of these cases (g) is said to be an exact or total dif-
ferential ; in the second, it is simply called a differential equa-
tion, or, to distinguish better this case from the other, we
may call it inexact differential. We shall consider the two
cases separately, and, commencing with the exact differential

first, since (XV1.) dp = d.p + d,m or = d - dz + :: dy, and

the differential of p is by supposition the ﬁrst member of (),
we shall have

ez, y) = ,x(,y) y

but from these equations we ohtain
do(zy) dw dx(®ny)  de
dy = dady’ de  dyda’

dz
and (X'VII. )d.ui’J S

dfp(w, y) _dx(®y)

(@) g S,

Therefore, in order that (g) may represent an evact differential,

the equation (g,) must be verified.

; hence, al so,
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Now, to find out the original function f(z, %): Since the first
term of (g) is the partial differential of f (z, ), relatively to z;
by integrating this term as a differential function of 2 only, we
shall obtain f (@, ). But an indefinite integral may be ex-
pressed (X XIII. 1.) by an integral, which begins by a particular
value of the variable, with an arbitrary constant added to it.
Designating then by Y an arbitrary function of y, which in
the present case is regarded as constant, we shall have

u=_,€:q=(m,y) dz + Y.
To determine Y, let us differentiate this equation relatively
toy. We shall have
dye = /2 ¢ (2,9 + dy) de — /2 (@,7) de + dY,
and (XXT. 2d)
d,p =fw d—q’c%’ij—-) dyde + d'Y.

&y
But d,u = x (2, y) dy, and, since from (g,) & m((z:;"’-l) = dxcg'zﬂj—),

therefore :
x (z, y) dy = _f ¥ d_x(_q,_?j) dedy + dY

fx dx (:L, J) dady + dY

Ty
=x(,¥) dy_"x (@, y) dy + dY ;
. and consequently,
dY = x (v, y) dy, Y =./yx (@0, ) dy + e
Substituting now this last value on in the first of the above
equations, we shall obtain

(72) w =/_,';u ¢ (v, ) dz +/§:x (@ y) dy + ¢,

in which ¢ represents, as usual, an arbitrary constant.
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Let, for example,
(62y — y°) de + (32° — 2zy) dy = 0,
in which ¢ (2, y) = 6zy — ¥*, x (2, y) = 32> — 2xy, and con-
sequently,
4o (®Y) _ g0 oy dX(®9) '
gy = 6o —2y =X 0,

The condition (g,) is thus verified, and the given equation is
an exact differential to which the resolution expressed by (g.)

may be applied. Now _/;:: (6ry — °) doe = 32’y — 3’y —y'x

-f— Y o, _/fyzi (Bx* — 2w5y) dy = ayy — 3%y — @ + T’ ;

hence
p= 3%y — y’w — (32’y — 2Y’) + e
The terms 3x,°y, — @¥,” are constant, and, observing that the
given equation has O for the second member, its integral
w also must be a constant. Representing now by C the sum
of all these constants, we shall have
32’y —y'w = C,

which, differentiated, reproduces the given equation.

Inexact differential ; resolution by multiplication. Let us now
take (g) as representing any differential equation of the first
order and degree between two variables. Its integral may be
obtained by different methods, one of which is to find a fac-
tor M, by which multiplying (g), the product will be an exact
differential. This factor, however, is not easily found, except
in the two instances which alone we shall examine here.

First case. The first of these two cases occurs when the
factor M, which renders (g) an exact differential, is a function
of @ only or of y only. But if (g) multiplied by M becomes
an exact differential, the condition expressed by (g,) must be
verified about this product; i. e., we must have

d[Mo(z,y)] _ d[Mx(z,y)]
dy dx
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Now (VII. 11.)
d [BI @ (@ ?/)] e do (3"1 y) d_l\_']:
=M i + ¢ (2, 9) 5

dy
N 2 d oy (: d
I 0]y 800 ¢ D,
Therefore
d‘?(TJJ) _‘f_l\i': dX('v’ J) dM
1) R d_/ + 0 (,y) = M & +x(z,y —

But in the supposxtrlon of M being function of the only varia-

ble @, L 0, as in the supposition of M being function of

- =

dy

the only variable ¥, C% = 0. Hence in the first of these sup-

positions the condition of' integrability of () x M is, that
1 Li\[ (d P (ﬂll{) dx (“”) ?f))
M dv % (:n, Y) dy

in the second,
AT JM: 1 (dx('?-?; y)__do (T, y))

M dy oz

dM . 1 dM
Now My is a function of the only va.mable 2, and M
isa function of the only variable 7 ; hence M being a function

of the only variable @, (¢) X M cannot be an exact differential,

unless

(dtb (z, y) - dx ('v ?/))
x@y) * dy

be a function of the only variable . And M being a func-

tion of the only variable 3, (g) X M cannot be an exact differ- |

ential, unless

Wi doelomhil de@)
o (z, ) dx dy

be a function of the only variable . Supposing now that the
one or the other of these conditions is verified, the factor M

remains to be found.
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Calling, for brevity’s sake, x, ¢ the functions x (2, %), ¢ (%, ¥),
from the last two equations, we have
dM _ 1 de dx dM 1 dx dop
Fetuh By £ oo BRI o d
NS o (dy o’;z:) °’'M ? (d z  d ‘;)

Now (VI. 1.) {IL}I o (M). Therefore
log (M) — /% (ff_;._%) dz
or log (M) =_/% (%—gﬁ) dy
i. e., in the first case,
AP

in the second,
1ox.

LI=3 .p dax dy -
Let, for example,
2 x
= do — 7 dy =0

Y
be the given equation, i. e., let ¢ = %, X = —;, with these
elements,
1 do dx ¥ 2 L
Lo iyt o2y Lyl
S T dx
that is, — e is a function of the only variable
dg dx dax
f cipainab g
And the factor M = (d‘? Lfe i TS ; but % =

d log x, therefore M = ¢198 *) = 2. With this factor the given

equation becomes

Qa
= dxh—-—df =0,
Y ¥ i

whose first member being an exact differential, its integral is
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obtained by means of the formula (g.), from which, making

zy = 0, we obtain

:’li.g p— C,

J
which, differentiated, reproduces the preceding equation, from
which we obtain the given one, dividing it by .

Second case. The second case in which we propose to find
the factor M, is when the equation (g) is homogeneous, and
both functions ¢ and 3 of the same degree.

We call homogeneous a funection f (2, %), in which the terms
arereducible to an integral form and are all of the same dimen-
sion, as in the following trinomial :

62" + y'z* — 2y'w,
in which the sum of the exponents of' the two variables is of
the same dimension or degree, 5 in each term.

Supposing » to be the degree, and multiplying each variable
by any factor », we shall evidently have f (nz, wy) = v f (2, y).
Considering now w as a variable, and, differentiating the last
equation with regard to w alone, we shall obtain

nut—1 f (@, ) du = fluz (v, wy) dux + f,, (uz, wy) dwy,

= @ [z (w0, wy) duw + y [y (v, wy) du;

from which, making v = 1,
nf(@y) =af=(@y) +yfy (‘:J),
, 1. e, The product of the homogencous function f(x,y), by its
degree n, is equal to the sum of the products of the partial deriva-
tives, by the variable to which the derivatives are referred.

Let now M be another homogeneous function of @ and 7,
and such, that multiplying (g¢) by it, the product be an exact
differential of p, and w itself be a homogeneous function of
the nth degree of the same variables. We shall have

M ode + M x dy = dp;
and from the above theorem,

Mz ¢ + My x = np.,
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Calling % the degree of M, and A that of ¢ and y, the degree
of p. must necessarily be £ + A+ 1;i.e, n =5k 4+ A + 1.

Divide now the first by the second of the last two equations,
we shall obtain

ede + xdy il s [ 1
@ 4+ yx n e
2 el 1
Now (VI 1.) i dl(»); hence the second member
I
of this equation is an exact differential, and consequently the
first also; but the first member is the product of (g) by M =
—; hence whenever g and x are homogeneous functions
TP + Yx
of the same degree as @ and y, the equation ¢dz + xdy = 0 be-
' 1

e + yx

comes integrable by being multiplied by M =

Let, for example,

(ey + *) doe —a*dy = 0
be one of the equations represented by (g) in our present sup-
position. The factor M will be —-——u—-—l—i—-—-—-—-o = i,, by

@@y TV — g

which multiplying the given equation, we obtain

1 1 @

L PR TR

( v -+ 2:) da | 7 dy :
the first member of which being an exact differential, it may be
integrated by means of the formula (g.), from which, taking
@y, = 0, we obtain

% + log (z) = C

for the integral corresponding to the given equation.
Resolution by separation. Besides the method of multipli-
cation, the integral of an incomplete differential may be ob-
tained by separating, when possible, the variables of the func-
tions, so that, representing by X and Y two functions, the
first of the only variable @, the second of the only variable g,
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the equation (g) may be reduced to the form Xda + Ydy = 0.
An equation of this form can be integrated with the rules
ordinarily applicable to differential expressions. Now this
separation can be obtained easily in the two cases which we
propose to examine here.

Lirst case. The first of these cases occurs when (¢) is homo-
geneous ; for, making g = zw, and substituting this value in
(9), which we shall suppose of the nth degree, ¢ and x will
each have a™ for common factor, and (¢) will thus become a
function of the only variable z; for, from ¢dr + xdy = 0, we

infer 2 dz + dy = 0, in which the ratio % (we shall call it Z)

is a function of the only variable z. Now, from y = zz we

have dy = zdx + adz; hence
Zdy 4+ zdv + xdz = 0;
and therefore
dx oz
@ A ten
which is an equation with separate variables, and whose in-

tegral is

log:z;—l-/'Z(:"i”=C,

in which substituting -g- for z, we shall obtain the finite equa-
tion between @ and ¥ corresponding to the given (g).

Let us see an example in the following homogenecous equa-
tion of the second degree :

(@y —¥*) dz — (xy + 2*) dy = 0.
Making in it y = 2z, and substituting zdv + adz for dy, it
will become
(z—2)de — (z + 1) (zde + adz) = 0,

or 2°dx + (2 + 1) dz = 0,
easily reduced to the following :
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e S S |
E‘+E2—'C{z=o,

with separate variables; which, integrated, gives us

log (2) + 3log () — - = C,
and consequently the finite equation
e 1 Y 011 A%
log (z) + ilog (Ta:) R C,

corresponding to the given differential.
Second case. The other case, in which the variables of (g)
can easily be separated, is when ¢ and 3 are such functions of

2 and gy, that the ratio ® results equal to a product X* Y, in
P
which X is a function of the only variable @, and Y a function
of the only variable  ; for (g), or its equivalent 2 du 4 dy =0,
X
then becomes X * Ydw + dy = 0; and from this we obtain
el
de -+ ?” L O,

with separate variables. :
Let, for example, the differential equation be

ey de — (@ y+ %) dy = 0,
for which the condition

S fix
e e B N e
X ay + @’y 142

is verified. Consequently we have Xdu +%’ = 0, or

"(E’y_ ks~ dr =0
T :
whose indefinite integral is
2vy — arc (tg = x) = C.

In other cases, when the separation of the variables is pos-



INTEGRAL CALCULUS. 127
sible, the resolution is obtained by means of substitutions for
which no general rule can be assigned. Some analytical pro-
cesses also can be employed, with advantage, to the same effect.
An example of this kind may be seen in the following

number.

XXIX. Integration of linear differential equations of the first
order, containing only two variables.

We call linear equations those in which the dependent
variable », and its differential dy, do not exceed the first
degree, and are mot multiplied by each other, whatever the
degree of the other variable @z may be. Hence, representing
by X, X,, X, different functions of the only variable =, the
equation Xdy + X,ydz + Xyde = 0, or its equivalent

X5%+X1y+ X, =0,

d:
is the general formula of all linear equations of the first order,
between the variables @ and y. Representing by f (z) and

-

¢(2) the ratios 71, Xf’, the same formula may be expressed

also by
(L) dy+ yf(2)de + o (x) de = 0.

The integration of (L) is obtained by the separation of the
variables ; and this separation by means of the following ana-
Iytical process.

Let %, z be two indeterminate functions of z ; such, however,
that we may have ¥ = u * 2z, and consequently dy = wudz + zdu,
which value substituted in L. gives us

udz + z (du + w f () da) + ¢ (@) de = 0.
Now, w is an arbitrary function which can consequently be
determined in such a manner as to render the binomial du 4
uf(x) de = 0. Thus the last equation may be resolved into

the two following :
du + uf (x)de = 0, udz + ¢ () de = 0.



~
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The first of these equations divided by u, and integrated,
gives
log () = —/f () dw = log (¢ =/ /@ ),
in which we omit the constant, being included in the indefinite
integral of f (2) de. Now the last formula is equivalent to the
following :

W= eTSIE) e
in which w» is given by a function of @, and such a function as
to verify the condition du + u f (x) de = 0. But the general
formula, as we have seen above, becomes, in this case, udz +
¢ (#) da = 0, from which, substituting in it the value of » just
found, we obtain
dz = — ¢ (x) e/ @5 dy,

with separate variables z and @, This formula, integrated,
gives

z=%=—f¢;(:g)eff(*)dzd"v+c,

or (L) y=e//@®d&[C— fp(x)e/f@ = da],

which is the integral of the general equation (I.).
Let, for example, the following differential equation be given :

dy + ayde — adyx = 0;
or, comparing it with (L), let f () = 2, ¢ (¥) = — 2, and con-

sequently /. f () de = fade = %2 -+ e, and from (L)’

o =z 29 2
y=-¢ 2(Ce—°+ fwe dax)=1¢ 2(C,+ /de?),
: Ll G,
o1 y=1+ e

2

XXX. Integration of linear differential equations of the
second order, and between two variables.

‘We shall limit our resolution to the equations represented by

F7 Z .
(E)...§§-+a%+a’y=x(:v},
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in which @, ¢’ are constant coefficients. To obtain the resolu-

tion, let us take the auxiliary equation

R*+aR + a" =0,
and let 7, #/ be its roots. We shall have (Treat. on Alg. § 99)
¢ =—(r 4+ 1), @’ = rr’, and consequently the given equation
may be changed into the following :

Tt Wty = 4 (@),

da?
d* oy dy
or C-z-x—*ﬁ—?(f‘; r (d'f—?y)—x(fc)
J dy
N d’y dy clv sk ) ;1 . _dy e
Now o gl e W rence, making s ol

(E) may be furthermore changed into
(4
;t'i r y =X (’B),

which is a linear equation of the first order. Thus the inte-
gration of (E) is obtained by means of the integration of the

two
r
Wy =" (@),
E dx
( ) f]"y ¥
Ld.b 9?/=3/ 2

both of the first order, and both easily reducible to the form
(L) of the preceding number, as follows :
dy’ = y'r’de + x (z) de,
dy = yrdzx + y'dz,
which, compared with (Iz), and resolved by means of (L),

give
By [V =" (C+ /e da),
2 3/ = g'* (C! +fyf6—-—m (Z.’E).

The relation between 2 and y, resulting from these two
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equations, belongs to the given differential equation (E), and
is consequently its complete integral.

To see an application, let
T ey =0
be a linear equation of the second order to be integrated, and
let us take it, first, with the upper sign. Its auxiliary equa-
tion will, in this case, be R* — b* = 0; and, consequently, » =
b, 7 = — b; also x () = 0, Thus the formulas (E;) will
become

Y =e"C, y= e (C' + /y'c " du),
e” (C! + C fe = d),

e (Cr i é(%_/'g—ﬂf“' log ed (——-—-26:!:‘))-

Now (VI. 1.) e—%= log e d (— 2bx) = d e —**; hence
y = = (Cr s 2%) e— sz) = (Vebr — (M e—b=

is the integral of the given equation relatively to the upper
sign. Let us now take the positive sign: We shall have
R+ 5=0. Hencer =0v —1,7 = —bv —1, x(a) =
0; i. e., everything as with the negative sign, except the
change of & into v/ —1; hence, regarding the imaginary
quantities as real ones, we shall have for the integral of the
given equation, taken with the lower sign,

y = ol xV —1 (C’ 2bJC c—2b'::l":—l)’
= C!‘?h"""—ﬁv,c e_wf’__x;

C
and, making b = 1 and%_izl =

y = c’ cxl":-i e a:":-—_l_

Now from Maclaurin’s theorem we have
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i a?
e‘”—1+9¢+~§+§—‘-3+...,

y a® a’
oy e oRE Doy e D

: 22 e
Ccos & = 1—-5 4 T
Taking == 2 —1 in the first of these series instead of 2,
from this substitution, and from the other twe series we obtain
e’ —1=cosax + sin a v —1,
e—*¥—1 _ cosxz—sinaz v —1 ;

hence
y=C’ (cos & + sin xv’ ) O, (cos & —sina v/ —1),
=(C"—C)ecosz + (C'—C,) v —1-sina.
Calling K the difference C’ — C;, and K, the product
(¢’ — Cy)v — 1, we shall finally obtain
y = K cos + K, sin .

THE END.
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