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PREFACE.

AT an early period, when Geometry was the only, or at best the
first, branch of mathematical science in which scholastic instruction
was given, it was taught by a method which harmonized with the
general system of education then prevailing. This had been sanc-
tioned by the practice of many generations, and was upheld by the
authority of Euclid himself, whose elementary work on this subject
was universally adopted as a text-book.

To question whether our ancestors acted wisely in adopting a plan
of education in which the science of mathematics did not hold that
large share which is assigned to it in the present system, would be
foreign to our purpose. It may, however, be observed that, con-
sidering education inasmuch as it is designed to impart to the pupil
an aptitude for applying himself to the various professions and arts
of civil life, it seems that so much of the various branches should
be taught as may fit him for any career to which he may afterwards
devote himself. Now, experience has proved that there is no art or
science to which the study of geometry is not an admirable prepara-
tion. This was well known to the ancients; and, although they did
not spend so much time as ourselves in the study of mathematics,
they never omitted a branch which they, too, regarded as indis-
pensable.

But the opinions of men vary with the times; and one who in

our days would venture to recommend the abridgment of the time
2



4 ' PREFACE.

commonly given, in modern institutions, to patural sciences, and
given, not unfrequently with considerable prejudice, to a more
solid instruction in literature and moral philosophy, would be cen-
sured as the ignorant advocate of an obsolete theory. As material
motion has been accelerated by modern inventions, so it is thought
possible, in some similar manner, to accelerate intellectual develop-
ment and the operations of the mind. We have those who un-
dertake to teach everybody every thing, and that in the shortest
assignable time; but the competency of the teacher, the progress
of the scholar, and the solidity of his acquirements, are matters
rather supposed than proved.

But, after all, the teacher is in some respect like a merchant,
As the merchant does not consult his own taste, but that of the
buyers, so whoever intends to promote the education of youth is
compelled to regard the taste of others rather than his own. For, as
the merchant aims at gain, so'a conscientious promoter of education
aims more at the sound training of the heart than at that of the
mind. Then, again, the study of mathematics is harmless of itself,
and may be pursued without much apprehension by the young;
nay, many would be much happier if they allotted to this study
time more than lost in the perusal of works of a demoralizing
tendency.

The preceding remarks have already furnished the reason of the
plan followed in the present elementary work: and, first, since
geometry is not to be severed now from the other branches of
mathematics, but forms part of the same science with them and
succeeds algebra, he who teaches or writes a Geometry for schools
supposes the knowledge of algebra, or at least some practice in
algebraical language. In the present work, with the exception
of the doctrine of ratios and proportions, which is common to all
the various branches of mathematies, it may be said that nothing is

\ supposed or borrowed from algebra, except its language; and he who
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objects to it as a mixing up of algebra with simple geometry would
judge as some did of the publications of the Baron of Zach,
written with Greek characters, but in the French language, and
thought by them to be Greek, when, in fact, it was nothing else but
French. But, some would ask, why make use of the algebraic
language in geometry? I could ask in my turn, Why do you wish
that geometry should succeed algebra? Is it not in order to derive
some benefit from algebra? But I will rather propose another
question: Is it not you who require to travel over a long journey in
a short time?  The algebraic language is laconic : it says much in a
few words; and that which, if expressed in the old style, would
require a book, may be reduced to a few pages by the use of the
terminology of algebra, whilst the reasoning remains still as rigorous
and as lucid as before. In this manner you secure copiousness of
matter and economy at the same time, and the pupil is prevented
from losing the practice of algebraic language.

It may be remarked that the use of a different type—a distinction
adopted in the Treatise on Algebra—has been discontinued in the
present work. This change will, perhaps, not meet with the appro-
bation of all. The reasons which suggested it were, that nearly all
of the more difficult parts oceur in the last books, and at a time
when the minds of the pupils are better prepared to master them.
In the first books the few theorems of a more abstruse nature are so
explained that a competent teacher may render the comprehension
of them an easy task.

The writer of the present elementary work has reason to be
grateful to several distinguished persons who were pleased to
accept his preceding publications, and by their public and
honorable approbation encourage him to finish the work. Tt was,
however, observed that a certain kind of analysis is ill adapted to
circumstances; and since the same observation could be renewed on

the present occasion, to prevent all misunderstanding, it should be
1*
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noticed that by the terms analysis and synthesis the writer under-
stands precisely what is understood by logicians. He calls synthesis,
or the synthetical method, the proceeding from universal principles
and more obvious to particulars and the more recondite truths; or,if
it be preferred, from the more elementary and more accessible

notions to the more complicated and abstruse ; and he calls analysis

the process made in the inverted order. Now, if the reader will

trouble himself to examine the index, he will see that the order
observed in the distribution of the books and of the matters of each

book proceeds step by step from the more simple notions to the more

complicated. The method, therefore, is thoroughly synthetical,

. although occasionally, either by way of illustration or corollary, some

incidental truth may be treated in a manner apparently or even
really analytic. Certainly no one would assert that a stream flows in
a direction opposite to its natural course because when it finds lateral
ditches in its way it fills them up, and even flows backward, with a
portion of its waters. This method greatly contributes to due order and
lucidity,—qualities which are occasionally overlooked even in hooks
destined for the instruction of youth, with no small prejudice to the
student, who is more puzzled and annoyed by the confusion with
which the matter is presented to him than by its inherent diffi-
culties. 'The writer has sedulously endeavored to avoid this evil;
with what success it is the reader’s part to judge.

GeorerTOWN CoLLEGE, June, 1856.



CONTENTS.

INTRODUCTORY ARTICLE.

PAGE PAGE

OssEct of Geometry—Dimensions... 17 | Quadrilateral Figures and Polygons 21
Definitions .............. fi -+ 17| Parallelogram, Rhombus, Rectangle,

18 RATTABIR, coxhidtes bont ol ha e e o n

g Polygon...... 22

b T R 19 | Cireular Line,. sovens 22

Right Angles—Perpendicular......... 20| Definitions ... . L LT PRI |1
Acute and Obtuse Angles............... 20 | The Diameter bisects the Circle and

Triangle......co0n0. sressnsassistrnnnienias S0 the Circumference.............o.. 23

BOOK 1.

ANGLES AND TRIANGLES,

Remarl concerning equal mil“' o 24
Taeorex L—When a straight line
meets another straight ﬁne, the
© sum of the two angles is equal
to two right angles........coiuie. 24
Scholium.—Remarks and axioms 25
Ta, IL—When two straight lines
intersect each other, the opposite
angles are equal.................... 26
Corollary.—Seholitmu .. usrvirussies 26
Ta, IIL—The sum of two straight
lines drawn from any point
within the triangle to the ex-
tremities of the base is less than
the sum of the other sides....... 27
T, IV.—If two sides and the in-
cluded angle of one triangle
« are equal to two sides and the
included angle of another tri-
angle, the triangles are equal.,, 28
Ta. V.—If two angles of one tri-
angle and the included side are
equal to two angles and the in-
cluded side of another triangle,
the two triangles are equal......, 29
Ta. VL.—If two sides of one tri-
angle are equal to two sides of
another triangle, but the in-
cluded angle of the first is
greater than the included angle
of the second, the third side of
the first triangle is also greater
than the third side of the second,
and vice versd.....ccceseinisrnnn, a0
Ta. VIL—When two triangles have
the three sides of the one equal
to the three sides of the other,

the triangles are equal in all
r oL e DL P T
Ta. vﬁf—Twu straightlines drawn
from any point of a perpendi-
cular to two points of the other
line, equidistant from the foot
of the same perpendicular, are
equal to each other, and vice
DEPRGuss iisiiarsinieiatiiinpeenneins sonnes
Sch. £.—The oblique lines drawn
from the same point of the per-
pendicular inerease with their
distance from the normal,........
Sch, II. — Two straight lines
drawn to two points equidistant
from the foot of the normal,
and ‘drawn from a point out of
the normal, are unequal..........,
Ta. IX.—The normal is the shortest
line which may be drawn from
any point to another line, and
the normal is unique..,.....,.... =
Ta. X.—Two right-angled triangle:
having equal hypothenuses and
another angle equal are equal
T XI.—Two right-angled trinngles
baving equal hypothenuses and
another side equal are equal....
Tr. XIL—If from the angle formed
by the equal sides of an isosceles
triangle we draw a perpendi-
cular to the opposite side, the
eide and the angle will be di-
vided by it into two equal parts
Sch.—The angles of the isosceles
triangle opposite to the equal
gides are equal. .............u. ...

a3

33

34

35

36



8 CONTENTS.

Cvr.—The equilateral triangle is
equiangular. covvenes seinesarininnns

Tu, XITL—The sides of a triangle
opposite” to equal angles are
equal, and the sides opposite to
ater angles are greater........
Measire of Angles,iesusarrarnsrseranssses
How the arcs of circles can be
measures of angles.......eeesrennns
Remarks. — Equal arcs are sub-
tended by equal chords..........s
Division of the periphery and value
of AnRled....usnsnsserrs A4 fanExzonbaah
Complement and sapplement.......
PropLEMS. — Remarks concerning
the dividers and the ruler. .......

PAGE

a7

a7
S8

38
40

40
40

41

PAGE
Proe. L. — Bisect a given angle
equally.......... B R T PR 42
Prop. IL—To bisect a given straight &
INGU ieciusnsssasann nrssasssnasvansnssase
Pros. III.—From a point given out
, of a straight line to draw a per-
pendicular to the same line...... 43
Pron. IV.— To erect a perpendi-
cular at any point of a given
1ing. oo sssivnanshonnesion siessnnnsensen
Pros. V.—To make an angle equal
to another given Angle......ouuuee
Pros. VL.—To describe an equilate-
ral or an isosceles triangle on a
given straight line ....evceennninn

| S

BOOK II.

PARALLEL AND PROPORTIONAL LINES.

Turoresm I.—When one of two lines
is perpendicular to a third line,
and the other is oblique, the two
lines must necessarily meet each
DUNOY sy oadancs snnaysnss Fussssheias pads

Ta. IT.—The straight line which is
vertical to ohe of two parallels is
vertical to the other also.......es

Remarks and definitions.......ciues

Ta. ITI. —If a straight line meets
two parallel lines the alternate
angles made by it are equal to
e8ch Other.iiiiiseiissessanesnnnnens

Corollary I.— Alternate exterior
angles are equal....cisinesiens il
Cor, f1.—Opposite exterior and in-
terior angles are equali..s .
Cor, {I1—The sum of the interior
angles on the same side is equal
to two right angles.......cous eenees

Ta IV.—If two straight lines meet
& third line, making the alter-
nate angles equal, the straight
lines are parallel.........svererees

Corollaries. — The straight lines
are parallel :—

45

46
48

49
50
50

50

o0

1st. When the alternate exterior -

angles are equal.............

2d. When the sum of the mtur- 5

nal angles is equal to two

Fight ANEI0H.. oisuilemmessanesbares

3d. When opposite exterior and
interior angles are equal......

TH. V.—Inany parallelogram the op-
posite sides and angles are equal,

and the diagonal biseets equally

the parallelogram......... snssvaiaa

Ta. VI.—When the opposite sides of
a given quadrilateral are equal,

the guadrilateral is a parallelo-

T PR T T T

5l
51

o2

53

Ta. VII.—When two parallel lines
are equal, and their correspond-
ing extremities are joined by
two other lines, the resulting
quadrilfteral is a parallelogram 53

Ta. VIIL—Thetwo diagonals of any

arallelogram cut each other
into two equal parts.....seeises 0
Seholium I.—The point of inter-
section of the diagonals is the
centre of the parallelogram...... &
Seh, J1,—If the parallelogram is
& square or a rectangle, the*
diagonals are equal....... sessheasy 55

Tr. IX.—When two straight linesare
separately parallel toa third line,
they are parallel to each other... 58

Cor.—When from any point of the
diagonal of a parallelogram we
draw parallels to the sides, we
have four parallelograms, and
two of them equivalent........... 56

Ta. X,— When two straight lines
forming an angle are parallel
to two other lines, these form
an angle equalto that of the first 57

T, XI.—The sum of the three angles
of any triangle is equal to two
right angledi.ceissvesisbusisenes: 87

Seh.—The external angle of a tri-
angleis equal to the two opposite
internal o cosnteos sxsner vaniss ibwatisnin: 5B

Cor. I.—In any triangle there ean
only be one right or one obtuse
T T g s PO

Cor. I1.—When two of the angles
of any triangle are known, the
third angle may beinferred from

Cor. ITI.—The value of the equal
angles of a right-angled isosceles

]



CONTENTS.

PA
triangle and of an equilateral tri-
angle are always the same,,,... 5

Cor. IV.—When one straight line
makes two unequal angles with
another straight line, and from
any point of the former we draw
a perpendicular to the latter, the
perpendicular must fall on the
gide of the acute angle............

Cor. V.—When twotriangles have
a common side, and the angle of
the one opposite to this side is

. within the other triangle, the
same angle is greater than the
other opposite angle

Cor. VI—The internal anglesof a
polygon are equal to two right
angles a8 many times as there
are gides in the polygon, min
two. .. .

Cor, VIL—A quadrilateral in which
two of the opposite angles are
equal, and the other two also

* equal to each other, is a paral-
lelogram ....coueee prE_ senasran . pdd

Tua. X1l —Parallel lines cutting
equally one of the sides of an
angle eut equally also the other
BB i shus v issnsaismmiamanneui dodnesn

Cor. I.—Two parallels that cut one
of the sides of the angle with a
certain ratio ent alzo the other
side with the same ratio. ....uveee

Cor. I1.—Vice versd, the straight
lines that cut the sides of an an-
gle proportionally are parallel
BmBgc i diindiiisiint vuletbatin

Cor. [Il.—The segments of the

sides of any angle between pa-
rallel lines are proportional
XIIL,—When a straight line
bisects equally one aungle of a
triangle it euts the opposite side
' into two segments proportional
to the other sides, and vice versd «
Tu, XIV.—When the three angles
of any triangle are equal to the
three angles of another triangle,
the sides of the two triangles are
proportional, and vice versd...... -
XV.—When two sides of one
trinngle are proportional to two
gides of another triangle, and |
the angle included by the pro-
portional sides are equal, the tri-
sngles are SiMilar.. et s
Ta, XVL —Two triangles which
have their sides mutually per-
pendicular are similar....cvieiieen
Ta. XVIL — The normal drawn
from the vertex of theright an- ~

\

Ta.

Ta.

59

60

60

=1

gle to the hypothenuse divides
the given triangle in two right-
angled triangles similar to each
other and to the given triangle
Cor. L—Thenormal drawn from the
right angle to the hypothenuse
ismean geometrical proportional
between the segments..............
Cor, Il —Either side about the
right angle is mean geometrical
proportional between the hypo-
thenuse and theadjacent segment
Ta. XVIIL —The perimeters of
similar polygons are to each
other as their homologous sides
Ta. XIX.— Similar polygons are
divisable into an-equal number
of similar triangles, and vice

b o PP P e R Do R R i
Cor. £.—Two out of the four paral-
lelograms into which n given pa-
rallelogram is divided by the pa-
rallelsto the sides drawn from any
point of the dingonal, are similar
to each other and to the given...
Cor, II.—When two similar paral-
lelograms have a common an-
gle with eoineiding homologous
sides, they have also one of the
diagonals coineiding......cueveners
Remarks,—On regular and sym-
motrical polygons.......ceveersven

64 | Tm, XX.—Opposite angles in sym-

metrical polygons are equal

Tu. XXI.—The diagonals joinin

opposite anglesin asymmetrie
polygon are mutually eut into
twoequal parts in the centre, as
is also any straight line passing
throngh the centre and termi-
nating at the perimeter. ,.......
Cor.—Any diagonal joining the
opposite angles of a sy mmetrical
polygon bisects the perimeter,
and also the area of the polygon
Ta. XXIL—Any polygon having a
centre is symmetrical.......
ProBLEMS, — ProB. I.—F
given point draw a straight line
parallel to another.........couennnen
Prop. II.—Divide a given line into
equal pa
Prop, IIL.—To find the fourth pro-
portional to three given straight
lines..
Pros, IV.—Divide a given line in
B Eiven Taticn ..o ssanssassssses
Prop. V. — Deseribe on a given
straight line a polygon similar
to another given polygon, and
similarly situnted.oeueseriorienisen

PAGE

72

72

T3

73

T4

6

76
T
T

78

79

79

80
80

81
81

82



10

CONTENTS.

BOOK III.

COMPARISON OF PLANE SURFACES LIMITED BY STRAIGHT LINES.

TaeorexM I.—Two rectangular areas
having the same height are to
each other as their bases.....ce.e

Remarke coeersvrrsennserssusssnssansanese
Ta. IL—The area of the square is
expressed by the productof s=—=1
multiplied by the square of the
numerical value of its side.......
. III.—The area of the rectan-
gle is given by the produet of
the numerical value of the base
into that of the height, multi-
plied by 8==1....ccsseerssncerssssnse

Ta. IV.—The area also of any pa-

rallelogram is given by the pro-

duct of the base into the height

V.—The area of any trinngle

is given by half the product of

the base into the height....ccvse.

Corollary. — Parallelograms and

triangles having equal bases and

equal heights have also equal

BEGRE, 5rvusovossasisisnsssisasaissoptose

VI.—The area of a trapezoid

is given by the product of the

vertical to the parallel sidesinto
one-half the sum of the same

L R R R R O

Secholinm.—Concerning the areas
A POIT RO oy ssons sunssss Slupastsiois

Tr. VIL—The area of the square

deseribed on the hypothenuse is

equal to the sum of the areas of
the squares described om the
other sides of the right-angled

T LT R A G, G

Seh. I—Different meaning of two
QOUALIONE. .. .os s snasensninnsssnisarssane
Seh. 1I.—Connection between the
areas of the squares constructed
on the sides of any triangle......

Ta. VIIL—The area of a rectangle
congtructed om the extremes of
four proportional sides is egual
to the area of the rectangle con-
structed on the mean sides......

Cor.—Thesquare on the mean pro-
portional is equivalent to the
rectangle on the extremes........

Ta, IX.— Parallelograms and tri-
angles having the same base
are to each other as their alti-
tudes; or, having the same
altitudes, are to each other as
their bases

TaH.

Ta.

...................... eeeuss

PAGE

83
85

87

88

89

90

91

91
91

92
094

04

96

97

Seh.—When the bases arerecipro-
cally as their altitudes, the areas
of the parallelograms or of the
triangles are equal e,

Ta. X.—The areas of two triangles
having one equal angle are to
each other as the produet of the
sides about the equalangles......

Cor. I.—If the areas of the two
trinngles are equal, the sides
about the equal angles are re-
CIPToeal ..uveevssrsasssanrssnsensasinee

Cor. JI.—The areas of similar tri-
angles are as the squares of the
homologons sides.... .iceiemsesniinn

‘Cor, IIl.—The areas of similar
polygoens are as the squares of
their homologous gides.......coue

Cor. IV.—IF the sides of a right-
angled trinngle are homologous
gides of similar polygons, the
area of the polygon on the
hypothenuse is equal to the
sum of the areas of the poly-
gons on the other sides............

ProsrLexs.—Pros, L.—To find the
side of the square the area of
which is equal to the sum of the
ggquares constructed on any num-
ber of given straight lines.......

Prop. IL.—To find the side of the
square the aren of which is equal
to the difference between the un-
equal areas of the squares con-
strueted on two given lines......

Pros. IIL.—Construct on a given
side a parallelogram whose area
is equal to that of another paral-
IRLOETRIN i ddtivnis wpuadivin sunisas

Pros. IV.—To construct a trian-
gle having the same aren of
another triangle and one angle
equal to o given angle....cu ...

Pron. V.—To construet on a given
gide and with a given angle a
parallelogram  whose area is
equal to that of a given trian-
gle, or o triangle whose area is
equal to that of a given paral-
T lDETAMN . asavinbivisns inssvviiias

Pros. VIL—To find the altitude
of a parallelogram to be con-
structed on a given base, and
whose area is to be equal to the
area of a given polygon.........

rAGE
98
98

99

99

101

104

105

105



CONTENTS.
BOOK 1IV.
THE CIRCLE
PAGE

Taeorem l.—A straight line drawn parallel to the chord, it is also
from the centre and bisecting a a tangent to the virele.....vennees
chord is perpendicular to it,und Cor. [1{.—Wlen a tangent is pa-
BICEVETIE L cveis svesivassssranvonennens 10T rallel to u chord, the point

Ta. IL—A straight line drawn from
the centre and bisecting the
chord, when produced bisects
the are also, and viee versd....... 107
Corollary I—O0f two chords inter-
gecting each other and not pass-
ing through the centre, one must
divide the other unequally...... 108
Cor, [1.—The straight line which
bisects any chord and forms
right angles with it passes
throngh the eentre ... sesnes 108
Cor. 11I.—The straight line, also,
which bisects the chord and the
corresponding are, or which bi-
rects the are and is perpendi-
cular tothe chord, passes through
the GBRLTE. versimannrensasnusinnsbrseee 109
Cor. I V.—Thechords thatare equi-
dzstantﬂ-om thecentre are equal,
B0 Biee PEraliii.uisimerise sbssnsesn 109
v Qor, V.—Those chords are ;;rea.ter
that are nearer to the centre,... 110
Seholium—The greater chord sub-
tends the greater are, and wvice
versdl, Remark....... 110
Tu. III.—The greatest of all straigbt
lines drawn to the periphery
from some point out of the cen-
treis that which passes through
the centre: the others con-
stanily diminish the more they
recede from the centre...iues 111
T, IV,—Those straight lines drawn
to the periphery from & point out
of the centre and equidistant from
the greatest are equal to ome
BNOLHET: earssseseansn sanins seisnnanas 112
Cor.—Two circles having different
centres ean intersect each other
in two points only . cevienine 112
Tha. V.—The tangent to the circle is
perpendicular to the radius
drawn to the point of contact,
and viee Persfi.. oo iiasnenssnes ssges 118
Cor. .—When the are aubtcnded
by o chord is bisected, aund a
tangent to the eircle touches the
point of seatwn,lt is parallel to
the ehord. uesussesivivasensorsoonses « 113
Cor. [{.—When the aro is buecwd
and o straight line passing
through the point of section is

of contaet is the middle point
of the are subtended by the
GDOB s waves voussretin s iniailasn o oen
Tu. VI.—The smnt to the ecircle
cannot meet it in more than two

P
Ta. VIL—When two circles meetin
two points, the straight line
whieh joins the centres bisects
the are and the chord between
the interseetions. ........svessss vins
Ta. VIIL—When two eircles toueh
each other in one point only,
the straight line which passes
through the centres passes also
through the point of contact....
Ta. IX.—The angle having its ver-
tex at the centre is twice the
angle at the periphery when
both terminate at the extremi-
ties of the same are....... Ridiinssn
G‘or !.—Moasure of inseribed an-
C’or. ‘H —The perpendieular drawn
to the diameter from any point
of the periphery is a mean geo-
metrical proportional between
the segments... i
Cor. T1I.— Guncsrnmg thesquurua
and rectangles constructed on
the equal and unequal sections
of the same line... .o emssiinenns
Cor. I V.—Chords which have uqual
ares between them are parallel,
and vice 0ered s sessnsasnsnnns
Cor. V.—Half the sum of the ares
included between two chords in-
tersecting each other is the mea-
sure of the angle formed by the
ChOTdB. vuuiunsrns snrsnsrsnansasnans vas
Cor, VI.—The angle formed by
two chords intersecting each
other out of the cirele is half
the difference of the ares in-
cluded by itiiiies nressrnesnsonneen
Cor. VIf,—The circle having for
its,dinmeter the hypothenuse of
aright-angled triangle will pass
through the vertex of the right
AOEIO . uceainannnis snnsonnnshnsnisunsen
Cor, VIIl.—The angles which a
chord drawn from the point of
contact makes with the tangent

11

FAGE

114

115

116

117

. 119

121

122



12
PAGE

are measured by half the arcs
subtended by it.ocoieinenine arens 123
Cor. I X.—A quadrilateral inscribed
in a cirele hasits opposite angles
equivalent to two right angles...
Cor. X.—The product of the seg-
ments of one chord is equal to
the product of the segments of
the Other...ceiveissssnserensens
Cor. XI.—The square of the tan-
gent drawn from any point is
equal to the product of the secant
drawn from the same point into
one of its segments....... sossernen
CUor. XII.—Concerning the square
and the rectangles of the seg-
*  ments of a straight line, and of
the line itself......ccuenes Ad ek .
Tr. X.—Three points that are notin
the same straight line are cer-
tainly on the periphery of a
IO, couaesnensenneessorannsnesusnnres .
Cor.—Any triangle may be in-
seribed in & eircle.....cceeseesnen
XI.—When any number of tri-
angles have the same base, and
the angles opposite to the base
are all equal, the same cirele cir-
cumseribes them alli...cioiesinnsss
T, XIL.—Any regular polygon may
be inseribed in the eircle.........
Tr. XIIL. —Any regular polygon
may be circumseribed about the
CIrEl0. cciaivanninsnnnsinssssssass snnines
Vice versd, a circle may be in-
scribed in any given regu-
18T POLYROD ovss ons ssmnnssnesss
Tna. XIV,.—The circle may be con-
sidered as the limit of inscribed
and eircumseribed polygons
whoge sides increase constantly
in number, or as a regular poly-
gon of an infinite number of
P e R T3

BN s hhi A Uit saeadansuie binnne 133

123

123

sremen

124

125

126
126

TH.

127
128

129

131

CONTENTS.

rioe

Sch. If.—The perimeter of the in-
seribed polygon inereases, and
that of tio circumseribed poly-
gon decreases, by duplicating
the number of sides............ P
Cor. I.—The periphery of the cir-
cle is less than the perimeter of
any circumseribed polygon, and
greater than the perimeter of

133

any inseribed polygom.........u 135
Cor. JT.—Concerning the rectifica-
tion of the periphery.......... w195

Perimeters of the polygons
given by the radius.......... 137

Ta. XV.—The area of the cirele is

equal to the product of the ra-
dius into the semi-periphery..... 141
Ta. XVIL.—The area of the circle
having R for radius is numeri-
cally expressed by R?-m.........
Cor. I.—The areas of two circles
are to each other as the squares
of their radii or diameterz.......
Cor. II.—The sum of the areas of
the lunule is equal to thatof the
corresponding right-angled tri-
0T 1 Rt
Cor. JII.—Bimilar ares are to one
another as their radii, and simi-
lar sectors are to one another as

143

14

144

the squares of the radii.......... . 145
Prosrems.—Pron. I.—T> find the
centre of a given circle........... 146

Pros. II.—To describea circle which
shall touch a given line in a
given point and pass through
another given peoint.......cccuuune

Prop. II1.—To find the mean geo-
metrical proportional between

47

two Vgiven straight lines......... . 47
Pros. IV.—From a given point to
draw a tangent to the eircle..... 147

Prop, V.—To describe in a given
circle a triangle similar to an-
other triangle..... oeidkiin 148

BOOK V.

THE STRAIGHT LINE AND THE PLAXNE.

Taeoren I.—The intersection of two
plane surfaces is a straight
T R B o BT R e

Ta. IL—An indefinite number of
planes may pass through the
same straight line.......cuvuus Ak

Ta. IIL—Only one plane may pass
through three different points
ﬁ:&ﬁtuatad on the same straight

i LA TRt
Corollary.—The lines fo
angle determine the position of a

Wb vsssiavlsbenetnsnons anbronsvesnsh LD

149

149

150

Tu. IV.—O0nly one perpendicular to
the plane may pass through the

BAMO PUILIL vesersssnsanssrosnisornesas 100
Perpendicular and paraliel
PRSI s i iiai i duieis 151

TH. V.—Any straight line which is
perpendicular to one of the pa-
rallel planes is perpendicular to
the other also.......cccommmennennsas

Cor. I,—The two perpendiculars
lie on the same plane and are
parallel toeach other....cccviesvnens 181

Cor. 1I.—Two planes having a

151



CONTENTS. 13
VAGE PAGE
common perpendicular are equi- their intersection is & normal to
distant everywhere....o.civeersns 152 the same third plane......c..o ws 159
Cor. [11.—Parallel planes can never Cor. V.—When two lines in space
moet each Other,...oueierss nrassven 153 are each parallel to another
Cor. I V.—The intersection of two gtraight line, the two lines are
parallel planes made by another parallel to each other....coin 159
plane are parallel lines............ 158 | Ta. IX.—Two angles in space are

Th. VI.—The segments of any two’ equal when their sides are re-
gtraight lines between parallel spectively parnllel. .o isenese 160
planes are proportional............ 153 | Ta. X,—The planes determined by

Tu. VIL—When a straight line is ]mm!lel lines forming angles in
;}erpendlculnr to two other lines e are parallel......ceeesssesses 160

ntersecting each other, it is per- Ta., XI.——-Ihe straight line parallel to
pendicular algo to the plane de- a given plane lies on a planelike-
termined by them.........osneeree 154 wise parallel to the given plane.. 161
Cor, I.—Through any point of & Ta. XIL—Fromany point outof the
given line a plane may pass per- plane only one perpendieular
pendicular to this line............ » 166 may be drawn to the plane,,..., 162
Cor. II.—Three straight lines pass- Ta. XIIL—The least angle of an ob-
ing through the same point of lique line with the plane is that
another line and perpendicular which it makes with the straight
to it are on the same plane......., 156 line joining the foot of the ob-

Ta, VIIL—If two straight lines on & lique line with that of the nor-
plane are perpendicular to each mal drawn to the plane from any
other, and one of them passes point of the oblique line.......... 162
through the foot of a normal to T XIV.—The angle formed by two
the plane, this line, together with planes is measured by that formed
the normal, determines the plane by two straight lines one on each
to which the other straight line plane and both perpundiuuln.rao
is perpendiuulm- ..................... 157 the common intersection.......... 163

Cor. 1—1If one of two parallel lines Corollary....cco.us PR R 165
is perpendicular to a plane, the Stka.’.mm.—Coneernwgpla.nes per-
other also is perpendicular to it 168 pendicular to each other.......... 166

Cor. II,.—If from any point of the Ta. XV.—The perpendiculars to two
common interseetion of two planes inclined to each other
planes perpendicular to each from an angleequal to the angle
other we draw a perpendicular of the planes, ..o 168
to one of them, it will be on the Solid Angles..uveiissasesre ssvssssnsses 167
other plane........euveeersrsessensss 168 | TH. XVL—When the polyedral an-

Cor. {I1.—The perpendicular line gle is formed by three plane an-
to the common intersection coin- gles, the sum of two of them is
ciding with one of two perpendi- always greater than the third.., 168
cular planes is a normal to the Ti. XVIL—The sum of the plane
other plane.......cccisimismiinnsinie . 159 angles forming a polydral an-

Cor. IV.—When two planes are gle iz always lesz than four
perpendicular to a third plane, right Angles . .ceisnsoinsinvirarssensss 169

BOOK VL
POLYEDRONS,

PRELININARIES vareneseess NEian frsdianenh 170 having a regular polygom for

Tueorem I,—The section of a pyra- base, and all the edges equal, is
mid made by a plane parallel to given by the produet of the
the base is a polygon similar to semi-perimeter of the base into
that of the base.....c.cecssssesnnsas 172 the perpendicular let fall from

Corollary.—The section is to the the vertex toany side of the base 174
base as the square of thedistance Seholium.—The surface of a trun-
of the plane of the section from cated pyramid is given hy the
the vertex is to the square of the product of the perpendicular be-
distance of the base from the tween the parallel sides of any
BAING VOIOX..uu)eses ssesnisnunessase 173 face into half the sum of the

Tu. II.—The surface of a pyramid perimeters of the bases..usven. 174




1t
PAGE

Ty, III. — The section of a prism
made by a plane parallel to the
base is equal to the bage.........

Tr, 1V.—The surface of a prism hav-
ing parallel bases is exprnss9d
by the produet of any one of its
edges into the perimeter of a sec-
tion made perpendicularly to the
BAEESusuraer sssinnirenss sonsnnsre srnsase

Solidity of Bodies,

Tu. V.——gfwo right-angled parallelo-
pipedons haying a common alti-
tude are as their bases when
the base of the one is a section
of the base of the other. ...

Tu, VL—The solidity of a eube is
given by the product of the solid
cube taken as unity of measure
into the cube of the numerical
value of the edge....... T

Sch.—The solidity of the right-
angled parallelopipedon is given
by the product of the nume-
rical value of the edges into
Ke=1...oconmsrssssaras

Important remark........ SR

Ta. VI1I,— Two parallelopipedons
having a common base and the
same altitude have equal so-
lditie8.sessesnsrissrssanssrsnsnvansnnnse

Seh.—The same theorem extended
t0 all Cnses. . carerssnnnes

Ta., VIIL—The solidity of any pa=
rallelopipedon is given hy the
product of the numerical value

176
177

assmanranaees

178

182
182

“nnd sssasassmanssasnnn

183
184

CONTENTS.

PAGR
of the base and altitude into
§ D P Y 1584
Tu. 1X.—The solidity of a trinngular
prism having parallel bases is
given by the produet of the
numerical value of the base and
altitude into K =1 e 188
Cor.—The eolidity of any prism
having parallel basesis given by
the product of the nmumerical
values of the base and altitude
into Ke=1.umsessssvssarrrsseaniins 188
. X.—Two triangular pyramids
having equal altitudes and the
areas of the bases also equal
are equivalent in solidity.........
XI.—The solidity of any trian-
gular pyramid is expressed by
one-third of the product of the
pumerical values of the base and
altitude into K= 1li...caminsnsnss
Cor.—The solidity of any pyra-
mid ig given by one-third of the
product of the numerical values
of the base and altitude into
Seh.—Concerning the solidity of a
truncated pyramid.......icoiininn
Ta. X11.—The solidities of pyramids
and prisms are as the bases when
the altitudes are equal, and are
as the altitudes when the bases
aré equal; the same solidities
are equal when the bases arere-
ciprocally as the altitudes..... ...

1589
Tw.

101

104

BOOK VII.

ROUND BODIES,

PRELIMINARIES 1uvveisrasssiasnsverirnsics 100
Taeoresm I.—The cone may be con-
gidered asgapyramid whose base

is a regular polygon of an infi-
nite number of sides. ...iviieiiene

Ta. IL—The section of the cone
made by a plane parallel to the
base i8 circular.......coccesseuvnsans

Tu, IIL—The surface of aright cone
is given by the product of the
semi-periphery of the base into

the side of the cone..........c....
Seholium J.—Another useful ex-
pression of the surface of the

[l R
Seh. Il.—Surface of
b vieen. . TR R g
Sch. ITI—Another useful expres-
sion of the right truncated cone

Ta. IV.—The solidity of the cone is
given by one-third of the pro-
duct of the base into the alti-
Wle,.cnddavaverniasi i sveavenene 202

106

197

198

200
201
201

TEarsisssssssssass

the truneated

Seh. I—Another useful expression
of the solidity of the right cone
Sch. 11.—8olidity of the truncated
cone obtained from the parallel
bases and their distances. ...... "
Seh, JIL.—Another useful expres-
sion of the solidity of the right
trancated 0oNe....uuiieinisniinsiis

Tr. V.—The eylinder is the limit of
an inscribed or circumsecribed
wristn having the sides of the

ages indefinitely inereasing in
TR DOE. s il S iliassianapasonais SOT.
Ta. VIL.—The section of a cylinder
made by a plane parallel to the
base is a cirele equal to that of

EHe hlsal i Sh e tie
Ta. VIL—The surface of a right
eylinder, not including the pa-
rallel bases, iz given by the
roduct of the periphery of the

e into the axis of the oy-

Bnderid: isvinien siisisann sisisnisans

208

209



A

CONTENTS. 15

PAGE
Ta. VIIT,—The sclidity of a eylin-
der having parallel bases is
given by the product of the
base into the altitude...wsee.rs 208
Cor. I.—The solidity of the cone
is one-third that of the eylinder
having the same base and the
SAMO AITEUAC. v vrsseersranenrarsians 210
Cor. Il.—The cones and eylinders
of equal altitudes are ns the
bases; the cones and eylinders
of equal bases areas thealtitudes 210
Cor. 1I1,—Cones or cylinders of
equal solidities have their bases
reciprocally as their altitudes, 26

Cor, 1V.—Bimilar e
cylinders are as the cubes of the
diameters of their bases. ..uewee 212

Ta. IX.—The sphere is the limit of a
solid generated by the semi-
perimeter of a polygon either
cireumseribed or inseribed in the
eircle, and revolved about the
diameter, and having the num-
ber of the sides constantly in-
CPEASIN G evisserssnssnssssnss sunns snne 214

PAGE
Ta, X.—The section of the sphers
made bya plane is circular...... 214
Ta. XI.—The greater the distanece of
the plane intersecting the sphere
from the centre the smaller is
the diameter of the section ef-
focted by ib....oosusensnarinsnes sradks, 510
Seh, I.—Theplane passing through
the extremity of any radius of
the sphere and perpendicular to
it is & tangent plane...eewsreanne 217
Seh. II.—The great circles inter-
sect mutually at the extremitics
of & diameter-...vevsscnriasnrenens 217
Sch, 1II.—The plane of a great
circle divides the sphere into
two equal PArtS. ..o senees 5 |
Ta. XII.—The surface of the sphere
is four times that of the great
CIrele, vossensesnssasionnan
Ta. XI1L—The solidity of the sphere
is given by the cube of its radius
IBED 4. surcurss s sessepassassasaceas 320
Cor.—The surfaces of the sphere
ave as the squares, and the so-
lidities ns the cubes, of the re-
spective radiisee.ian vessnsusenss 322

218

PLANE TRIGONOMETRY.

PRELIMINARIES.

Object of plane trigonometry...... 225
Elements of triangles. co.siasssinse 223
The object proper to trigonometry
eannot be obtained in all cases 225
Trigonometrical functions.. . 225
Their importance..cimmassseee 226
Division of the subject..csssusseesns 220

ARTICLE L
TRIGONOMETRICAL FUNCTIONS AND
FORMULAS oecsanassns Sussarani DRD
Definitions....... seeeres 226
Complements and supp! . 226
Functions of thearcsand function
of their complements or co-func-
TEOMR. ,ones cossnnsansesasannn 227
Sine and cosine . 228
Sine's qualities. . 230
Qualities of the cosine.. . 281

Tangent and cotangent. ... + 232
Qualities of the tangent and of the
COAN O sevsvesns sisernsarerines
Beeant and cosecant...... R——. 234
Qualities of the secant and eo-
BRCANL airrrrrenes 23
Versed-sine and versed- 8
Qualities of the versed-sine and
COBIMB. s erausnenssransansnsnss nennsases 2371
The sine of any angle is equal to

the cosine of its complement, and
CEee Perafi .. i iieiasisniisnarsinin
The sine of any arcor angleisequal
to the sine of its supplement, and
the cosine of any are or angle is
equal to the negative cosine of its
SUPPLEMENt. . ceumueiviersierrranesan
Trigonometrical formulas, or ex-
ressions of the mutual relations
etween the trigonometrical
functions. v sssassnsnavisaseroren M0
The tangent of any are divided by
the radius is equal to the sine
divided by the cosine of the sume
AT Cuussssnsnsvonsnsnsnnns vanssuans sanssns 241
The eecant of any arc is equal to
the square of the radins divided
by the cosine of the same are... 242
The cotangent divided by the ra-
dins is equal to the cosine di-
vided by the sine of the samne
D00 snaetsorsnnaunss snsnursss seasesnss vass 242
The coseeant is equal to the square
of the radius divided by the sine
of the same arc.......... snana wiosns. R
The versed-sine ig equalto the ra-
" ding, minus the cosine of theare 243
The tangent of any are or angle is
equal to the cotangent cf its

239

COMPIEMENt. vvvrrnssrinsssanssrsnns 243



16 CONTENTS.
PAGE
i i i ither to the
The secant of any are is equal to triangle is equal ei
the cosecant nfyit.s complement 244 tangent or to the cotangent of
The versed-gine of any are is equal their opposite angles.......oouee 240
to the versed-eosine of its com- Relations between the functions of
plement, and vice verad......overes 244 two different ares and the fune-
The tangu:tt, secant, and cotangent tions of their sum or difference 250
of any are are respectively equal Other trigonometrical formulas..., 252
to the negative t“?g:]l:t’ nacs?t, ARTICLE 1L
d cota t e supple-
::zmt:? bﬁﬁ;‘;a :Usecant ofpgny Resorvurion oF TRIANGLES, AND
are is equal to that of its sup- APPLICATIONS .ovoos saerssasenasassens 255
plement in every respect......... 245 Numerical value of t.l:lgonom_etmsl
The versed-sine of any are is equal functions and their lngar:Lhms:. 255
to that of its supplement, plus Equations for the resolution of tri-
twice the cosine of the same arc; angles .o i, 261
the versed-cosine of any arc is Res;alutmn of right-angled trian- o
tl ual to that of its su BleBainrsnsssnsnsssnnamanrrmnsanssnsnss 5
St 7 2448 | ExamprLES. — Exam. L—When one

plement....ccenseisnnasenss A
The trigonometrical functions or
lines are proportional to the
radius of the corresponding cirele
The ratio of the sides about the
right angle of any right-angled

247

gide and two angles are given.,, 267

Exam. II.—When the given elements

are two sides and the included
0 1) (R
Other examples....cssesssessessssassns

sisassuansannssisnisss SO0

SPHERICAL TRIGONOMETRY.

PRELIMINARIES.
Object of Spherical Trigonometry
Spherieal triangles—their elements
—value of the elements, how esti-
mated......
In any spherical triangle the sum
of two sides is always greater
than the third side, and the three
gides together cannot amount to
L L

ARTICLE L

ForuvrnAs ANp HQUATIONS FOR THE
REsoLvTION OF TRIANGLES......
‘When the vertices of any triangle
are poles of the sides of another
triangle, the vertices of the se-
eond triangle are reciprocally
poles of the sides of the first....
Corollary I.—The sides of one tri-
angle are supplements of the
opposite angles of the other tri-
angle, and vice versd.......eeuses
Cor. I1.—The three angles of any

D TL LT TR TR T PR

sresrsrsanansarenen

276

277

278

278

spherieal triangle taken together
amount to less than six and more
than two right angles. ............
Useful formulas...ccennsensssiasanes
In the spherieal triangle the sines
of the sides are as those of the
opposite angles.......ccciovessniiis 285
Formulas of Gauss and Napier's
ANBTORIORA .Yy riivrns divermine vrivhion
Formulas containing an auxiliary
angle......... Sovianedie s Novhivivbsees 204
Formulas for the resolation of
right-angled spherleal trian-
L I e N A SHRRRE

ARTICLE IL

RESOLUTION OF THE SPHERICAL

TRIANGLES 1iveeseiosnasosens sesnsanes 500
Remarks........... sssssrasnins 300
Different cases for common spheri-

cal triangles........ sy sssisusshitineve S0
Different cases for right-ang
gpherical triangles........ccuruees 301

Examples.....ccou e P ARSI 302



@lements of Geometry.

INTRODUCTORY ARTICLE.

popect of Geo- ], GEEOMETRY treats of magnitudes.
P The dimensions of any body or space, either
existing or simply conceived, cannot be more than three.
For, suppose a body of any shape placed on a table:—
this body, besides the points that are at contact with the
table, has other points above them, in succession, from
the plane of the table to the top of the body. Now, this
extension is one of the dimensions of the body, and is
usually called thickness. The same body extends itself
also in the direction of the length, and in that of the
breadth, of the table, and thus we have two more dimen-
sions, which, accordingly, are called breadth and length
of the body. Besides these, no other dimensions can be
conceived.
pemitions.  Bodies in Geometry are called also solids,—
that is:—
Salid. A solid is a magnitude having three dimen-
sions.

If we consider only the boundaries of a solid, without
2% B 17
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any connection with the contiguous internal parts, we

sume  Dave that which in Geometry is called surface,

Hence, the surface is called, also, the limit of
the solid; but, we may more generally say that—

A surface is a magnitude having two dimensions.
Now, since the boundaries of solids are either plane or
curve, so also there are two different kinds of surfaces,
called likewise plane and curve surfaces. The plane sur-
face is also simply called a plane.

- The boundaries or limits of a surface are the

geometrical line; or,

A line is a magnitude having only one dimension;
and, since the boundaries of surfaces are either straight
or curve, lines also are either straight or curve.

The limits of a line are called points. The
geometrical point, therefore, has no dimensions.

The notions of straight and curve line, plane and

Remarks.  CUrVe surface, are clear enough to every one;

and it is of no profit to attempt to give an
illustration or definition of them.

It is equally easy to see, that if two straight lines co-
incide in two of their portions, however small, they will
coincide in all the other points, even if indefinitely pro-
duced, for neither of them ever deviates.

So also a straight line can never be made to coincide
with a curve line or globular surface, and a plane surface
can never be made to coincide with a curve one: thus a
ball, rolled in all directions on a plane, touches the plane
always in no more than one point; but if two plane sur-
faces coincide in any two of their portions, they will
evidently coincide in all, even if indefinitely produced.

Now, since magnitudes are the subject of Geometry,
and magnitudes admit of one dimension, as lines, either
straight or curve,—or two dimensions, as surfaces, either
plane or curve,—or three dimensions, as solids, limited

Point.
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by plane or curve boundaries,—the subject of Geometry
contains three heads, and three only :—lines, surfaces, and
solids; each one of these heads, however, being taken
most generally as well to that which concerns the pro-
perties of the various magnitudes as to that which
regards their mutual relations.

In Elementary Geometry the subject can be embraced
only partially; and, besides the straight line, the circular
line is the only curve considered by it: it considers plane
surfaces and the surfaces or boundaries of those solids
which are exclusively taken into consideration.

IT. Let us add to these general remarks some
oCrliminaries breliminaries concerning angles and triangles,
gles 24 & porallel lines and the circular line. And, first,

two straight lines, AB, AC, hav-
ing only one point, A, common, are said to B
form an angle; the point A is called the :
vertez, and AB, AC, the sides, of the angle. a o
The angle is the mutual inclination of the
sides, and, consequently, it does not depend on their
length. The same letter A is used to designate the
angle as well as the vertex; nay, the whole figure is
called the angle A, or, more explicitly, the angle BA.C.

But when AB stands erect over DC,

B

and does not incline on either side, in ¥ E
this case we cannot rigorously say that

the angle BAC and the angle BAD _ ra—"

are the mutual inclination of the sides,
unless we call inclination the relative position of the two
straight lines.

It is evident that any straight line AE, between AB
and AC, must be inclined toward AC; and any straight
line AF, between AB and AD, must be inclined
toward AD. :

It is evident, also, that the angles BAD, BAC, are
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equal to each other. For if we say that BAD is not
equal to BAC, we say that the relative position of I?A
with regard to AD differs from that of the same BA. 1:-’1&1

Rightangles, Tegard to AC, which is against the supposition.
Perpendicular. Thege angles are called 7ight angles, and the
straight line AB, forming the two equal angles with CD,
is called normal or perpendicular. :

Acuteanaon.  Any angle, EAC, less than the right angle,
tusoangles.  jg called an acute angle; and any angle,
FACQC, greater than the right angle, is called an obfuse
angle.

III. The extremities of the sides of any
angle may be joined together
with another straight line. The figure B
BAC, arising from this construction, is A
called a {friangle, for it contains three a c
angles.

Now, the three sides of a triangle may be either equal
or unequal to one another. When the three sides are
equal, the triangle is called equilateral; when only two
sides are equal, the triangle is called isosceles; when
the three sides are unequal, the triangle is called
scalene.

When all the angles of the triangle are acute, the tri-
angle is then called an acute-angled triangle; when one
of the angles of the triangle is obtuse, the triangle is
called an obtuse-angled triangle; when one of the angles
of the triangle is a right angle, the triangle then is called
a right-angled triangle, and the side oppo-
site to the right angle is called the Aypo- =»
thenuse.  Supposing, for instance, A to
be a right angle, BC is the hypothe- a ¢
nuse.

The horizontal side of the triangle is usually called the
base: thus, AC is the base of ABC.

Triangle.
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Pamiiellives. TV, When two straight
lines, CD and AB, are on the same — [
plane and keep constantly the same ! 4
mutual distance, they are called paral

lel lines.

Suppose mn to be a movable perpendicular to AB,
touching with the upper extremity » the other straight
line CD; if the same perpendicular, brought at different
points along BA, touches invariably the straight line CD
with the same extremity n, these straight lines are said to
preserve the same distance from each other; and, gince
neither of them will ever deviate from their straight
direction, they will always remain at equal distance from
each other, even indefinitely produced, and will never
meet to form an angle.

gHiRae V. Now, two parallel lines, » i

st o CD and AB, may be limited D
by two other parallel lines, CA . i
and DB, in which case we

Fanllelogmi. have a figure of four sides and angles, which

we call a parallelogram.

If the four sides of the parallelogram should
be all equal, the figure would then be called
also a rhombus.

And if, the sides not being equal, the angles
should be all right angles, the figure then
would be called a rectangle.

But if all the angles are right, and the sides
square.  all equal, the figure would then be called a
square. J

When the two sides CD and AB only
are parallel, and the other two inclined Er
to each other, the figure is called a . dg
trapezoid. Y.

Generally, all figures of four sides are called quadri

Rhombus.

Rectangle,
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laterals, all figures of five sides pentagons, and all figures
of six sides hexagons.

ek Polygon is Fhe g:eneral appel- B K
lation including figures of any ‘
number of sides. | \ A

The straight lines AC, AD, AE, drawn
from any angle A of the polygon to the opposite angles,
are called diagonals.

The plane surface included by the sides of the polygon
is called area, and the sides taken together form the
perimeler of the polygon.

V1. Suppose the straight »

S o dine (DG o b saowable
about one of its extremities C,—that
is, while C keeps invariably its posi- ¢ o

tion on the same point of the plane, i

the rest of the line turns around on

the plane, and traces meanwhile with D

the other extremity D the line

DD/D”D'",  This is the circular line, evidently different

from the straight line. '

Now, since the length of D remains unchanged, all the

points of DD/ . . .. are equally distant from C, which is

called the centre, and consequently straight lines drawn

from the centre to the various points of the circular line

are all equal to one another; wherefore some define this

line a curve line having all its points equally distant

from a central point.

odusibd: The surface or area limited by the circular -
line is called the cirele, and the line itself the

cumirenes ™ cireumference or periphery, although occasion-
ally the circumference also is called circle.

Any portion DD’ of the circumference is called an are,

Avcandchor, 20d @ straight line DD’ drawn from one
to another extremity of the arc is called a
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chord. The plane surface or area DmD’D, limited by the

Bagment.

Diameter.

The diamster
bisects the eir-
¢cle and the eir-
cumference,

area and the corresponding chord, is called a
segment. The line CD drawn from the centre
to any point D of the periphery is called the
padius. The area DmD'C, Jimited by two radii
and the portion DmD’ of the circumference
terminated by the same radii, is called a sector.
A straight line DD’ which, passing through the
centre, touches with its extremities the circum-
ference, is called the diameter. The diameter,
therefore, is twice the radius, The diameter
also bisects the circle and the circumference
into two equal parts, called semicircles and semi-
circumferences. For, suppose the plane DD'D"D

to be turned about the diameter DCD” go as to make this
gurface coincide with the other DD’””D”D, the portion
DD'D” of the circumference must then necessarily co-
incide with DD/D", otherwise some of the points of the

upper or

lower periphery would not be equally distant

from the centre. The diameter, therefore, bisects equally
circle and circumference.



BOOK I
ANGLES AND TRIANGLES.

Tue first elementary theorems concerning angles and
triangles and' the measure of the angles afforded by the
circular line form the suhject of the present book. But,
first, let us remark that, when

Remark con-

c
cerning equal two angles A and e are equal
ang to each other, the one may be ¢<
placed on the other so as perfectly to
coincide with it; for, if we place ab on c
AB s0 as to make the point @ coincide a<
with A, since ae is inelined on ab in the

same manner in which AC is inclined on s
AB, the side ac also of the angle  will coincide with the
gide AC of the angle A.

THEOREM I.

When a straight line meets another straight line, the sum of the
two angles is equal to two right angles.

Let the straight line OD meet the other
straight line AB at D, the line CD meets Ly T
AB either perpendicularly or not: in the
first case the two angles formed are right
angles; in the second case let ED be the =
perpendicular, meeting AB at D; in this
manner, (representing the two right angles by the ex-
pression 2r,) we will have,

o ADE + EDB = 27,
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Now, the angle ADC is equivalent to ADE 4+ EDC, and
the angle CDB is equivalent to EDB —EDC; hence,

ADC+CDB =ADE +EDC + ADB — EDC =
ADE + ADB = 2r.

In whatever manner, therefore, CD meets AB, the sum
of the two adjacent angles is equal to two right angles.

If we suppose AD and DB
to be two separate lines, and
CD meeting them in the point of their
junction to form two adjacent angles
equal or equivalent to two right angles,
the two lines must be on the same
straight line. Otherwise, suppose that
DF is the continuation of the straight line AD ; then we
have ADC + CDF = 2r; but by supposition ADC + CDB
= 2r; hence, ADC + CDF = ADC + CDB, and conse-
quently CDB = CDF, which is absurd. We must say,
therefore, that AD. and DB are on the same straight line.

remakeana 11 demonstrating our last assertion, we have
SElonty made use of some axioms or self-evident prinei-
ples, which the student may profitably remark here and
once forever. First, from the equations

ADC + CDF =2r, ADC + CDB = 2r,
we have inferred the other equation,
ADC + CD¥ = ADC + CDB,
resting on the axiom that things that are equal to the same
thing are equal to each other.

Again, from the last equation we have inferred the
following :—

Schalium.

CDF = CDB,
resting on the axiom that when equals are taken from equals
the remainders are equal.

We have finally inferred that AD and DB must neces-

3
)
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sarily be on the same straight line, from the absurdity
which otherwise would follow, that the whole angle CDF
is equal to its portion CDB, resting on the axiom, every
whole is greater than any of ils parts.

THEOREM II

W hen two straight lines intersect each other, the opposite angles
g are equal.

Let the straight lines AB and CD a »
intersect each other at the point E; the >]<
angles AEC and DEB are called opposite ¢ ]
or vertical, and also the angles AED,
CEB.

From the preceding theorem we have

AEC + AED = 2r, DEB 4 AED = 2r;
hence, AEC + AED =DEB + AED,

and, consequently,
AFEC = DEB.

In like manner, considering the adjacent angles AED
and DEB, and then DEB and BEC, we find

AED = CEB.

Gusollary. That is, the opposite or vertical angles are
equal. Hence, if the straight line DC is per-
pendicular to AB, the four angles are all equal.
Whatever be the angles which AB’ makes
_with CD, since AED and DEB are equivalent
to two right angles, and also AEC and CEB, the sum
of the four angles is always equivalent to four right
angles.
Nay, let any number of lines, CA, CB, CD, meet

F A

Scholium.
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Now, the angle ADC is equivalent to ADE + EDC, and
the angle CDB is equivalent to EDB —EDC ; hence,

ADC+CDB =ADE+EDC + ADB —EDC =
A.DE -+ ADB = 2‘?“.
In whatever manner, therefore, CD meets AB, the sum
of the two adjacent angles is equal to two right angles.

If we suppose AD and DB
to be two separate lines, and
CD meeting them in the point of their
junction to form two adjacent angles
equal or equivalent to two right angles,
the two lines must be on the same
straight line. Otherwise, suppose that
DF is the continuation of the straight line AD; then we
have ADC + CDF = 2r; but by supposition ADC + CDB
= 2r; hence, ADC + CDF =ADC + CDB, and conse-
quently CDB = CDF, which is absurd. We must say,
therefore, that AD and DB are on the same straight line.

Remakeana 111 demonstrating our last assertion, we have
S made use of some axioms or self-evident princi-
ples, which the student may profitably remark here and
once forever. First, from the equations

ADC + CDF =2r, ADC + CDB = 27,
we have inferred the other equation,
ADC + CDF = ADC + CDB,

resting on the axiom that things that are equal o the same
thing are equal to each other.

Again, from the last equation we have inferred the
following :—

Beholium.

ODF = CDB,
resting on the axiom that when equals are taken from equals
the remainders are equal.

We have finally inferred that AD and DB must neces-
3
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sarily be on the same straight line, from the absurdity
which otherwise would follow, that the whole angle CDF
is equal to its portion CDB, resting on the axiom, every
whole is greater than any of ils parts.

THEOREM II

W hen two straight lines intersect each other, the opposite angles
are equal.

Let the straight lines AB and CD A 0
intersect each other at the point E; the ><
angles AEC and DEB are called opposite ¢ B
or vertical, and also the angles AED,
CEB.

From the preceding theorem we have

AEC + AED = 2, DEB + AED = 2r;
hence, AEC 4+ AED =DEB + AED,

and, consequently,
AFEC = DEB.

In like manner, considering the adjacent angles AED
and DEB, and then DEB and BEC, we find

AED = CEB.

Bossines. That is, the opposite or vertical angles are
equal. Hence, if the straight line DC is per-
pendicular to AB, the four angles are all equal.
Whatever be the angles which AB makes
with CD, since AED and DEB are equivalent
to two right angles, and also AEC and CEB, the sum
of the four angles is always equivalent to four right
angles. ~
Nay, let any number of lines, CA, CB, CD, meet

Scholium,
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together at C, the sum of the angles
about C will be equal to four right an-
gles. For, draw MCN; we will have,
first, BCM + BCN =2r; that is, since
BCM =BCA+ACM, and BCN=BCD +
DCN,

BCA+ACM + BCD+ DCN =2r.

In like manner, -
ECN + ECF+ FCM = 2r.

Hence, adding together the two sums, and observing that
ACM + MCF=ACF, and DCN + NCE =DCE,

ACB +BCD +DCE + ECF+FCA =4r.

That is, the sum of the angles formed by any number
of straight lines meeting at one common point is always
equal to four right angles.

THEOREM III.

The sum of two straight lines, drawn from any point within
the triangle to the extremities of the base, is less than the sum
of the other sides. :

We need not demonstrate that one of the s;des of any
triangle is always less than the sum of
the other two sides; for if we imagine,
for instance, the side AB to be depressed
toward AC, keeping the extremity A
always immovable and the extremity
B invariably united with that of the side
BC, we cannot conceive this motion without the sliding
of the side BC through the extremity C of the base (to
which we suppose it to' adhere) and constant increasing
of the angle B; and if AB is less than AC, when

B

A o
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AB will coincide with AC, the two sides AB and BC
will form one straight line evidently longer than AC.
But if AB is equal or greater than AC, much more then
AB+ BC>AC.

Take now any point, D, within the triangle, and from
D draw DA, DC to the extremities of the base; produce
also AD to F. From the triangle ABF we have

AF < AB + BF;

And, since when equals are added to unequals the sums are
unequal, we will have also

AF +FC<AB+BF+FC;
or, AF +FC<AB+ BC.
Now, DC<DF + FC, and, consequently,

AD+DC<AD+DF+FC
or, AD+DC<AF + FC.

But AF+FC is already less than AB + BC; much more
then .
AD +DC< AB + BC.

THEOREM. IV.

If two sides and the ineluded angle of one triangle are. equal
o two sides and the ineluded angle of another triangle, the
triangles are equal.

Let the sides CA and CB of the triangle ABC be
respectively equal to the sides

GD and GF of the triangle q A
DFG, and the included angle C /\
of the first equal to the in- , D ¥

cluded angle G of the second;
the two triangles are equal. For, imagine the first ABC
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together at C, the sum of the angles
about C will be equal to four right an-
gles. TFor, draw MCN; we will have,

BCOM =BCA+ACM, and BON=BCD +
DON,
BOA +ACOM + BOD + DCN = 2r.

In like manner,
ECN + ECF+ FCM = 2r.

Hence, adding together the two sums, and observing that
ACM + MCOF=ACF, and DCN + NCE =DCE,

ACB +BCD +DCE +ECF+FCA =4r.

That is, the sum of the angles formed by any number
of straight lines meeting at one common point is always
equal to four right angles.

THEOREM III.

The sum of two straight lines, drawn from any point within
the triangle to the extremities of the base, is less than the sum
of the other sides.

We need not demonstrate that one of the sides of any
triangle is always less than the sum of
the other two sides; for if we imagine,
for instance, the side AB to be depressed
toward AC, keeping the extremity A
always immovable and the extremity
B invariably united with that of the side *
BC, we cannot conceive this motion without the sliding
of the side BC through the extremity C of the base (to
which we suppose it to adhere) and constant increasing
of the angle B; and if AB is less than AC, when
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AB will coincide with AC, the two sides AB and BC
will form one straight line evidently longer than AC.
But if AB is equal or greater than AC, much more then
AB+BC>AC. '

Take now any point, D, within the triangle, and from
D draw DA, DC to the extremities of the base; produce
also AD to F. From the triangle ABF we have

AF < AB + BF;

And, since when equals are added to unequals the sums are
unequal, we will have also

AF+FC<AB+ BF+FC;
or, AF +FC<AB+BC.
Now, DC <DF + F(, and, consequently,

AD+DC<AD +DF+FC
or, AD+DC<AF + FC.

But AF+FC is already less than AB + BC; much more
then )
AD +DC< AB + BC.

THEOREM IV.

If two sides and the included angle of one triangle are equal
lo two sides and the ineluded angle of another triangle, the
triangles are equal.

Let the sides CA and CB of the triangle ABC be
respectively equal to the sides

GD and GF of the triangle y, A
DFG, and the included angle C /\ /\
of the first equal to the in- A B D ¥

cluded angle G of the second ;
the two triangles are equal. For, imagine the first ABQ
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to be placed on the second DEF, so that CA may co-
incide with GD, A with D, and O with G; since the angle
C is equal to G, the side CB must also coincide with
GF, and, OB and GF being equal in length, the point B
will coincide with ¥. Butif A and B coincide with D
and F, the side AB also coincides with DF, and the two
triangles are equal.

THEOREM V. .

If two angles of ome triangle and the included side are
equal to two angles and the included side of another tri-
angle, the two triangles are equal.

Let the angles A and B of the triangle ABC be
respectively equal to the

angles D and F of the p
triangle DFG, and the in- A Aw
cluded side AB of the A 3 p

first triangle equal to the

included side DF of the second. The two triangles are
equal. For, placing AB over DF, so that A may coin-
cide with D and B with F, the side AC, being inclined
toward AB in the same manner as GD is inclined
toward DF, will coincide with GD; and for the same
reason OB will coincide with GF; and, therefore, the
point C, which is at once on AC and on (CB, must neces-
sarily coincide with the point G, which alone is at once
on the sides GD and GF, and the two triangles are
identical.

2%
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THEOREM VI.

If two sides of one triangle are equal to two sides of another
triangle, but the included angle of the first is greater than
the included angle of the second, the third side of the first
triangle i3 also greater than the third side of the second,

and vice versd.
»

Let the angle C of the
triangle ABC be cut
into two angles by any
straight line, and let the
cutting line be equal in
length to the side CA.
Three cases may occur:—First, the extremity of the cut-
ting line may be somewhere along the base, AB; for
instance, in @, so that Ca, the cutting line, be equal to
CA. Becondly, the extremity may fall out of the tri-
angle ; for example, in @, Ca’ being again equal to CA.
Finally, the extremity may fall within the triangle ; for
example, in a’, when the cutting line is Ca/, equal in
length to the preceding

Joining now o’ and o with B, we have the triangles
Ca”B, Ca’B, which, together with the triangle CaB,
have one side, CB, common, which is also one of the.
gides of the triangle ABC; the sides Ca', Ca’, and Ca,
are equal to CA, but the included angles a*’CB, a’CB,
and aCB, are less than the included angle ACB. Now,
we say that the third side of every one of those three
triangles is less than the third side, AB, of the triangle
ACB.

With regard to the case of the triangle CaB, it is evi-
. dent that aB is less than AB; but also &/B is less than




ANGLES AND TRIANGLES. 20

to be placed on the second DEF, so that CA may co-
incide with GD, A with D, and C with G; since the angle
C is equal to G, the side CB must also coincide with
GF, and, OB and GF being equal in length, the point B
will coincide with F. Butif A and B coincide with D
and ¥, the side AB also coincides with DF, and the two
triangles are equal.

THEOREM V.

If two angles of one triangle and the included side are
equal to two angles and the included side of another tri-
angle, the two triangles are equal.

Let the angles A and B of the triangle ABC be
respectively equal to the 3

angles D and F of the G
triangle DF@, and the in- A :’ 2
cluded side AB of the 2 B p

first triangle equal to the

included side DF of the second. The two triangles are
equal. _For, placing AB over DF, so that A may coin-
cide with D and B with F, the side AC, being inclined
toward AB in the same manner as GD is inclined
toward DF, will coincide with GD; and for the same
reason OB will coincide with GF; and, therefore, the
point C, which is at once on AC and on CB, must neces-
sarily coincide with the point G, which alone is at once
on the sides GD and GF, and the two triangles are
identical.

a%
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THEOREM VI.

If two sides of one triangle are equal to two 33'::€es of another
triangle, but the included angle of the first is greater than
the included angle of the second, the third side of the first
triangle is also greater than the third side of the second,
and vice versd.

Let the angle C of the
triangle ABC be cut
into two angles by any
straight line, and let the
cutting line be equal in
length to the side CA.
Three cases may occur:—First, the extremity of the cut-
ting line may be somewhere along the base, AB; for
instance, in a, so that Cg, the cutting line, be equal to
CA. Becondly, the extremity may fall out of the tri-
angle; for example, in o’/, Ca’ being again equal to CA.
Finally, the extremity may fall within the triangle ; for
example, in «/, when the cutting line is Oa/, equal in
length to the preceding

Joining now a” and ¢’ with B, we have the triangles
Ca”B, Ca’B, which, together with the triangle CaB,
have one side, CB, common, which is also one of the
sides of the triangle ABC; the sides Ca’, Ca’, and Ca,
are equal to CA, but the included angles «””CB, a/CB,
and aCB, are less than the included angle ACB. Now,
we say that the third side of every one of those three
triangles is less than the third side, AB, of the triangle
ACB.

With regard to the case of the triangle CaB, it is evi-
dent that B is less than AB; but also a’B is less than
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AB, for we have seen (ru. 3) that Ca"*+a’B <CA+AB;
and, since Ca’=CA, it is also

B <AB.
With regard to a’’B, we have
"B <a''n+nB;
and from the triangle CAn we have
CA<An+Cn;

hence, CA+a"B<An+Cn+a’n+nB;
thatis, CA+a”’B<AB+Ca;
and, since CA= Ca", we have, also,

a'B<AB;

that is, the third side, «//B, of the triangle Ca”’B less
than the third side, AB, of the triangle CAB.

Vice versd, if the sides
CA, CB, of the triangle c 4

CAB, are equal to the
sides C'A/, C'B/, of the
triangle C’A’B/, but the y ¥

A B

third side, AB, of the first

is greager than the third side, A'B/, of the second, the
angle C must be greater than C; for, if it is not greater,
it is eifher equal to or less than C’; but C cannot be equal
to C’, for, when two sides and the included angle of one
triangle are equal to two sides and the included angle of
another triangle, the triangles are identical, and, con-
sequently, we should have AB=A’B’, contrary to the
supposition. Nor can the angle C be less than (7; for in
this case, according to the preceding demonstration, AB
should be less than A/B’; the angle C, therefore, cannot
be but greater than C'.
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THEOREM VII.

When two triangles have the three sides of the one equal to
the three sides of the other, the triangles are egqual in

all respects.

Let the side AB of the triangle ABC be equal to the
side A’B’ of the triangle

A’B/C’, and let the sides a '
AC, BC of the former be
respectively equal to the
sides A’C/, B'C' of the B SBY g
latter; we say that the

two triangles are identical. For, tet us place AB on
A’B’, s0 as to have the point B coinciding with B’ and
the point A with A’; AC must necessarily coincide
with A’C’; for, if it does not coincide, it will either cut
the angle A’, taking, for instance, the direction A’m or
the direction A’z out of the triangle. But, in the first
case, the third side B‘m would be less than B’C/, and, in
the second, the third side B’z would be greater than
B'C’; but the third side is equal to B’ ‘When, there-
fore, AB coincides with A/B’,—that is, B with B’ and A
with A/,—C also must coincide with C’, and the whole
triangle ABC with A’B’C.

Observe that, whenever the triangles are identical, the
angles opposite to equal sides are equal ; wice versd, the
sides opposite to equal angles are equal. The use of this
remark is frequent.
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AB, for we have seen (1H, 3) that Ca”’+a’B<<CA+AB;
and, since Ca/= CA, it is also

B <<AB.
With regard to a’’B, we have .
a’B<a’n+nB;
and from the triangle CAn we have
CA<An+ Cn;

hence, CA+a"B<An+Cn+a'n+nB;
thatis, CA+a’'B<AB+4Cd";
and, since CA= Ca'’, we have, also,
a'B<AB;
that is, the third side, ¢/’B, of the triangle Ca”’B less
than the third side, AB, of the triangle CAB.

Vice versd, if the sides ,
CA, CB, of the triangle c 0

CAB, are equal to the
sides C’A’, C'B/, of the .
triangle C’A’B’, but the g B

A B

third side, AB, of the first

is greater than the third side, A’B/, of the second, the
angle C must be greater than (; for, if it is not greater,
it is either equal to or less than C’; but C cannot be equal
to ¢, for, when two sides and the included angle of one
triangle are equal to two sides and the included angle of
another triangle, the triangles are identical, and, con-
sequently, we should have AB=A'B/, contrary to the
supposition. Nor can the angle C be less than C’; for in
this case, according to the preceding demonstration, ADB
should be less than A’B’; the angle C, therefore, cannot
be but greater than C’.
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THEOREM VIIL

When two triangles have the three sides of the one equal to
the three sides of the other, the triangles are equal in

all respects.

Let the side AB of the triangle ABC be equal to the
side A’B’ of the triangle

A'B’C’, and let the sides o~
AC, BC of the former be A %
respectively equal to the i
sides A’C/, B/C’ of the B i &
latter; we say that the

two triangles are identical. For, 1et us place AB on
A’B/, s0 as to have the point B coinciding with B’ and
the point A with A’; AC must necessarily coincide
with A’C’; for, if it does not coincide, it will either cut
the angle A’ taking, for instance, the direction A’'m or
the direction A’z out of the triangle. But, in the first
case, the third side Bm would be less than B’(Y, and, in
the second, the third side B/n would be greater than
B’C’; but the third side is equal to B'C. ‘When, there-
fore, AB coincides with A’B’,—that is, B with B’ and A
with A’,—C also must coincide with C’, and the whole
triangle ABC with A/B’()".

Observe that, whenever the triangles are identical, the
angles opposite to equal sides are equal; vice versd, the
sides opposite to equal angles are equal. The use of this
remark is frequent.
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THEOREM VIIIL.

! Two straight lines drawn from any point of a perpendicular to

two points of the other line, equidistant from the foot of

the same perpendicular, are equal to each other; and vice
versd.

Let the straight line MN be perpendicular to EF, and
take on EF two points, B and

C, equidistant from the point sy

N of intersection of the two y

lines: if from any point, A, D

of the perpendicular we draw

to B and C two straight lines, 57— ¥

they will be equal to each
other. For we have two tri-
angles, ANB, ANC, having - :
the side AN common and BN equal to NC, and, besides,
| the included angles BNA, CNA also equal; therefore
(tH. 4) the triangles are equal, and AB is equal to AC.
Vice versd, if AB is equal to AC, and BN is equal to
CN, AN then must be perpendicular to BC. For the
three sides of one triangle being respectively equal to the
three sides of the other, their opposite angles are also
equal, and, consequentlyy, BNA=ANC; that is, AN is
perpendicular to BC. !
e But if from A we draw AB’to a point B,
The oblique gt g greater distance from the foot N of the

lines  drawn

am thesame normal than B is, AB’ is greater than AB.

Porease win Lo see it, produce AN to A’, so as to have

P fistances N A=NA’, and join A’ with B and with B,

s we have the triangle AB’A’, and, from a

point B within the triangle, two straight lines BA, BA’,
C
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drawn to the extremities of the side AA’; therefore,
(rm. 3,)

AB+BA/<AB’/+ B’A’.
Now, EF is perpendicular to MA’, and A and A’ are two
points on MA’ equidistant from the foot N of the perpen-
dicular; therefore,

AB=BA’, AB'=DB'A’;
and, consequently, the first member of the preceding
inequality is equal to 2AB, and the second to 2AB’;
hence, 2AB << 2AB’, and, therefore,

AB <APB.
Somouwn IT. . Tf from a point D, out of the perpendicular,

wo straight
1?3;:&;:?;;;_ we draw DB and DC to the two points equi-
et ot s distant from N, then DB will be greater than
Tom’s DC.  In fact, joining G, the point of the nor-
Pormuianun mal met by DB with C, we will have GB

i = GC; hence,

DB=DG+ GC.
Now, DC<DG+ GOC;
hence, DC < DB.
THEOREM IX.

The normal is the shortest line which may be drawn from
any point to another line, and the normal is unique.

‘We have seen above that the oblique lines increase
with the distance from the nor-
mal. Tence, representing by &
An the normal to BC, and by
Ao and Am any two oblique
lines, we have Am<CAo; and, if
we conceive another oblique line 5 o 7 7 mrer ¢
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between Am and An, this will be less than Am, and so
on, until we arrive at An; for, beyond An, any straight
line drawn from A to BC will be drawn to some point,
for example, m/, o/, &c. equally distant from = as m, o,
&e. on the side of B; and, since every one of the oblique
lines Am, Ao, &e. is greater than An, so their equals
Am/, Ao, &c. are likewise all greater than An.. And
therefore the normal is the shortest line which may be
drawn from a given point to another straight line, and
it is the only one.

THEOREM X.

Two right-angled triangles having equal hypothenuses and
another angle equal, are equal.

If the hypothenuse AC of A A
the right-angled triangle ABC :
_is equal to the hypothenuse

A'C’ of the right-angled tri- m
angle A’C’'B/,and theangle A -
of the first triangle is equal to
the angle A’ of the second,
the two triangles are also equal
in the rest. In fact, placing the triangle ACB on A’C'D/,
so as to have C coinciding with €’ and A with A’, since
the angle A is equal to A’ the side AB also will coincide
with the side A’B/, aud, besides, the point B will coincide
with B/, and, consequently, CB with C'B’. Otherwise, CB
will take either the direction C'n or C’m, and then we will
have C'm or C'n, together with C’B’, perpendicular to
A'B’, But, according to the preceding theorem, there
can be only one perpendicular from any point to any
straight line. Hence OB coincides with C’B’, and the
two triangles are identical.

™




86 GEOMETRY. BOOK L

THEOREM XI.

Two right-angled triangles having equal hypothenuses and
another side equal are equal.

If the right-angled triangles ABC, A’B’C’, have the
hypothenuse AC equal to the hypothenuse A’C’ and 1iha
side AB equal to the side A’B/, they are equal also with
regard to the rest. In fact, the

triangle ABC may be placed on !
A'B'C’, so as to have the point A
coinciding with A’ and the point
ith - oy o B

B with B’; and, since B and B’

are right angles, the side BC also

will coincide with B’C’, and, besides, C must eoincide with
C’, else C will coincide either with p or with ¢ and AC
with A’p or A’q. But (TH. 8, son. 1.) A’p is less and A’g
is greater than A’C/, against the supposition ; therefore C
must coincide with C’, and the two triangles are equal to
each other.

THEOREM XIT.

If from the angle formed by the equal sides of an isosceles
triangle we draw a perpendicular to the opposite side, the side
and the angle will be divided by it into two equal parts.

From the vertex A of the triangle ABC, A
having the sides AB, AC equal, draw the
perpendicular Am to the opposite side;
we will have two right-angled triangles
having the hypothenuse AB of one equal o
to the hypothenuse AC of the other, and



ANGLES AND TRIANGLES, 3T

the side Am common to both; hence (rm. 11,) they are
identical, and Bm = Cm and BAm = CAm. That is, the
perpendicular Am bisects equally the side BC and the
angle BAC.

S, From the equal triangles AmB, AmC, we
the tonnglesof _have also the angles ABC, ACB equal to each
¥ e Tous Other. Hence, in the isosceles triangle the
fdesareequil ganoles opposite to the equal sides are also
equal. In like manner we see that if the triangle would

be equilateral the same would have all the
LT gutme angles equal,—that is, the equilateral triangle
squmogular-  ig also equiangular.

THOEOREM XIII.

The sides of a triangle opposite to equal angles are equal, and
the sides opposite to greater angles are grealer.

When the angles ABC, ACB are equal F
to each other, the sides AB, AC, opposite
to them, are also equal. In fact, divide ‘

BC into two equal parts, and from the
point m of division draw mF perpendicu-
lar to BC; this perpendicular will pass
through A. Else let md be the direction B
of the perpendicular; then, joining d
with B, we would have (rH.8) dB and dC equal, and
the angles d BC and dCB also equal; but ABC by suppo-
sition is equal to ACB; therefore we would have ABC =
dBC, the whole equal to its parts, which involves an
absurdity. Hence the bisecting normal can only be mA,
and, consequently, AB = AC.

4

I
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But if the angle ABC is greater than
ACD, then the side AC also, opposite to 1
the first angle, is greater than AB, oppo- A 2
site to the second. For, take from the

greater angle a portion ¢BC equal to ¢CB, then ¢C=¢B,
and Ag+¢gC or AC=Ag+¢B. But Ag+¢B>AB;
hence,

AC > AB.

MEASURE OF ANGLES.

of dioee mante  If two quantities, m and m’, are such that

measures of m m
angles. when m becomes 2m or 3m, &e. or 5 3 &e.,
’ -

m’ m
m! also becomes 2m/, 3w/, &e. or —5 ~g* &e., one of them

may be taken as the measure of the other, and this, what-
ever be the change they undergo. (See Treat. on
Alg., § 116.)

Now this is the case with regard to angles and ares
of the circle when the angles have their vertices in the
centre of the same circle. Hence one may be used as the
measure of the other.

Let AQD be the circumference ()
of a circle having its centre in C.

Take the arcs AB, AD, AG,....

in such a manner that we may have @ ?
AD=2AB, AG=8AB, &ec. A
Draw to the extremities A, B, D, P
. of the ares the radii CA, CB, i

CD, &e.; we will have the angles ACB, ACD, ACG, &e,
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increasing in the same manner as the corresponding
arcs,—that is,

ACD = 2ACB, ACG =3ACB, &c.

In fact, the sector DCB may be conceived to be turned
about the radius OB, so as to make it fall on the sector
BCA. Since the arc DB is equal to BA, and both have all
their points equidistant from the centre, they must per-
fectly coincide with each other, and consequently the
point D with A and the radius CD with CA ; therefore
the angle DOB = BCA, and, consequently, ACD =2ACB.
In the same manner, we find that GCD =DCB = BCA;
therefore ACG = 3ACB, &e.

Suppose, now, the arc AE to be divided into two equal
parts, AF and FE, and draw the radii CE, CF ; we have
ACF = FCE, and, consequently, ACE= 2ACF, from
which ACF=21ACE; the angle namely corresponding
to AF =1EA is ACF=}ACE. Divide also the arc AG
into three equal parts, AB, BD, DG; the angles ACB,
BCD, DOG, are all equal, and, therefore, the angle ACB,
corresponding to AB=}AG, is JACG. In like manner,
one-fourth, one-fifth, &c. of any are will evidently have
a corresponding angle one-fourth and one-fifth, &e. of the
angle corresponding to the whole are. The angles, there-
fore, at the centre increase and diminish as the corre-
gponding ares.

Vice versd, the ares increase and diminish as the corre-
sponding angles; for, if we take DCA, GCA, &e. equal
to 2BCA, 3BCA, &e., we will have DCB, GCD, &e.
equal to BCA 5 and, since the sides CA, CB, CD, &e. are
all equal, DOB turned about the side OB will have CD
coinciding with CA and D with A, and therefore the arc
DB with BA. Hence DB=BA. In like manuer, GD =
DB=BA; and so on. Therefore DA=2AB, GA=
8AB, &e. But if the angle ACE should be divided into
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two equal parts by CF, we would find in the same
manner that AF=FE, and, consequently, AF =}AE,
In like manner, also, from ACG divided into three equal
parts by CD, CB, we would find AB=31AG, &c. The
arc, therefore, and the corresponding angle at the centre,
are such quantities that, if one of them increases or
diminishes, the other also increases and diminishes in
the same manner. The arc, therefore, is the measure
of the angle, and vice versd.

We may, from the 4, = 5
same principle, remark
subionion e here, also, that equal arcs E
caualchords. — are subtended by equal
chords; for, when the arc AmF is
equal to the arc EnG, if the one be G
placed on the other they will per-
fectly coincide, so as to have the

extremities A and F coinciding with E and G. But
A and F are the extremities of the chord AF, and E and
G the extremities of the chord EG; the two chords,
therefore, have the same length,—that is, are equal
to each other. Viee versd, when the chords FA, LG
are equal, the corresponding ares also are equal; for,
placing AT on EG, so as to have A coinciding with
E and F with G, the are AmF must evidently coincide
with EnG.

vivision or  Lhe periphery of the circle is conceived to
ang Teihery: he divided into 860 equal parts, called degrees,
theasges  and each degree into 60 equal parts, called
minutes, and each minute again into 60 equal parts, called
seconds. The manner in which the degrees are expressed
is by placing above the number the sign °; the manner
in which minutes and seconds are expressed is by placing
above the number the signs ” and ”/ —the former for the
minutes, the latter for the seconds. Thus, for instance,

Remarks
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a portion of the circumference embracing 35 degrees
:2 minutes and 15 seconds will be represented by
85° 12/ 15",

Now, if we suppose two dia- A
meters, AB, DE, at right angles,
the same diameters will cut the
circumference into four equal
parts, for each angle is mea- p}| ¢ B
sured by an equal arc; but, by
dividing the circumference into
four equal parts, each part em-
braces 90°. Tlence the measure A
or value of the right angle is an arc of 90°; and, conse-
quently, the value of two right angles is an are of 180°,
and that of three right angles an arc of 270°, Hence, the
right angle is also simply expressed by 90°, two right
angles by 180°, and three right angles by 270°.
B0 s When an arc is less than 90°, what is
ment, wanting to complete the 90° is ecalled the
complement of that are or of the corresponding angle.
Thus, for example, the complement of 60° iz 30°. The
complement might be taken also negatively when the
arc or angle is greater than 90°. Thus, the complement
of 110° would be—20°. But it is usually taken in the
first manner only. The supplement of an arc or angle less
than 96° is what is to be added to it to have a gemicircle,
or 180°; so the supplement of 40° is 140°, and the sup-
plement of 100° is 80°. The supplement also is usually
taken positively,—that is, concerning arcs less than
180° only.

PROBLEMS.

m‘r‘:;';;'{‘;ﬂ‘t The dividers and the ruler are the two

yidersand the jndispensable instruments for drawing plane
4%
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-

figures, The dividers e
consist of two legs )
movable around a joint
at B. When the ex-
tremity C, for in-
stance, is kept im-
movable on the same
point, and the angle CBD or
the distance CD remains un- #
changed, it is plain that by
means of this instrument a circumference or a portion of
it may be described, being, namely, traced out by the
movable extremity D while the other extremity C oceu-
pies the centre. The same instrument may be used to
measure distances or to cut off from a straight line a
portion of it equal to another given line. For instance,
open the dividers in such a manner as to have the extre-
mities C and D coinciding with the extremities of the
straight line CDj; then apply the extremity D of the
dividers, thus opened, to the extremity @ of the straight
line e, the other extremity C of the dividers will fall on
¢, for instance, and ag is evidently equal to CD.

Dot 1. CAB is a given angle to be A
ﬁ?‘ﬂﬂ';igﬁ divided into two equal parts. Take
» with the dividers AD=AC; then,

opening the dividers at pleasure, describe
an arc of a circle having the centre in D, and
with the same radius describe another arc 3/ Y
intersecting the first and having its centre in

C: the point A’ of intersection is evidently equally
distant from D and from C. Join now A’ with D,
with A, and with O; the straight line AA’ divides
DAC into two equal parts. In fact, the triangles
AA’D, AA’C, have the sides AD=AC, DA’=CA/,
and AA’ common; their angles, therefore, (rm. 7,)

b c
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are also equal, and DAA’ opposite to DA’ is equal to
CAA’ opposite to CA”.

pemew 1. AB i8 a given line to be
pio Uiseat @ divided into two equal parts.

% Describe with the same radins
two ares of circle intersecting each other
and having their centres in A and in B, 4
the extremities of the given straight
line; then join the point of intersection
C with A and with B; bisect then the angle ACB. The
straight line Cm, which bisects the angle, bisects also the
opposite side or the given AB. In fact, the triangles
CAm, CBm, besides the common side Cm, have the side
CA equal to the side CB, and the included angles
ACm, BOm also equal; therefore they are identical, and
Am = mB.

O is a point out of the 0
gy straight line CB; that is, out
given out of a . . .
Straight linoto ofdlts dl'rectlon. me. from
dicalar o the this point a perpendicular ;7— 2
to CB. Making O the cen-
tre of a circle, describe an arc cutting OB in m and =;
then join O with m and with n, and bisect the angle mOn;
we will have as above the triangles Omp, Onp equal, and
consequently the angle Opm equal to Opn,—that is, Op
perpendicular to CB.
Take on the straight

Toaetapor- line AB any point m. To
pendicular  at :
sny point of a erect a perpendicular to

AB from m, take on both
sides of m two parts of the line, mL
and mG, equal to each other; then,
making L and G centres of circles, describe with the
same radius two arcs intersecting each other in F'; join F
with m: the straight line Fm is the required perpen-

B

A L m ¢ B
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dicular., Because, if we complete the triangles FLm,
¥Gam, the two triangles have all the sides of one equal to
the sides of the other, and FmG = FmL; hence, Fm is
perpendicular to AB.
Let BAC be a given angle. c
To make s To make another angle equal to
angle equal to

another given A, draw the indefinite straight

e ine A’B’, and then with the i
same radius describe two ares of circle, C

one having the centre in A and the other B

in A’; then take with the dividers the me ¥

distance of the two points m and C,—that is, the length of

the chord subtending Cm,—and apply this length to the

arc m'C’. Now, arcs subtended by equal chords are

equal; hence, mC=m'C’, and consequently the angles

CAB, C’A’B/, measured by the same arcs, are also equal.
AB is a given straight line,

ProsreM VI. . . F
To describe On. which an equilateral tri- g
an equilateral .

or an isosceles angle is to be constructed.

triangle on

ven straight With a radius equal to the

given line, describe two ares
of circle intersecting each other at C,
the first having the centre in B, and the &
second in A; then complete the triangle CAB; and since
both CA and OB are equal to AB, the triangle is equi-
lateral. In like manner an isosceles triangle may be
described on AB by taking the radius of a different
length from the length of AB:
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PARALLEL AND PROPORTIONAL LINES.

THEOREM I.

When one of two lines is perpendicular to a third line, and the
other is oblique, the two lines must necessarily meet each
other.

Lzt the straight line AB be
perpendicular to EF, and let
another line DC be in any
way oblique to EF, the two
lines will somewhere meet
each other. In fact, suppos-
ing the upper part nD of CD
to be inclined towards ¥, it
will constantly and uniformly
approach rA and go beyond it; for, since rA is perpen-
dicular to EF, it is neither inclined towards E nor towards
F'; that is, none of its points deviate on either side; hence,
nD cannot go constantly and uniformly towards F with-
out approaching in an equal manner rA and passing
beyond it.

We say that #D goes constantly and uniformly towards
F; for it is of the nature of the straight line never to
deviate from the same direction, so that if 2D is inclined
with any part np of itself towards F, it will be equally
inclined with any other part of the same np indefinitely

produced towards D. Now, to say that np is inclined
45
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towards F, means that p is more towards F' than n. TLet
o be a point taken on nF, more towards F than n, and
exactly as much more as p is. But ne is an aliquot part
of nF, for instance, one-fifth or one-tenth; or, more gene-

rally, let no be equal to (%%—)th of nF'; the point p, there-
1
fore, of nD, is more towards F' than , by (E) th of nF.

Now, if along »D we take pp’=mnp, on account of the
constant and uniform proceeding of the straight line in
the same direction, the point p’ is more towards F than n
and twice as much as p is; that is, the point p’ is more

towards F' than » by(% )ths of nF. It is plain that if we

take in like manner, on 7D, three parts and then four, and
finally m parts, all equal to np, we will have the upper
extremities of these parts more towards F than n by

(;g-)ths of nF, by (?—i-)ths of nF, and, finally, by (f—J ths of

nF; that is, by the whole #F. Now, none of the points
of BA is more towards F than # is; therefore, before nD
has reached the length equal to m times np, it must have
necessarily met and crossed A, after having approached
it constantly and uniformly.

THEOREM II.

T'he straight line which is vertical to one of two parallels is ver-
tical to the other also; and when two straight lines are per-
pendicular lo a third line they are parallel to each other.

We have said (INTR. ART. 4) that when mn, perpendicu-
lar to AB, being brought along at different points of AB,
touches with the same extremity » invariably CD, the two
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lines AB, CD are parallel to each
other and will never meet to form
an angle. We add now that nm,
which is perpendicular to AB, 4 o B
must be perpendicular to CD also, for otherwise CnD
would be an oblique line to mn, and would somewhere
meet AB normal to the same mn. But if CD somewhere
meefs AB, the lines AB and CD are no longer parallel;
against the supposition, therefore, the perpendicular to
one of two parallels must be perpendicular to the other
also.

n D

But if two Btrﬂlgllt 1'].'[135, L N e
LM and NR, are perpendicular
to another straight line, EF, 1 4

they are parallel to each other.
Take, in fact, any point g in
NR, and draw from p, pgs. £ 2 7 F
Since LM and NR are both
perpendicular to EF, their rela-
tive position with regard to EF M i
is the same for both, and also

with regard to another line making any angle with EF.
Hence, the relative position of Lp with regard to pg
is the same as that of Ny with regard to gs,—that is,
Lpg=Ngs. But Ngs=pgq; hence,

Lpg =pgq.

Draw now from ¢ the perpendicular g¢ to LM: we have
two right-angled triangles having the hypothenuse com-
mon, and, besides, the angle pgq of the one equal to the
angle ipg of the other. Hence, the triangles are identical,
and

p=9q, gt=09.
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Draw now the straight line /g; we have two triangles {4y,
{gp, having the side #g common and /= pg and ip=gy;
therefore they are identical, (. 1. TH. 8,) and the like
angle tgq = tpg,—that iéof the same length of pg, and,
like pg, perpendicular at once to LM and to NR. The
same could be demonstrated with regard to any other
line drawn perpendicular to LM from any point of NR.
Hence, pg brought along different points of NR, always
perpendicular to the same NR, would invariably touch,
with the extremity p, the other line LM therefore the
two lines are parallel to each other.

Remarksama ~ Lhe distance between any point out of a
defimitions gtraight line and the line itself is measured by
the normal drawn from that point to the line. Now,
parallel lines are said to be such as keep everywhere
the same mutual distance; which is the same as to say
the perpendiculars drawn from the different points, and
from any point of one of them to the other, must be
of the same length. But, in this case, we have seen that
the same perpendicular is common to both. We may,
therefore, apply to parallel lines the following definition :—
Parallel lines are those which have a common wvertical,
In fact, according to the preceding demonstration, the
part of this vertical contained between them is every-
where of the same length.
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THEOREM III.

If a straight line meels two parallel lines, the allernate angles
made by it are equal to each other.

Let AB, CD be two pa-
rallel lines, and MN any other
line intersecting them at P
and Q. The angles APQ,
PQD, or BPQ, PQC, are
called alternate angles. Those,
namely, are the alternate an-
gles which lie on different
gides of the secant line within
the parallels. Now, the alter-

nate angles are equal to each other.

Divide PQ into two equal parts, PO, OQ, and from
O draw OL perpendicular to AB; the same OL produced
to B is perpendicular to CD also. Hence, we have the
right-angled triangles OEQ, OLP, having the hypothe-
nuse OP of one equal to the hypothenuse OQ of the
other, and the angle LOP of the first equal to the angle
QOE of the second; therefore, the triangles are equal,

and LPO=0QE ; that is,

APQ=PQD.

Now, (B. 1. TH. 1,)

APQ 4+ QPB = 2r,

PQD + PQC — 2’:";
hence, APQ+ QPB=PQD + PQC.
But APQ=PQD;

therefore, QPB =PQC.
D

b
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Camouarr 1. The angle CQN and its opposite MPB are
oo B called alternate exterior angles, and also APM,
DQN. Now, CQN=PQD, MPB=APQ.

But PQD and APQ are equal to each other; therefore,

CQN = MPB.
We prove in like manner that
NQD=APM.
Covoruanx IL. - Opmosite exterior and interior angles lie on the

Op
o e are same side of the secant line,—the one within
... the parallels, as APQ, the other out of the
parallels, as CQN. These angles are equal to each other.
Because we have, from the theorem, APQ=TQD; bat
PQD =CQN ; hence,

APQ=CQN.
Comouaxv I The angles APQ and PQC, or BPQ and

The sum of

glos on the LQD, are the inferior angles on the same side.
e s of the secant. Now, the sum of these interior
rentangl  angles is equal to two right angles. In fact,
CQN +CQP =2r; ‘but from the last corollory CQN =
AEQ; hence,

APQ4+PQC=2r,
In like manner we would obtain

BPQ 4+ PQD =2,

THEOREM IV,

If two straight lines meel a third line, making the alternate
wgles equal, the straight lines are parallel.

Let AB and OD be two straight lines met by another,
EF, making, with them, the alternate angles AGH, GHD




PARALLEL AND PROPORTIONAL LINES. 51

equal: the two lines are pa-
rallel. In fact, divide GH into v
two equal parts in o, and from

o draw og perpendicular to AB, gt
and produce it on the other 0

side till it meets CD in p.

Thus, we have two triangles ¢ " 2 o
o9&, opH, equal to each other. /

For the side oG and the adja- &

cent angles oG, gGo of the one
are equal to the side oH and the adjacent angles poll,
oHp of the other. Hence, opH, also, is equal to 0gG;
but 0gG is a right angle; therefore, gp is a perpen-
dicular common to AB and to CD, which, consequently,
are parallel to each other.

corowamss, W€ May observe here that if the alternate
e e il €Xterior angles EGB, CHF are equal, AB and
"“4ae' waen CD are parallel lines; for, when the alternate
Cxterior ante exterior angles are equal, the alternate interior
weewl - angles also are equal.

2. When  But if BGH 4 GHD=2r, since BGH +

the sum of the
internal angles H(GA = 2;;', we have

is mllml to two
right angles.

BGH + GHD =BGH + HGA ;
hence, GHD =HGA;

That is, the alternate interior angles are equal, and, con-
sequently, AB and CD parallels.

oppeite e When the opposite exterior and interior

ggia?“gglm‘“g angles BGH, DHF are equal, then, from

equal.

BGH = DHF,
we have BGH + GHD =DHF+ GHD;
but DHF + GHD = 2r;
hence, BGH 4+ GHD = 2r;
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and, consequently, from the preceding corollary, AB and
CD are parallel.

THEOREM V.

In any parallelogram the opposile sides and angles are equal,
and the diagonal bisects equally the parallelogram.

‘We have said (INTR. ART. 5) that a parallelogram is a
quadrilateral figure having equal opposite and parallel
sides; but, from the fact that the opposite sides are
parallel, it follows that the same sides must be equal and
the opposite angles also equal.

Let ABCD be any parallelogram: A
drawing the diagonal AC, we will
have the triangles ACD, ACB %

equal; for, besides the common o

side AC, the adjacent angle DAC of the one is equal to
the adjacent angle ACB of the other, because alternate
angles between the parallels AD and CB. And the adja-
cent angle ACD of the first is equal to the adjacent angle
CAB of the second, because they are alternate angles
between the parallels AB and CD. Hence, the two tri-
angles are equal, (B. 1. TH. 5,) and, therefore, since the
sides opposite to equal angles are equal,

AB=D(C, AD=BC.

Moreover, the angles opposite to the common side AC
are equal; that is,
B=D.

Again, since the angles DAC and CAB are respectively
equal to the angles BCA and ACD, we have also DAC +
CAB =BCA+ACD; that is,

DAB =BCD.
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In any parallelogram, therefore, the opposite sides and
angles are equal.

From the equality of the triangles ABC, ACD, it fol-
lows also that the diagonal bisects the parallelogram into
two equal parts.

THEOREM VI

When the opposite sides of a given quadrilateral are equal, the
quadrilateral is a parallelogram.

Let the opposite sides of the quadrilateral NO be

equal ; that is, MO to NP and MN N
to OP: the same opposite sides are
parallel. For, draw the diagonal

MP; we have two triangles having © #

all the sides of one equal to the sides of the other,—that
is, MP common, MN =0P and MO =NP; hence, (8. L.
tH. T,) the angles opposite to equal sides are respectively
* equal in both triangles; that is, O =N and MPO =PMN,
OMP=MPN. But alternate aygles are equal between
parallel lines; therefore MN is parallel to OFP and MO is
parallel to NP; that is, the quadrilateral NO is a paral-
lelogram.

THEOREM VII.

When two parallel lines are equal, and their corresponding ex-
tremities are joined by two other lines, the reszdmlg quadri-
lateral is a parallelogram.

Let L&, FE be two parallel and
equal lines. Joining L with F, and
G with E, and G with F, we have %
the triangles FGL, GFE equal to ¥ B
5*



54 GEOMETRY. BOOK 1L

each other. DBeecause GF is common, GL=EF, and the
included angle LGF of the first triangle is equal to the
included angle GFE of the second, for they are alternate
angles between the parallels LG, FE; hence, (B. 1. 1. 4,)
the two triangles are equal, and, consequently, the angle
LFG also is equal to FGE; hence, LF, GE are parallel,
and the quadrilateral LE is a parallelogram.

THEOREM VIII. .

The two diagonals of any parallelogram cul each other inlo two
equal parts.

Let EGHF be any parallelo- S S
gram, and EH, GF its diagonals:
the point O of intersection divides "
both of them equally. In fact,
observe, first, that the triangles \
FOE, GOH are equal‘to each . C i
other, because EF = G, and the adjacent angles OEF,
OFE of the first triangle are respectively equal to the
adjacent angles OHG, OGIL of the second, being alter-
nate angles between parallels. Hence, the sides opposite
to equal angles are also equal ; that is,

EO = OH, FO = 0G;

that is, the diagonals in the parallelogram bisect each

other.
conmnr.  Nay, not only the diagonals, but any other
suho point of straight line ng passing through the point O

the dissonals and terminated by the opposite sides, is bi-
el gocted in 0. For, taking, for. instance, the
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triangles OnF, O¢G, we have the side OF of the
one equal to the side OG of the other, and the angles
nFO, nOF, adjacent to OF, equal to the angles ¢GO, ¢OG,
adjacent to OG, because nFO and OGg are alternate
angles, and #OF, ¢OG opposite angles; hence, the two
triangles are equal, and

On = Og.

Any straight line, therefore, passing through the point
of intersection of the diagonals, and terminated by the
opposite sides of the parallelogram, is bisected in that
point. Hence, the point of intersection of the diagonals
is called the centre of the parallelogram, for its distance
from the opposite sides is the same when taken along any
straight line.

Raliha If tho- pa.mllelogr?m.ha.fi 1?5 A B
Wi the perak angles right,—that is, if it is z
squarecrarect g, Tectangle or a square,—the

angle, the dia-

s, B diagonals are, in this case, ¢ D

equal to each other. For,
drawing the diagonals AD, BC, we will have the tri-
angles ADC, BCD: the first right-angled in C, the
gecond in D; having, besides, the common side CD, and
the side AC of the first equal to the side BD of the
second. Hence, the two remaining sides, which are the
diagonals, are also equal.
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THEOREM IX.

When two straight lines are separately parallel to a third line
they are parallel to cach other.

Let the straight line CD be v
parallel to MN, and also the AR
straight line AB parallel to the
same MN: we say that AB and i)
CD are parallel to each other. ™ 3‘*-..*{\
Draw, in fact, LG cutting the 4
three lines in opg: we have CpG
=MgG, and AoG =MgG; there- : S lN
fore,

T~

CpG’ = AoG;

and, consequently, (TH. Iv. COR. 8,) the two straight lines
AB, CD are parallel to each other.
€ Praw from any ™M
When from point o of the dia-
any point of

luls to the sides, y BRCLGP PRe
e rallel to MN. Since
then sqave. M@, also, is parallel
e to ND, and GD to MN, the two, rs and
qp, will be respectively parallel to the same MG and GD.
Hence, the parallelogram MD is divided by ¢p and rs
into four parallelograms—Mo, rp, oD, gs; two of which,
namely, Mo, oD, are equivalent to each other. Because
the diagonal NG divides the parallelogram MD into two
equal triangles, and likewise the two parallelograms rp,

gs; hence,

GMN =GND;
and Gog = Gos, Nor = Nop.
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(]
But GMN = Gog + Nor + oM,
and GND = Gos+ Nop + oD ;

hence, Gog + Nor + oM = Gos + Nop + 0D ;
and, taking the equal terms from both members,
oM = oD.

THEOREM X.

When two straight lines, forming an angle, are parallel to
two other lines, these make an angle equal to that formed
by the first.

The straight lines CA and

AB, which form the angle s T

A, are respectively parallel to

the straight lines RM, MN.

Hence, the angles CAD, P

RMN are equal to each i
ol 0 -

other. For, produce CA to
0, we will have at once,

CoN =CAB, CoN=RMN;;
hence, CAB = RMN.

THEOREM XI.

The sum of the three angles of any triangle is equal to two
right angles.

By means of the parallels we may find that the sum
of the three angles of any triangle is equal to two right
angles.
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Let, in fact, ABC be any tri- A
angle; produce the base BC to
L, and from C draw CD parallel
to AB: we have DCL +DCB =
2r; or, B

DCL + DCA+ACB = 2r.

Now, DCL and ACD are respectively equal to ABC and
CAB; for DCL and ABC are opposite exterior and inte-
rior angles, made hy the parallels AB, DC, and the secant
BL; the angles ACD and CAB are alternate angles, made
by the same parallels and the secant AC. Substituting,
therefore, in the first number of the preceding equation,
BAC and ABO instead of their equal angles ACD and
DCL, we will have

ABC +BAC + ACB =2r;

that is, the three angles of any friangle taken together
make two right angles, or their sum is equal to 180°.

-t The angle ACL, formed by the side AC of
ange or el the triangle and another side BC produced, is
t55he two op called the external angle. But ACL =ACD +
postiolnterntl. DCL; hence, also,

ACL=CAB+ ABC;

that is, any external angle of a triangle is equal to the
two opposite internal.

conomanyr.  From the preceding theorem it follows, first,
ooy i that in any triangle there cannot be more than
st = one one either obtuse or right angle; for, if we sup-
eviwsesgl - pose two obtuse or two right angles, in both
cases the sum of the three angles would exceed 180°;
hence, when one of the angles of a given triangle is
either an obtuse or a right angle, the other two are both
acute angles.
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Bty 7 Now, if two of the angles A, B, C of any
Plgjorcor o triangle are known, or even the sum A + B of
SEEREN 1 ) {b

any tehngle two of them, the third angle C may be easily

are known, the

tid . sge inferved; for

lf'llﬂ}‘ e Inforred
o them. A+B+Oﬁ180°;
hence, C=180°—(A + B).

It is well known that the angles of a triangle
Conouasy T opposite to equal sides are equal, and conse-
u vilues of

e ! ge quently the isosceles triangle has two angles

mngled_isoseo- gqual to each other, and the equilateral triangle

micfmeni- hag gll its angles equal. Hence, the equal

lateral  trian-
gle, are always

jsae s angles of a right-angled isosceles triangle

are each measured by an arc of 45°. For, ob-
serve first that the equal sides of a right-angled isos-
celes triangle must be the sides which form the right
angle, otherwise the right angle would be opposite to one
of them, and the angle opposite to the other should be
also a right angle, and consequently the sum of the three
angles greater than two right angles, which is not pos-
sible. The right angle, therefore, is formed by the equal
sides. Call, now, A the right angle and B and C the
other two; we will have from A 4B+ C=180° and

from A =90°, B+ C=90°.
But B=C; hence, B+ C=2C=2B;
hence, 20 = 2B =90°;
that is, C=B=45"°.

When the triangle is equilateral, and consequently
equiangular, we have
A+4+B+C=3A=38B=3C=180°;
and, therefore,
A =B=C=60°.

The measure, namely, of any angle of the equilateral tri-
angle is 60°.
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Conotrany IV. Let the ﬂ.])gle MBA A
ctopeme tme which AB makes with

i iodes MN be an obtuse an-
with another

straiznt 1ne, gle, and consequently
d 1 M
point of 1w ABN an acute one. If

{';E:%ﬁi;:% from any point A of BA we draw AP perpen-
E:ﬁ;,‘i.“: pelyf;:; dicular to MN, this must fall on the side of the
fall on the iide gCtito angle; for should it fall on the side of

sngle the obtuse angle, the triangle formed by AB,
the normal, and a part of MN, would have the sum of its

angles greater than two right angles.
conry. i€t MN be the com-

when two mon gide of the two tri-
triangles have

acommonside, angles AMN, A’MN; of

and the angle

of the one op- 4
ol redlan 4 the two angles A and A

i Jo%h opposite to it, the latter

angle, the same is grea.ter than the for-

e 1ns ot
n the other %
opposite angle. mer; fOl‘

A+ AMN + ANM =180°,
A’+A’MN + A’'NM =180°;
hence, A +AMN +ANM=A’'+ A’MN + A’NM.
Now, A’/MN =AMN — AMA’, A’NM = ANM — ANA’;
therefore,
A+ AMN+ ANM=A'+ AMN +ANM — (AMA’+
ANAY),

B P n

1

M

and, consequently,
A=A'—(AMA’+ ANA');
that is, A<A.
CoROLLARY VT, The POIngIl ABOwid .
The internl may he divided into as s

angles of a po-

lensroctutl many triangles as there i«
e ey are sides in the polygon, ,
are sides in the e

tolygons, mi. Minus two. For, drawing
RO from A the diagonals Ae, 7 £ 3
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Af, these two diagonals with four sides ¢b, bA and fy, gA
of the polygon form two triangles; that is, two triangles
less than the number of sides. DBut, drawing Ad, Ae to
the other angles, we have evidently as many triangles as
there are remaining sides of the polygon. The polygon,
therefore, can be divided into as many triangles as there
are sides in it minus two, so that if the number of sides
is n, the number of triangles will be n—2. Observe,
now, that the internal angles of the polygon embrace all
the angles of the triangles and no more than them;
therefore, since the sum of the angles of any triangle is
equal to 180°, and the number of triangles in a polygon
of n sides is n—2, the sum of the internal angles of the
polygon is
(n—2) 180°;

that is, as many times two right angles as there are sides
in the polygon minus two.
We have supposed every one of g

the internal angles of the given : 2

polygon to be less than 180°, and /

consequently the external angles all _ P

greater than 180°. But let the tri- A r
g

angle Ach, formed by the sides Ab P

and be of the same given polygon

and the diagonal Ae, be turned about Ae so as to take
the position Adc on the plane of the polygon. Thus we
have the polygon Ab'ed . . in which the internal angle &’
is greater than 180°. Now, drawing from o' the diago-
nals b'g, b'f, &e., we have the polygon Adc . . . divided
into the same number of triangles in which Abc . . .
has been divided, and therefore the sum of the internal
angles is the same in both. It is plain, likewise, that if
we join, for instance d with m, a point on the diagonal

b'e, and f also with m, so that the internal angle fimd also
i
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-

be greater than 180°, the number of triangles remains the
same, and the same consequently the sum of the internal
angles. The polygon, therefore, may contain several in-
ternal angles greater than 180°, the sum of all, however,
remaining equal to (n— 2) 180°.

conowany yir. ' The sum of the angles o g

i e of any quadrilateral is
voate” et therefore 2 -180° or 360°. D
the ‘oher two Now, let the angle A be © B
o el equal to its opposite B and

“punElERE: T equal to C; we will have

A+B+C+D=2A+2C=360°;
hence, A 4 C=180°.

But when the sum of the internal angles made by a
straight line, AC, with two other lines, is 180°, the two
lines (B. 1. TH. 4. coRr. 2) are parallel; hence, the sides
AD and OB of the quadrilateral are parallel. But the
sides AC, DB, also, are parallel; for, from A 4+B+C+D
= 360°, we have 2B + 2C =3860°;

hence, B+ C=180°,

The quadrilateral, hence, is a parallelogram.

THEOREM XII.

Parallel lines cuiting equally one of the sides of an angle cul
equally also the other side.

Divide the side PQ of the angle QPF into any
number of equal parts PA, AB, BC, &c., and from each
point of division draw AL, BM, ON, &ec. all parallel
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to one another; the sections PL,
LM, MN, &ec. of the gide PF b
made by these parallels are all
equal.

Draw, in fact, from L, Lg
parallel to PQj; we have two
triangles, gLM, APL, equal to
each other: for Lg=AB and
AB=AP; hence, ¢

AP =1g;

Lg and gM, being respectively parallel to PA and AL,
form equal angles,—that is,

PAL=TLgM.

Moreover, the opposite exterior and interior angles made
by PN and the parallels PA, Lg are also equal, namely,

APL =gLM.

The triangles, therefore, PATL, LgM, have the side PA
equal to the side Lg, and the angles adjacent to the first
equal to the angles adjacent to the second; therefore,
they are equal also in the rest, v

and PL=LM.
We prove, in like manner, with the triangles PAL, MZN,
that y PL = MN;

or, with the triangles LgM, MAN, that LM =MN, &e.
Hence, parallel lines that cut equally one of the sides of
an angle cut also equally the other side.
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omomany 1, It is easy to see, from the preceding theorem,
s that oat —first, that, taking on PQ, for instance, PC
gfc_mt’g;m wmge three times as great as PA, the parallels AL,
mtio eut e ON will cut the side PF with the same ratio,—
with the mme that is, PN =38PL, or, taking PA equal to
3BP, the parallels AL, BM will cut PM in
such a manner as to have PL=1PM; and, in general,
if on PQ we take from P a part equal to two, three, . ...
n times PA, or a part equal to one-half, one-third, . ...
one-nth of PA, and from A and the different points in
which these parts terminate we draw parallels, the sec-
tions of the other side PF will give the same ratio as
those of the first side.

Let now #p and ¢r be any two
parallels cutting the sides of the
angle MAN; we say that the ratio

i—f— of the segments of the side AN
is equal to the ratio % of the seg-
ments of the side AM. In faect, m
should Ag be twice three times, &e.
as long as Af, or one-half, one-third, &e. of Af, in like
manner Ar would be twice, three times, &ec. as long as Ap,

or one-half, one-third, &e. of Ap. So that when the ratio

A
I? becomes equal to 2,8, . . . . orequalto}, %, . . ..

the mtio% also becomes 2,38, . ... 1, ¥;.... but

when two quantities increase and decrease together in
this manner, whatever be the value given to one, the
same value is to be given to the other also; (Treat. on

Alg., § 116;) hence, whatever be the ratio % of the

segments of the side AN, we will always have
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Ag _Ar,
At~ Ap’

Ag : At :: Ar : Ap.

that is,

The segments of the sides of an angle made by parallel
lines are proportional.

comoany 11, ViCE Versd, suppose mn

::’:;1‘;;1:"1’“:“,[%:&5 and op to cut t.}.ne sides of >
sides of an an- t-he a:ng]e A in such a
et manner as to give T
lal limes. &
Ap Ao
An  Am’

or, Ap : An :: Ao : Am;

the two straight lines mn and op are parallel. For,
if mn is not parallel to op, let the parallel to op be

: Ao _Ap, ey TR - B
mq: then = 7, but by supposition ;== 7""; hence,
Ap Ap . . S ek 3
also, e T that is, An= Ag; which is impossible.

No other line, therefore, drawn from m, is parallel to op,
except min.

ooy iz, i€t mow the sides of the A

_Desegments gngle A be met by three

any wngle be parallel lines mn, op, rq; We

Tomt. ™ will have -
Ao : Am :: Ap : An, »

Ar : Ao :: Ag : Ap.

But, from the doctrine of proportions, (Treat. on Alg.,
§ 119,) the two preceding give the others:

Ao—Am : Ao :: Ap—An : Ap,
Ar—Ao : Ao :: Ag— Ap : Ap;
L (1%
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that is, -
om : Ao :: pn : Ap,
ro : Ao :: qp: Ap,
from which we infer
omiil Au tomo:)is I
pn Ap’ gp Ap’
and, consequently,
om _ 10 . g 0Mm_ PR

—_— —_————

m gy ro  gp

that is to say,
om :pn :: 10 i gp,
om :ro ::pn: gp.

The portions, namely, of the sides of any angle between
parallel lines are proportional.

THEOREM XIIT.

When a straight line bisects equally one angle of a triangle,
it cuts the opposite side into two segments proportional to the
other sides, and vice versd.

ABC represents any triangle. Draw
from the angle A, AS in such a manner
as to have

BAS=8AC;

the same straight line cuts the opposite p
side BC in two parts, Bm, mC, which
form a proportion with the sides AB, AC.
In fact, produce BA to L, and let AL=AC. Join L
with C: we will have (8. 1. TH 11, scm.)

BAC = ALC + ACL.
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Now, ALC=ACL;
hence, ALC+ ACL=2ALC,
and, BAC =2BAS.
Therefore, 2BAS = 2AT.C,

or, BAS = ALC.

Hence, (B. 1. TH. 4, cor. 3,) AS, LC are parallel lines;
and, consequently,

BL : BA :: BC : Bm;
from which BL—BA : BA :: BC—DBm : Bm;

or, AL : AB:: mC : mB.
Now, AL=AC;
hence, AC: AB:: mC : mB.

Viee vers@, when AS cuts BC into two segments pro-
portional to the adjacent sides, the same AS bisects
equally the angle A. For, producing BA to L, so as to
have AL = AC, and joining L with C, we will have

Bm : mC :: BA : AL;
and, also, Bm+mC : mC :: BA+ AL : AL.
That is, BC : mC :: BL : AL;
or, BC : BL :: mC : AL :: mB : AB.

Hence, (8. 11. TH. 12, coR. 2,) Am, LC are parallel lines;
and, consequently,

BAm=ALC, and mAC=ACL=ALC.
Hence, BAm=mAC.
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THEOREM XIV.

When the three angles of one triangle are equal lo the three
angles of another triangle, the sides of the two triangles are
proportional, and vice versd.

‘When the angles a, b, ¢
of the triangle bac are re- @
spectively equal to the an- '
gles A, B, C of the triangle 5
BAC, the two triangles are b c 4
called similar, and the sides
opposite to equal angles are
proportional. In fact, since B ¢
a=A, placing ab on AB so
as to have the point @ coinciding with A, the side ac also
must coincide with AC, and let #’, ¢/ be the points of co-
incidence of b and ¢ with AB and AC: the triangles then
Ab'e’, Abe are identical, and b and ¢ being respectively
equal to B and C, we will have

'=B, ¢/=C; hence, BC, /¢’ are parallel lines;

and, consequently, AB : AC :: Al : Ad;
or, AB : AU {: ‘ab :'ac.

In like manner, if the sides of the angle abe are made
to coincide with the sides of the angle ABC, we find

BA:BO:: baz e

From these two proportions we have the equations

AB-ac=AQC -ab, BA - b¢c = BC - ba, and, consequently,

AC BC
AB '—“‘a_"ab: BA:W&Z .
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from which AC_ BO.

ac bo 7
and AQ= e

BC be?
or, O . BC z:  ae 3 be

The sides, therefore, of similar triangles opposite to the
equal angles are proportional.

Vice versd, when the sides of two triangles are propor-
tional, the triangles are similar. For, supposing the pro-
portions

ab : ac :: AB : AC,
ab : be :: AB : BC.

Take on AB a segment A= ab, and from V' draw &'c'
parallel to BC: we will have

Ab : Ae’ :: AB : BC.
Hence, AV : A¢’ :: ab ¢ ac;
or, Ab' - ac = Ac'* ab.

Now, AW =ab; hence, also, Ac¢’ =ac. But Ab'¢ is simi
lar to ABC; hence,
AW : Ve :: AB : BC;

and, since AB : BC :: ab : be,
Ab' : el 12 ab : be;

from which Ab’ ~be=1"b'c' " ab.

But Al = ab; hence, be =b'¢".

The two triangles, therefore, Ab'¢’, abe have all the sides
of one equal to the sides of the other, and, consequently,
are identical. But Ab¢’ is similar to ABC; hence, abe,
also, is similar to ABC.

In similar triangles, the sides opposite to equal anglea
are called proportional sides, and generally the propor-
tional sides of triangles and of all polygons are called
homologous sides.
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THEOREM XV.

When two sides of one triangle are proportional lo two sides
of another triangle, and the angles included by the propor-
tional sides are equal, the triangles are similar.

Let the sides ab, ac
of the triangle abe be
proportional to the
sides AB, AC of the
triangle ABC, and
the included angles ¢
and A be equal to each other: the triangles are similar.
Supposing AB greater than ab, take on AB, Ad/ =al,
and from &’ draw &'¢’ parallel to BC: we will have at once

ABYAC T ab P ias,

AB : AC :: AV : Ad
Hence, Ab s g s AR A s
from which ab.. « Ad = ge ., " AD,

But ab= A¥’; hence, also, ac = A¢’, and the two triangles
abe, Ab'¢’, having two sides and the included angle equal,
are equal triangles. But Al'¢’ is a triangle similar to
ABC; hence, abc also is similar to ABC, and, with
AB : AC :: ab : ae, we will have also

AB : BC :: ab : be,
AC : BC :: ac : be.
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THEOREM XVI.

Two triangles which have their sides mutually perpendicular
are similar.

Let the sides ab, ac, be of
the triangle abe be respect-
ively perpendicular to the
sides AB, AC, BC of the tri-
angle ABC: then will they
be gimilar. For, draw from
A, Aa' perpendicular to A 7
AC, and Ad perpendicular
to AB, we will have the angles b’Aa’, man equal to each
other: for mb and #A are both perpendicular to the
same AB, and, consequently, parallel; and ng and a’A
are both perpendicular to the same AC, and, conse-
quently, likewise parallel to each other; hence,

' Ao’ =man.

Now, i’Aa’ =BAC; for each one of these two angles is
equal to 90°—a’AB, and man = bac; therefore, the pre-
ceding equation is equivalent to

BAC = bac.

Again, draw from C, Ca” perpendicular to AC, and
Ol perpendicular to BC; we will have

a''Cb!’ = ach.
But a!'Ch'' = ACB
hence ACB =ach.

The angles A and C, therefore, of the triangle ABC are
equal to the angles @ and ¢ of the triangle abc; hence,
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also, the third angle of the first is equal to the third
angle of the second, and the triangles are similar.

THEOREM XVII.

The normal drawn from the vertex of the right angle to the
hypothenuse divides the given triangle in two right-angled tri-
angles similar to each other and to the given triangle.

Let ABC be a right-angled triangle. From A, the ver-
tex of the right angle, draw AE perpen-
dicnlar to BC, Thus we have two right- A
avzled triangles BEA, CEA, both simi- : [E
lar to the given triangle BAC, and, con- 4 L\
sequently, similar to each other. For
the triangles BAC, BAE, besides the right angle, have

the angle B common ; hence, the third angle of the first
must be equal to the third of the second, namely,

ACB =BAE,
and the two triangles are similar. In like manner, the
triangles BAC, OAE, besides the right angle, have the
angle C commow |
hence, also, ABC=CAE,

and the triangles BAE, CAE are similar to each other
and to the given.
cowoar 1. Now, from the triangles AEB, AEC we have

The normal
E:;“Erf;fi‘h‘;g BE : EA :: EA : EC;

@ hypothe :
poometrienipre. tDat is, the normal AE, drawn from the right
Pwecn the sor. ANgle to the hypothenuse, is a mean geometri-
PR cal proportional between the segments EB

and EC.
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comoanr I From the triangles AEB, ACB we have

Either side
about the right

2'.‘;33.5:?22’? BE': BA :: BA ; BC;
roportional

E“Et;:“m and from the triangles AEC, ABC we have
mt;?m::? CE : AC :: AC : BC;

hence, either side about the right angle is a mean geome-
trical proportional between the hypothenuse and the
adjacent segment.

THEOREM XVIII.

The perimeters of similar polygons are lo each other as their
homologous sides.

Those polygons are called similar which have the
angles of one equal to the angles of the other and the
sides about equal angles or homologous Eldes propor-
tional. Let, for exam-

ple, ABCDEF and = B g B
abedef be two such po- ¢ Dl‘f‘
lygons, having namely i / d
the angles A, B, C. .. e D

of the one respectively &

equal to the angles «,

b,c ... of the other, and theides AB, AF about A

proportional to the sides ab, af about a, and also the sides
AB, BC about B proportional to the sides ab, be about b,
ke. Now, we say that the perimeters of the two poly-
gons are to each other as any of the sides of one polygon
is to the homologous side of the other.

In fact, from the proportional sides we have

AF :af :: AB :ab:: BC: be :: CD : ed, &e.
7
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That is to say,
AF AB BC b =y
= i T it
therefore, we call p the ratlo —, we have
g af

AF AB BC
aj —P, a{) = P, = p’ .....
and AF = paf, AB= pa.b BC =pbe, &c.;
from which 3
AF+AB+BCO+ .. .=plaf+ab+bc+ .. .]
and, consequently,

AF+AB+BC+ ... AF¥ AB BC
ST v A T S T
that is,
AF+AB+BC+...: af +ab+be+..:: AF : af,
:: AB : ab,
32 BC 3 be, &e,

But AF +AB+...,af+ab+. .. are the perime-
ters of the two polygons. Therefore, the perimeter of
one polygon is to the perimeter of another similar poly-
gon as any side of the first is to the homologous side of

the second.

THEOREM XIX.

Similar polygons are divisible inlo an equal number of similar

triangles, and vice versd.

Supposing again ABC c
S PTG  a %
similar polygons, having b—>°
the angles A, B,C.... p » "@
of the one equal to the R

angles @, b, ¢ . ... of the % ¥
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vther; draw the diagonals AC, AD ... ,acad .. .:
the resulting triangles ABC, ACD . . . are respectively
similar to the triangles abe, aed. . . . And first, ABC
is certainly similar to ade; for B = 0§, and the sides about
B are proportional to the sides about b; hence, (B. 1L
1. 15,) ABC and abe are similar; and, consequently,

BCA = hea,
and BC: be:: AC : ac.
But BCD = bed;
hence, ACD =acd.
Moreover, BC ;'6e : CD :ed;
hence, AQC" ac i CD: od;

therefore, the two triangles ACD, acd, also, are similar to
each other. In like manner we demonstrate the simi-
larity of the triangles ADE, ade, &e.

Vice versd, if two polygons can be divided into an equal
number of similar triangles equally disposed, the poly-
gons also are similar. Because, when the triangle ABC
is similar to abe and equally disposed with regard to the
remaining parts of the polygons, AB and BC are the
homologous sides of ab and be, and the angles B and b
are equal to each other, the angle BAC is equal to the
angle bae, and the angle BCA is equal to the angle bea.
In like manner, from the triangles ADC, ade we have

ACD =acd;
and since BCA = bea, we have also
BCD = bed.

Again, from the same similar triangles ACB, acb we have

AC :ac:: CD : cd.
But AC:dc:: CB : ¢cb;
hence, OD :¢d :: CB : cb.

In like manner, we find the angles CDE, DEF . . ..
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of the first polygon equal to the angles cde, def . . . . of

the second, and the sides about them proportional ; hence

the similarity of the two polygons.
commane 1. FrOM any point ¢ of the

A 0
r t of (i 4 1
oo, cut of diagonal AC of a given = 5:F Py,

ot g,’;‘:g parallelogram draw. mn, n
e py op parallel to the gides;
thediadmwn the parallelogram will be 5 £

thesides drawn C

from sy ot divided into four paral-

ienother and lelograms, two of which are bisected by the
o tegven giagonal AC. Now, these two are similar to
each other and similar to BD. For the triangles Aoy,
Amg into which the parallelogram wmo is divided are
similar to the triangles ADC, ABC into which the
given BD is divided; hence the two parallelograms
are similar. For the same reason pn is similar to BD

and to mo.

D

conmuanetr.  Lsety now, mn, AC be two
men to st gimilar parallelograms, hav-
B anae ing the sides Bm, Bn of
g’ homais. the one homologous to the
fave sl on sides AB, BC of the other
s wini- and the angle B common

) the diagonals Bo and BD of the two parallelo-
grams must then coincide with each other. For Bo divides
mn into two triangles, omB, onB respectively similar to
the triangles DAB, DCB in which DB divides the paral-
lelogram AC; hence, mBo is equal to ABD. But AB,
mB coincide; hence, also, Bo and BD.
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REMARKS
On reqular and symmetrical polygons.

When all the sides and all the angles of a polygon are
equal, the polygon is then called a regular polygon.

Now, the number of sides is equal to the number
of angles. Hence, if we suppose the polygon to contain
n sides, it will contain n angles. But the sum of the n
internal angles of a polygon is (B. 1. TH. 10, COR. 6)
180° - (n — 2;) therefore, the measure of each angle of a

regular polygon of nsides 13(1_80_):_?1:-3’ or (1 — %}180“,

whatever may be the length of the sides. .

Two regular polygons having the same number of
sides are evidently similar to each other. .

When every side of the polygon has its opposite side
equal and parallel, the polygon is called symmetrical.
Hence, the parallelogram is to be reckoned among sym-
metrical polygons.

We will subjoin here some few theorems concerning
symmetrical polygons.

THEOREM XX.
Opposite angles in symmetrical polygons are equad.

Let the sides AB, BC, CD,
DE of the symmetrical polygon
ACEG be respectively equal and
parallel to the opposite sides EF,
¥@E, GH, HA: the angles; also, :
A, B, ¢, D must be respectively G

T*
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equal to their opposite E, F, G, H. In fact, producing
the sides DE and FE to n and m, we have the angle
mEn=DEF. But Fm and Dn are parallel to AB and
AH; hence, mEn=BAH; and, therefore,

BAH =DEF.

‘We prove, in like manner, that
B=F,C=G,D=H.

THEOREM XXI.

The diagonals joining opposite angles in a symmelrical polygon
are mutually cut into two equal parts in the cenlre; asis
also any.straight line passing through the centre and termi-
nating at the perimeter.

The diagonal drawn from B to its opposite angle F 1s
cut into two equal parts by the diagonal drawn from the
angle A to the opposite E, and vice versd. For, joining
B with E and A with F, since AB and EF are equal and
parallel, the quadrilateral AFEB is a parallelogram;
hence, its diagonals bisect each other in o. But, for the
same reason, the diagonal from C to G bisects BF; that
is, it passes through o, and then it is bisected itself, and
so is the diagonal drawn from D to H. The point o is
called the centre.

‘We have seen (B. 11. TH. 8) that any straight line which
passes through the point of intersection of the two dia-
gonals of a parallelogram and reaches with its extremi-
ties the opposite sides, is likewise bisected in that point;
hence, fos is bisected in o, and, for the same reason,
any other line pg is bisected in o. For this reason,
also, o is called the centre.
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f‘“““““ Since AB, BC . ... are respectively equal
ny diagonal 1
Jokning the op. to EF, FG, .... the perimeter ABCDE on

S st tone gide of the diagonal is equal to the perime-

the perimeter tor on the other side; the diagonal AE then

Ll divides into two equal parts the perimeter.
The same is to be said of any other dia-
gonal.

The triangle AoB is equal to the triangle EoF; and,
joining C with G and D with H, we have a succession
of triangles above the diagonal AE equal to the corre-
gponding triangles below it; the area, therefore, ACEA
is equal to AGEA. Any diagonal, therefore, joining the
opposite angles of a symmetrical polygon divides into
two equal parts the area of the polygon.

THEOREM XXIIL
Any polygon having a cenlre is symmetrical.

Let mopr be a polygon having a centre in ¢; that is,
“such a point, in which the straight
lines passing through it and reaching
the perimeter are cut into two equal
parts: the polygon is necessarily
symmetrical. Join, in fact, m with
¢, and produce me to p, we will have
me=ep; now, from p draw a parallel
to mr equal in length to the same mr: this parallel will
coincide with po. Otherwise, suppose pf to be the parallel
to mr, and from 7 draw r¢f; we will have two triangles
mer, fep having the opposite angles at ¢ equal, and, by
supposition, the alternate angles cmr, epf also equal, the
side me moreover equal to the side cp. THence, ¢f would
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be equal to er, and consequently also to co, which is im-
possible unless f coincides with o; therefore, po is equal
and parallel to mr, In like manner, 70 is equal and
parallel to rg, and mm equal and parallel to gp, and
the polygon is symmetrical.

PROBLEMS,
Propiex I,
From a given L.et A.J) be 8 # £ F
point, draw s straight line, and C
parallel to an- g point from which
other. W
a parallel is to be X m D

drawn to AD. Join C with

any point m of AD, and then draw OB, (8. L PROB. 5)
making with Cm an angle equal to CmD: BE and AD are
then parallel to each other.

s 1. AB is a given line
Jiangiem. (0 be divided into a
e certain number of equal
parts. From A draw any other
straight line of indefinite length;
and from A take on it—with the
dividers opened at pleasure—
equal portions Ab, be, ed, . . . .
and as many in number as the
number of parts in which AB is to be divided. Join
then the last division f of Am with B, and from d,
¢, b draw parallels to fB: these parallels divide AB
(8. 1. TH, 12) into the required number of equal
parts.




PARALLEL AND PROPORTIONAL LINES. 81

Propuem ITI.
To find the A, B, C are

ol ey three  given
ven strafght gtraight lines, =

which, toge- ©
tuer with another x
to be found, ought to
be in proportion as fol-
lows:—

A:B::C: 2

To find the fourth proportional z, take two indefinite
straight lines, Mg, Mp, making any angle M; and on Mg
take Mf=A, Mg=B; on Mp take Mh=C. Join f with
h, and from g draw gk parallel to fh: the segment Mk 1s
(. 1. TH. 12, cor. 1) the fourth proportional =.

peomm 1y, J2€t A be a straight line to be divided into
Divideagiven WO such parts that their ratio be equal to the

o """ ratio of the given straight lines m and n.

A

Take for this purpose AB=A, and from A draw the
indefinite straight line Ag, making any angle with AB.
On Ag take Al=m and [f=n. Join then f with B, and

from | draw Ir parallel to Bf: we will have (Tn. 12, cor. 1)
F




82 GEOMETRY. BOOK IL

Ar:rB:: Al ilf;
that is, Ar :rB::m: n

Ar, namely, and 7B, are the two parts in which A is to be
cut to have it divided in the given ratio %

Let abe . . . . be a given polygon and AB a
Describena given straight line, which we may take along

ine a poiveon the side ab produced, or parallel to it. In the
other given poriyan polygon draw the diagonals ac, ad, ae;
milarly  #ite dragw then from A, AC, making with AB the
angle i equal to the angle cab which the diago-

nal ac makes with the side ab; draw also BC, making

b >} D
¢ ‘5‘.1,
F
h
T A B

with AB the angle A equal to the angle abe. Thus, we
have the triangle ABC similar to the triangle abe and
similarly situated. In like manner, draw from A and C
AD and CD, g0 as to have ADC similar to ade, &c.: thus
the polygon ABC . ... results similar to the given
abe . . . (rm. 19) and similarly situated.
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COMPARISON OF PLANE SURFACES LIMITED BY
STRAIGHT LINES.

Tur determination of the area of any surface is made
by referring it to some standard adopted as unity of mea-
sure; thus, for instance, we say the surface of a field is
so many square yards, taking the square yard as unity of
measure ; the surface of a country is so many square miles,
taking the square mile as unity of measure, &c.; in the
same manner as the length of any straight line is deter-
mined by referring it to some other length taken as unity
of measure,—an inch, a foot, &e. The determination,
therefore, of any surface contains an implicit compari-
son; hence, this determination is called the comparison of
surfaces.

THEOREM I.

Two rectangular areas having the same height are to each other
as their bases.

Let ACFD, CBEF represent g S 2y ' w
two rectangular surfaces hav- | l
ing the side CF or height com- x e g 2

mon, and the side AC or base *

of the one different from the base UB of the other: the
two areas CD, CE are to each other as their respective

bases.
83
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In fact, take on the greater base CA a segment CL= (B,
and draw Lg perpendicular to AC; we will have the rect-
angle LF equal to ABFHor, turning FL about FC, the
point ¢ will coincide with E and L with B, and conse-
quently all the sides of one with all the sides of the
other. In like manner, if we take along CA and from
L another segment equal to LC =CB, and finish the
rectangle, we will have another area equal to the pre-
ceding; and with three segments we will obtain three
equal areas, &c.; that is, if the base CA is twice, three
times, four times, &c. the base CA, the area of the rect-
angle CD is twice, three times, four times, &e. the area of
the rectangle CE. But if we take Cg = }CL = }UB, and
draw ¢t perpendicular to AB, we will have the rectangles
¢F, g9 equal to each other, and consequently ¢F =1Cy=
3CE. Also, if we divide CL into three equal parts and
draw perpendiculars to CL so as to complete the rect
angles, we will have three equal rectangles, and conse-
quently every one of them equal to §Cg=3CE, &e.; that
is, if CA becomes one-half, one-third, &e. of CB, the cor-
responding rectangle CD becomes, likewise, one-half,
one-third, &e. of CE. Therefore, whatever be the length
of CA compared with CB, or, what is the same, whatever
be p in the equation

CA=0-CB;

with this equation (see Treat. on Alg., § 116) we will
have also the other
CD=p:0E;
i QAL. CB CGA 0D
hence, in all cases, Ch =0 or—@=€E,
that is, CA:0B:: CD: CE.

The areas, namely, of any two rectangles having the same
height are to each other as their bases.
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et We may here observe that whatever be the
unity of measure of the bases CB, CA, their
ratio CA, CB is invariably the same; for from CA =

" CA
pCB we will always have CB=PF

Observe, also, that the number of times the unity of
measure is contained in a certain linear length, or the
quotient of the linear length divided by the unity of
measure, is that which we call numerical value of that
length. Hence, the preceding theorem may be expressed
also ags follows :—

The areas of two rectangular surfaces are to each other as
the numerical values of their bases.

The area, also, of a surface may be numerically ex-
pressed, taking the area of a square as unity of measure.
But the area of the square varies with the length of its
side ; hence, the unity square supposes a linear unity cor-
responding to it.

To facilitate the un- ™ N
derstanding of the nu- -
merical value of areas, a
let s represent the
square unity of mea- &
sure for areas, and its
gide ab the unity of é
measure for sides, and ’
suppose the side AB o e T R

of the square AN to
contain four times ab or to be equal to 4: the area of AN

will contain 4%=16 times s, or AN=AB-gs. In factif

from each point d, d’, d”’ of the division of AB into four

equal parts we draw parallels to the sides AM, BN, and

from each point d, ¢, 87 of the division of AM into four

equal parts we draw parallels to the sides MN, AB, we
8
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have the area AN divided into sixteen squares equal to s,
If, vice versd, we suppose AB to be the linear unity of
measure, and AN or 8 the unity of measure for areas, the
side of s then, numerically expressed, is }; now (})’=4;
in fact, s is the sixteenth part of S.

With regard to rectan- ¢ -
gles, suppose the base AB
to contain five times the
linear unity of measure
ab, and the height AC to 4 B
contain the same unity
twice; the area of the rectangle will be 25 times s
Drawing, in fact, from each point of the division of the
base into five equal parts, parallel lines to the sides AC,
BD, and from the point of division of the height a paral-
lel to the base, we have the area CB divided into ten
squares, all equal to s. Hence, the product of the
numerical value of the base by the height of the rect-
angles, multiplied by s, gives the area of the rectangle.
But let us examine the question in a more general point
of view.

Let [ or 1 represent the linear length of
the side of the square 1* or s, taken as
the unity of measure of surfaces. And,
since 1?=1, to distinguish for the present 1 .
the unity length from the unity surface
we will call the first (1), or simply /, and
the second (1)s, or simply s. Now, what-
ever may be the length of ! taken as ———— ¢
unity of measure, three cases may occur
with regard to the length of the side of any given
square whose area is to be determined. The length of
the side may be greater than /, or less than /, or equal to/;
and, representing it generally by v/, or v, in the first case
we will have »>1, in the second v <1, and in the last
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case v=1; but in all these cases tne area of the square
will be expressed by »*:s, or simply »? as will appear
from the following theorem :

THEOREM II.

The area of the square is expressed by the product of s=1,
multiplied by the square of the numerical value of its
side.

Let, first, the side AB of the = c
given square be greater than
[(=1.) Produce AB to f,s0 as
to have Bf =1; take also Bi=1, 7 - E

and finish the square Bg and y

the rectangle Br; we will have

(rm. 1) A E) )
By £ Br.ssBf 1 BAg

that is, 7 R S

and, therefore, Br = vs.

Comparing now B with DB, we have

*B : DB :: rA : DA;

that is, B DB« 1w
Hence, DB=3Br-y;

but Br=uys;

hence, DB =3 -s=)"

If v should be a whole number, we could express
this equation by saying,—the square DB contains the
unity square s as many times as there are units in %
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Suppose, now, the side AB of the z _
given square to be less than {(=1.) 2—=F +r
Produce AB to f, so as to have Bf=1,
and finish the square Bg¢; produce, Al B "3

also, DC to r; we will have

BD : Br z:AB Bf,
that is, Bl Brice vy 2l
hence, BD =DBr -

Compare, now, Br with Bg; we will have

Br : Bq ¢ BO/ Bl
that is, By :8 S8 Ipiensly
hence, Br=uy-s.

Substituting this value in the preceding equation, we
will have
BD =*-s=)"

If, finally, the side of the given square is equal to(=1),
it is plain that also in this case »*- s, or »%, expresses the
area of the square.

Therefore, in all cases, whatever may be the linear
anity ! and the corresponding unity of surfaces s, the
area of any square is expressed by the product of s
multiplied by the square of the numerical value of its
side. Now, the numerical value of the side is commonly
expressed by the side itself; and s, on account of being
equal to 1, is not expressed; therefore, the area of any
square having AB for one of its sides is simply repre-

—2
sented by AB .
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THEOREM III.

The area of a rectangle is given by the product of the
numerical value of the base inlo that of the height mulii-
plied by s=1.

Let AD represent any rectan- E ¥
gle. Produce AC and BD to E
and F, so as to have AE=BF
=AB, and finish the square A¥. »
We will have

AD : AF :: AC : ABE;

o, AD;: AF:: AC: AB; a B
hence AD= AF_A_(}_.
; AB
But AFP=AB" 83
therefore, AD=AB-AC s,
or, simply, AD=AB - AC.

THEOREM 1IV.

The area also of any parallelogram is given by the vroduct
of the base into the height.

Let MNOP be any parallelogram,
having MN for its base, and gP (the P 9
common perpgndicular to the oppo- /l ;
site sides) for its height. The area
of this parallelogram is given by the ** 7 5

product Pg- MN multiplied, as it is understood, by s=1.
Observe, in fact, that by drawing Py and Ok perpen-
8%
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dicular to MN we have the rectangle PgkO, whose area
is equal to that of the parallelogram PMNO; for

PgkO = PgNO + ONF,
PMNO = PyNO + PMy.

Now, the triangles ONk, PMy are equal to each other;
for MP = ON, Py=0OF, and the included angle P of the
one is equal to the included angle O of the other, because
the sides are respectively parallel; hence, the second
members of the preceding equations are identical, and,

consequently,
PgkO =PMNO.
But the area of the rectangle is given by Pg- gk; and gk=
gN + Nk=gN + Mg=MN; hence, the area of PMNO is
given by
Pg-MN,

the product of the base into the height.

THEOREM V.

The area of any triangle is given by half the product of the
base into the height.

Let RGQ be any two tri- g P R_T¥
angles. Draw from R, R¢ per- B Z /
pendicular to the base or to
the side produced. From Q € ?* Q. TR
draw QF, equal and parallel to RG, and finigh the paral-
lelogram GF, which is divided into two equal triangles

(8. 1. TH. 5) by the diagonal RQ. Hence, GF is equal to
twice the triangle RQG ; or,

GF
RQG =
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Now, GF =GQ 'Ri;
hence, RQG = GQ‘%‘ Rt.
The area, namely, of any triangle is one-half the area of
the parallelogram having the same base and the same
Leight.

oomoasy,  From this and the preceding theorems we
Parildlogrms easily infer that any two parallelograms having
puving eaual the same base or equal bases and equal heights
hicuts_ have must have also equal areas. And likewise the
RARE areas of two triangles having equal bases and
equal heights are equal to each other.

THEOREM VI.

The area of a trapezoid is given by the product of the vertical
to the parallel sides into half the sum of the same sides.

Let AB, CD be the parallel 5 %

sides of any trapezoid. Draw
from A, Ap perpendicular to / Q

both, and draw also the diagonal ¢— >
AD: we will have the area of
the trapezoid divided into two triangles, having the com-
men height Ap, and CD for the base of one, and AB for
the base of the other. Now, the area of ADB is given
by ABZ P , and the area of ADC is given by ——D‘.;,Ap;

¢ CD- AB
hence, CB= ABzAP + 2AP =Ap ;-CD.

Senorron, Tt is plain that by taking the sum of the
o lenerning apang of the triangles into which a polygon
POBKES may be divided, we will obtain the area of the
polygon itself.
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THEOREM VIL

The area of the square described on the hypothenuse is equal to
the sum of the areas of the squares described on the other
sides of the right-angled triangle.

First domon- - Let ABC be a triangle e ¥
right-angled at A. De-
geribe the square BE on the hypo- 1 y 5
thenuse and the squares AG, Al e
on the other sides: we will have

BE=AG + AL /

D

=

Draw, in fact, from A, Amg per-
pendicular to BC and DE, and draw also the diagonal
AD; we have (8. 111, TH. 3 and 5)

BmgD =2 ABD.

For BD is a common base to the triangle ABD and to
the rectangle BmgD, and Dg is their common height.
Draw, now, the diagonal CI: we have in like manner

BIHA =21BC.

For BI is a base common to BH and to IBC, and TH is
their common height. Now, the triangle ABD is equal
to the triangle IBC, because the side AB of the one is
equal to the side BI of the other, both being sides of the
same square, and the side BD of the first is equal to the
side BC of the other, for the same reason. But the in-
cluded angle ABD of the first is also equal to the in-
cluded angle IBC of the second; because ABD is equal
to ABC plus a right angle, and IBC is likewise equal to
ABC plus a right angle; hence, (8. 1. TH. 4,)
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ABD =1IBC.

And consequently, from the preceding equations,
BmgD = BIHA.

In like manner, drawing the diagonals AE, BG, we find
CmgE = CGFA;

hence, BimngD + CmgBE =BIHA + CGFA;

that is, BCOED =BIHA + CGFA

soond 4o We may arrive at the same conclusion by
monstration.
another process. We have seen (B. IL. TH. 17)
that the normal Am drawn from the

right angle to the hypothénuse di-
vides ABC into two triangles similar
to the given one, and, consequently,
c

Bm : AB :: AB : BC, 5 A
Om : AC:: AC : BC.

Now, call v the numerical value of the hypothenuse
BO, measured with the linear length =1, and let »/, v/
be the numerical values of AB and AC, and ¢ the nume-
rical value of mC, all the lengths being measured with
the same : the two preceding proportions will then be
equivalent to

(p=20): v sV 12w
& sl et 2 ip
from which (v—20) v= y'g,
=y,
and, consequently,
(v—c?)v-i—r?v—v’ +v”
or, SRR

Now, calling, as before, s the square constructed on the
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side /=1, and multiplying by s both members of the last

equation, we have
Vi = u/%s + %3,

But 12 - s is the area of the square constructed on the hy-
pothenuse BC, or, according to the ordinary expression,

Vs =]_3'62; and likewise Vs = Kﬁa, s = E;
hence, BO=AB + AC

smourwI.  The last equation, therefore, expresses that
memingorthe the area of the square on the hypothenuse is
e equal to the sum of the areas of the Bquares on

the other sides. But the preceding equation, =t p’f
from which the last is inferred, expresses that the qquare
of the numerical value of the hypothenuse is equal to the
gum of the squares of the numerical values of the other
gides. The last equation, however is commonly taken to
signify both of them.

somouo 1. 1u€t DAC be any acute-an- &

Convection  oed triangle. To find the =-

hetween the !
araas of the yalation between the square on

squares  cons-
structed onthe oo of its sides—for instance,

sldes of any

e AD—and the squares on the
other two sides, draw from one of the
adjacent angles, for instance, D, the nor- »
mal Dm to the opposite side, which will meet it some-
where between A and C. Thus, we have the right-

angled triangles mDA, mDC, from which

m [

AD = Am'+Dnm

DC=Dm +m0;
and, substituting in the first equation the value of Dm
deduced from the second,

AD'=Am +DC —m0.
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Now, Am=AC—mnC;
hence, Es\?_?.g=.§(f"fa—2uf.\_(.",“nfe‘.(."+:«.~1—(}‘a
and, consequently,
AD'=AC +DC—2AC *mC.

But AC -mC is the area of a rectangle having AC for
base and mC for altitude. Hence, the area of the square
constructed on any side AD of the acule-angled triangle ADC
is equal to the difference between the sum of the squares con-
structed on the other two sides and the double rectangle having
Jfor base one of these two sides and for altitude the segment of
the same side between the angle opposite to AD and the perpen-
dicular drawn to it from its opposite angle.

The same can be proved of the »
square constructed on either side |
about the obtuse angle of an obtuse- |
angled triangle. Let, for instance, i
DA be one of these sides; produce M it o
the base CA, and draw from D, Dm
perpendicular to Cm. Thus, we have two right-angled
triangles DAm, DOm, from which we have

DA'=Am -+ m“,
PO'=Dm +m0 ;
and, substituting in the first of these equations the value
of D', taken from the second,
DA'=Am'+D0—mC.
Now, Am=(Cm—AC)'=Cm +AC —20m+AC;

hence, DA’=AC + D0 —20m - AC.
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Let us, finally, see how the area of the square con-
structed on the side opposite to the obtuse angle is given
by the sum of two squares and a double rectangle,
Observe that from the preceding equations

DC'=Dm +mC, DA'=Am +Dm;

we have DC'=mC +DA'—Am.
Again, from Cm=CA+ Am

we have Om' = CA2+ Am2+ 2CA - Am;
hence, DO = GAg-i- D.A.z-i- 2CA - Am.

THEOREM VIII.

The area of a rectangle constructed on the extremes of four
proportional sides is equal lo the area of the rectangle con-
structed on the mean sides. ’

Let the straight lines «, b, ¢, d be pro-
portional, so that we have

a:bz:e:d

ARnaoR

Since from this proportion we have
a-d=b-e,

we infer that the area of the rectangle having one of
the extreme terms for its base and the other extreme

for its altitude is equal to the area of the rectangle having

one of the mean terms for its base and the other mean
term for its altitude.
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s Hence, if we suppose b = ¢,—that is, b & mean
on the ean proportional between @ and d,—
Buivalont 1o
fhe rectangle then, since a d="0,
on IE] ex-
tremes.
the area of the square of the mean proportional

term is equal to the area of the rectangle constructed on
the extremes.

THEOREM IX.

Parallelograms and triangles having the same base are to each
other as their altitudes : or, having the same altitudes, are to
each other as their bases.

Call A the altitude and B the base of one parallelo-
gram or one triangle, and A’, B’ the altitude and base
of another parallelogram or another triangle. Call also
the first parallelogram —that is, its area, P and the
second P/, or the first triangle T and the second T’: we
will have

P=A'B, P'=A'"B;
. ! !
or, T=—A-2—B, T"=A ‘,B.

-

PoABRVA-B
Hinas PoATE? T AT

thatis, PeP/:: A*B: AV B TeF:: A-B: A o BY
Suppose, now, B=DB;

then | P s Blxr Al: Ao, T o0V s A Al
Suppoée B not equal to B’, but A equal to A’;

then PePlsoBs Blior BiaTeB b,
G 9
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Scmour. But if the bases B and B’ are inversely.or
When the b reciprocally as the altitudes A and A’; that is,

ses are reelpro-
cally as their

altitodes, the R AR YR o
md&apﬂ— it A : Al B . B,
aro equal. then, since A+B=A’'B/,

the parallelograms or triangles have equal areas.

THEOREM X. .

The areas of two triangles having one equal angle are fo each
other as the products of the sides about the equal angles.

Let ABC, A’B'C’ be

L L}
two triangles having the q A
angle A of the one equal o q
to the angle A’ of the 8 p

other. Draw from C, ®

Cg perpendicular to the opposite side AB, and from C’
C’q’ perpendicular to the opposite side A’B’: the tri-
angles AgC, A’q'C/, are then similar to each other.

Hence, Og : Og +: AC ¢ ATQY;
Oy _AC

or, Gig— AT

Now, ABC or T =%

and A’B'C’ or T’=£‘£w;

AB : Cq AB Qg AB! AU

T
hQD.CE, TT'—_- ABT Cfgf =A!Br 3 C?gf A'B/ ¥ m'f;

or, T = A MO T AVBIERIO.
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comarr L - Jf we suppose the areas T and T’ to be equal

If the areas of
the two trisn- t0 each other, then we have also

i o
ol ol AB - AO=A'B’- A'/C';
proeal,
. AB ACe
from which EE‘-E,
that is, AB : ABlsy A0 AC.

comouast I Tt the triangles BAC, B/A’C’ be similar

The areas of

similar  triso- to  each other, the angles A, B, C being

gles are as the

suares of the ‘pagpectively equal to the angles A, B/, C.

homologons
sldes.
> c A
c’
5 == B

Now, since A = A/, calling, as above, T and T’ the areas
of the two triangles, we have, from the theorem,

P AR KO
™= AB AT

But, from the similarity of the triangles, we have also

AC

AB : A’B’ :: AC ;: A'CY; or, 1%=W’

T AB AC
hence, SR :
T AB! AIC!
and, since AQ s UAC: " BOBICY,
T BC
therefore, also, ™ B’C’g-

That is,
T:T:: AB : AB" :: AC : A/0" :: BC : BIC.

The areas, namely, of two similar triangles are as the
squares of the homologous sides.
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ooy 1. Fence, also, the areas of similar polygons
mila %:r are as the squares of the homologous sides.

gons are as the
squares of their

e ‘ w3

Let, in fact, ABC ...., abc.... be two similar poly-
gons, whose sides AB, BC, CD .... are respectively

homologous to the sides ab, be, cd.... Drawing the
diagonals AC, AD, .... acad ... ., the two polygons
are divided into the triangles ¢, ¢, ....6,60"...., and
(B.1r. TH.19) ¢ # .... are respectively similar to 0, ¢/
; hence,
= t AB
t:0 :-AB :Eﬂ, Or—3'=ﬁ;
ab
o ’ D
¢:0:: D' Eiﬂ, or%r-(_')_—-c?;
¥: 9 :: DE : d_eﬁ, ori’i=-]_)E;
g Eﬂ
s i
s g s FE : fe or.t_”—Fh
g fe
Now, (8. 1 7TH. 18)) first, from the similarity of the
olygons, we have R CD S :
ROSTEOTS, s oA vde 7
—2
hence,also, = ;:"=;;T= 5 _f_Bz _9;])_2= Yo
ab cd
Secondly, from the equality of the ratios,
bl s R AB’_ 0D

0+0+0"+.... 0 0 S
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But ¢+ ¢+ ¢+ .... is the area of the polygon ABC

»,and 0 +0'+ 0" + .... is the area of the polygon
abe . ... Hence, calling P and P’ the areas of the two
polygons, we have _II;=I:=-C__D:= .h

ab ad
that is, P:P’::ﬁ:ﬁ;

Fos Pras D) 2 E-c;f-z, &e.
comowunr Iv.  Let three similar poly-

Ripharfiospe b gons, P, P,/ P, be con-
malogone s Structed on the hypothe-
:ﬁéﬁ:’ﬁ;ﬁ?ﬁ nuse AB, and on the two
:nugmsr:’;ﬁ% remaining sides of the
to the sum of right-angled triangle ABC,

theareas of the »
polygmeonthe 80O A8 {0 have the side AB

Hin of P homologous to CB of
P’ and to CA of P”. From the pre-
ceding corollary we have

P AB P AB,
P T G

and, consequently,

AB' OB CA
SPELTPENPIrS
And, calling R this common ratio, we have, also, with

—=2

=R
CB'=P'R, CA =P"R,
and OB+ (_31_18=R{P’+P”);
hence, (—J_E:—__::S?= R= é“;iﬂ ;
g%




102 GEOMETRY., BOOK IIL
CB'+CA" P+P”
2 SRR S
o= ! PH
But OB + CA = ABB; hence, g _li, =1; and, conse-
quently, P=P'+4P".
PROBLEMS.

i Let a, b, ¢, d be four given straight lines or
To find the gides of squares whose areas may be respect-
suare thowren jyely represented by a, o, a’”. Find the
cuil io the gide of the square having for its area A—a+
Bquares  con- al‘+ ﬂ'-”"l‘ am_
number of  Fop this purpose, let us draw two indefinite

o~ straight lines Am, An at right angles to each
other, and from A take Af, Ag, equal to the sides a and

b; join fwith g; we will have

.E2=E2+ I;= a+a.
)
[+ 3
b
c 4
< X
/ :
g
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Take, now, on Am, Ah=fy, and on An, Alk=¢, and
join % with A: we have

E;”=If+ﬂ”=a+a'+a~.
Take, finally, on Am, Ai=~Fkh, and on An, Al=d, and
join ! with i: we will have
T=Ai'+Al=a+d'+a"+a":
il, therefore, is the side required.

o
1
[ FE—————
b \
A g m

promay 1r. i€t @, b be two straight lines or sides of two
o find the gquares a« and o/; find the side of another
uaethears gquare whose area may be equal to o’ —a.
%}E‘m&a :{E_ 'Ija.k:ng again the mdeﬁ.mte. lines Am, An.at
equal areas of Tight angles, and on An taking Af=a, with
strusia s the radius b and centre f describe an arc of a

frogentines circle so a8 to cut Am in g, and join f with g:

we will have f:_qa =da;
but f?=ﬁq+.§?=a+A_ga;
hence, d=a +K§g ’

and, consequently, o

Ag=d—a.
Ay, therefore, is the side of the square the area of which
is equal to the difference of the given squares.
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peomsx 1. Let P be a given parallelogram having mn
a given sias s for base and ab for altitude, and let 77 be 2
Thoso sseals given straight line on which a parallelogram is
SFimother pa to be constructed having the area equal to P.

sallelogram,

Find first (8. 1 PR. 3) the fourth proportional
to rg, mn, and ab, and call it I: we will have

rg: mn: @'l
and rg * l=mn*ab=P.

Draw, now, from any point s of rg the perpendicular s
equal to 4, and from ¢, fh, parallel and equal to r¢; join f
with r, and & with ¢: fy is the required parallelogram.

i

AN AN
E

peome v, 10 Jike manner we resolve the problem of
7o construet. CONStructing a triangle on the given side rg

a triangle hav-

ing the mme having the same area of the given triangle
area of another

whngle and amn.  For, after having found the fourth pro-

oneangle equal i i

S given an- portional ! to rg, mn, ab, giving this [ for the
altitude of the triangle to be constructed on ry,

the two triangles will have the same area.
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But if one of the angles of the new trangle is to be
equal to the given angle s, then, after having found I,
take on any perpendicular 7 to rg a part #f =1, and from
J draw an indefinite parallel to r¢: then draw from 7, rv,
making with rg the angle »rg—s; join » with ¢, and we
will have the required triangle.

ProsreM V.
oro comstrust  This problem is resolved in the same man-
and with & ner as the two preceding, with this difference,
glven angle a

parallelograns  —that the altitude of the parallelogram is to be

whose ares is

et taken equal to one-half of the fourth propor-

a given tri-
iy "whows tional I in the first case, and equal to twice [ in

e e the second case.
parallelogram.

romex V. Let P be a given polygon which may be
attitute of s divided into the triangles ¢, ¢ /. . . . Let,
Wboconsiract. also, mn be the base on which a parallelogram
fascand whow is to be constructed having the same area as P.

area is to be

equal to the What will be the altitude of the parallelo-
ares of a given
polygon. gram?

Find, first, the fourth proportional to mn the base and
the altitude of the triangle # and, drawing the indefinite
gt perpendicular to mn, take on it ¢b’ equal to one-half of
the found fourth proportional. Take, again, 'b"" equal
to one-half of the fourth proportional to mn the base and
the altitude of the triangle #, and so on. Let, now, ¢f
be the sum of all the halved fourth proportionals: it will
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also be the altitude of the parallelogram having the same
area as the polygon.

For, draw from f, lp parallel to mn, and from m and n,
ml, np parallel to each other, and from &/, from b, &e.,
m'n/, m''n’’, &e. parallel to mn: we will have the parallelo-

ms m'n, m''n/, &c. having the same areas as the trian-
gles t, ¢, &e. Hence, mp is a parallelogram wkose area is
equal to that of P, and whose altitude is g¢f.



BOOK 1V.

THE CIRCLE.

THEOREM I.

A straight line drawn from the centre and bisecting a chord is
perpendicular to ity and vice versd.

Let mn be any chord in the circle anm,
and let Cgq be a straight line drawn from e
the centre to the point ¢ equidistant 7
from m and n: COg is perpendicular to '
mn. Because, joining C with m and with
n, we have two triangles having the three
sides of one equal to the three sides of the other, Cg,
namely, common, gm=qn, and Cm=Cn; hence, the
angle Cgm is equal to the angle Cgn; that is, Cg is per-
pendicular to mn.

Vice versd, if Cg is drawn perpendicularly to mn, the
chord mn is bisected in ¢. For the right-angled tri-
angles Cgn, Cgm, besides the right angles at ¢ and the
common side Cg, have the hypothenuse Om of the one
equal to the hypothenuse Cn of the other; hence, the
two triangles are equal, and gm=qn.

THEOREM II

A straight line drawn from the centre and bisecting the chord,
when produced, bisects the arc also, and vice versd.

The straight line Cg, drawn from the centre to the
107
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point ¢ of mn, equidistant from the ex-

tremities m and n, and produced, bisects m
the corresponding are mn. In fact, : r
since the angles mCg, ¢Cn are equal to "

each other, the arcs also (B. 1., Meas. of
Angles) are equal; that is, mr = nr.

Vice versi, if we draw the radius Cr to the middle point
r of the arc mrn, the same radius will bisect the corre-
sponding chord. Because the triangles mCq, nCq have
the sides mC, Cg and the included angle of the one equal
to the sides »C, Cg and the included angle of the other;

hence, mq = qn.

Corotrary 1. in-

Preams Let two choré'la nm, pg in
intersecting each_ tersect mutually in o: om and N

&
pussing through op must be unequal, or else \
e dioids the d Fopi i ™
Sihes noquntty. P @nd og. ' For, 1f we sup-

pose mo==no, then co is per-
T

pendicular to mn; and if po and og also
are equal, the same Co would be perpendicular to pg also,
and the angle Cog would be equal to Com, which is im-
possible.

"T‘::""‘“ﬂ' Let now the straight line
o) TN % fo be drawn perpendicularly .‘
aud foms right t0 ann, and let it pass through

pusses through the point o equidistant from * '

the extremities of the chord, n

the same fo must pass through C, the

centre of the circle. Else, drawing from the centre of the
circle a straight line to o, this line would be perpen-

dicular to mn, and we would have two perpendiculars to
mn meeting in o, which is impossible.
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R If the straight line fr bisects the are mn in
gbe, steaght 7 and the corresponding chord in ¢, it must
bisects the chord pags through the centre. For, if it does not

and tha ecorrs- *
hieh bisosie the pass  through it, draw from

m
e il ome the centre a straight line to ¢: ‘
thenah o ese this line produced will pass ‘
o through ; hence, 7f and the ¢ '
line drawn from the centre to g coincide L/
from ¢ to r, and, consequently, in the
supposition that nf avoids the centre, we would have two
straight lines coinciding from r to ¢, and then deviating
from each other; which is impossible.

If #f bisects the arc, and is perpendicular to the
chord, it must likewise pass through the centre; for
from r only one perpendicular can be drawn to mn. But
if from the centre we draw a perpendicular to mn, this
perpendicular passes through r; hence, zf passes through
the centre.

comoruzev,  When the perpendiculars v
Thechords that (g, Cp, drawn to the chords \ /,,

are equidistant b
ﬁ;“‘ e ab, mn, are equal, the chords ¢ -
Tice

are said to be equidistant \
from the centre. Now, when chords are ;
equidistant from the centre they are
equal to one another. In fact, join C with @ and with m:
we have two right-angled triangles, Coa, Cpm, from
which

Ca'=Co'+ oa’, Om'=Cp'+ pm -

Now, Ca=Cm, and, by supposition, Co= Cp;

therefore, a0 = P? )
and, consequently, ao=pm;
and, ab =mn.

If, vice versd, ab=mn, we will have them equidistant
10
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from the centre, because, drawing Co and Cp perpen-
dicular to them, and then Cz and Cm, we have from the
right-angled triangles the same preceding equations, in
which Ca=Cm and ao=pm; hence,

Co=Cp.
mauzx¥.  But if Co is less than Cp,

o rester dhat that is, if ab is nearer to C
are nearer to the

than mn,—then ab>mn; be-
cause from the same right-angled tri-

angles Cao, Cmp we have
Co +ao=Cp + pm,

and Ez=p?_nz+ (6;?2—'66“)

Now, Cp> Co; hence, 6;3—6;2 is a positive difference;
—s  —
hence, ao > pm , Or ao > pm;

and, consequently, ab > mn.

From this we infer, besides, that the diameter is the
greatest of all the straight lines drawn within the circle
and touching the periphery with their extremities.

ke Join now C with & and with n: the two tri-
e mater angles aCh, nCm have the sides Ca, Cb of the
the graater e, one equal to the sides Cm, Cn of the other,

but the third side ab of the first greater than
the third side mn of the other. Hence, (5.1 1. 6,)
aCb> nCm, and, consequently, the arc ab>mn.

Vice versd, if the arc ab> mn, or aCb>> nCmn, from the
same triangles we have ab > mn.

ety It is well understood that we take the arcs

less than the semi-periphery; for any chord
subtends two arcs, one greater and one less than the
semi-periphery.
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THEOREM IIL

The greatest of all straight lines drawn to the periphery from
some point out of the centre is that which passes through the
cenire. The others constantly diminish the more they recede
Jrom the centre.

Let A be any point out of the cen-
tre, and AE, AD, .. .. AB be lines
drawn to different points of the peri-
phery, but the last passing through the
centre. Join C with E and with D:
from the triangles ACE, ACD we have
AD> AE, because AC and CE of the
one are equal to AC and CD of the other. But the angle
ACE is less than ACD; hence, (B. 1. TH. 6,)

AD > AE.

We prove, in like manner, that AF > AD, and so, like-
wise, AD'> AE/, AF'> AD/, and so on. Hence, the
more the straight lines drawn from A to the periphery
" approach AB the more they increase in length. IHence,
AB is the greatest of all; and, since the more they
approach to AH (a continuation of BA) on either side
the more they diminish, AH is then the least of them
all.
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THEOREM IV.

Those straight lines draun to the periphery JSrom a point out
of the centre and equidistant from the grealest are equal to
one another.

Let now the arc BE be equal to the
arc BE’; the two lines AE and AE’
are then equidistant from ADB, because
the angle BAE is equal to the angle
BAFE'. In fact, the triangles CAE,
CAF/, besides the common side AC,
and the side CE equal to CE’, have the
included angles ACE, ACE’ also equal, being measured
by the ares HE, HE/, equal to each other. Hence, also,
the angle BAE is equal to BAE’. But, from the same
triangles, we have AKE = AK’; hence, the two lines
equidistant from AB are equal to each other.

It is plain that only two such lines can be equal; for
any other line, AD for instance, or AG, approaches either
ADB or AH. In the first case it is greater, in the second
less, than AR,

Oldes i It follows, hence, that =

Twocircdeshav- two circles, EmE/, Enk/,

ing different cen-

tres can intersect of which the first has the
polnis ouly centre in A, and the se- =
cond in C, cannot intersect each other  \ c
in more than two points. For, if we O
suppose the circle EnE’ to be met by
EmE’ in more than two points, then,

drawing from A or from C straight lines to these points

i*
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of intersection, we would have more than two lines
equal drawn from A to the periphery EaE’ or from C
to the periphery EmE’,

THEOREM V.

The tangent to the eirele is perpendicular to the radius drawn to
the point of eontact, and vice versa.

We call a tangent to the circle a
straight line AB, which, however
produced on both sides, remains
always out of the periphery, but
touches it in a point m. Now, if
from the centre of the circle we 5 B
draw the radius Cm to the point m
of contact, it will be perpendicular to the tangent; for
any other straight line drawn from C to AB must be
greater than Cm. But (B. 1. TH. 9) the shortest line
drawn from C to AB is perpendicular to it; hence, Cm is
perpendicular to AB; and, vice versd, if AB meets the
extremity of the radius and forms right angles with it, it
is a tangent to the circle. For, drawing from C any other
straight line to AB, it will be greater than Cm, (8. L. TH. 8,
scH. 1,) and, consequently, out of the circle.

Let the are mpn sub-

CororLuAry T,

when the are tended by mn be eut into
subtended by a

ehord is isected  two equal parts in p, and c
and a tangent to
thecircle touches Jet AB be tangent to the m 0 N

the point of gec- ~ y "
tiom it ls parallel ¢ircle in the same point;

to the ch
mn and AB are parallel. A = s
For Cp is perpendicular to mn and
perpendicular to AB.
H 103
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it o But if the arc mpn is bisected in p, and

When the are E .
1:1:115%%:1 waa from p, AB is drawn parallel to mn, ABisa
ra e Pass 2 = z
ing through the tangent to the circle. For, since Cp is per-
parallel to the pendicular to mn and ADB parallel to mn, the

chord, it is also
s tangent to the padiug Cp is perpendicular also to AB, and
AB is a tangent to the circle in p.

comoany 1z, Liet now the arc mpn be cut somewhere in
Ea:il“{:{;;‘;:ﬁ%ﬁ‘:% P 'aud let AB .touch tllile1 circle inhthe same
:{;33}':;& s dhe point: if AB is para le to mn, then mp is
miadle point ot equal to gn. For, drawing Cp, we have CpA,
edby thatchord. 9 consequently, Com, right angles; but
when the radius is perpendicular to the chord, it bisects
both the chord and the arc; hence, p is the middle point

of the arc mpn.

THEOREM VI.

The secant to the circle cannot meet @ in more than
two points.

The secant differs from the
tangent, for it enters within the
circle. Now, from the point C,
or centre of the circle, we can-
not draw more than two straight
lines to AB equal to each
other; hence; AB cannot meet the periphery but in
two points, else from C we could draw more than two
equal straight lines to AB.
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THEOREM VIL
When two circles meet in two points, the straight line which
Joins the centres bisects the arcs and the chord between the
intersections.

‘We have seen already that two circles

cannot intersect each other in more than T

two points. Let now M, N be these

two points: the straight line AC which B
joins the centres, produced, bisects the Y

ares from intersection to intersection.

In fact, draw the radii CM, CN, and AM,

AN: we have two triangles CAM, CAN ¥
equal ; for CA is common, CM = CN,

and AM = AN ; hence, the angles, also, MCs, NCs are
equal to each other, and consequently the arcs Ms, Ns are
equal. Again: the angles MAC, CAN are equal to each
other; hence Mr=7rN. Now, LQ bisects both peri-
pheries; hence, from Ms=sN, and Mr=rN, we infer
ML =LN, MQ=QN.

Now, the straight line drawn from the centre to the
middle point of any arc bisects also the chord subtending
that are. But r and s are the middle points of the arcs
MrN, MsN, and rs passes through the centres of the
circles; hence, the chord MN, common to both, is
bisected by rs.
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THEOREM VIIIL,

When two circles touch each other in one point only, the straight
line which passes through the centres passes also through the
point of contact.

Two circles may touch
each other in one single
point in two ways. The
one is with the circles,

both external,—that is, g
with the point of contact
between them, as n, or
with the point of con- !
tact on the same side,
as m. In both cases, x

the straight line passing
through the centres,
passes also through the
point of contact. Because, drawing, in the first case,
from the centres the radii On, Nn to the point of contact,
if these two radii are not in the same straight line, let
COfN (the side of the annexed triangle) be the straight
line joining the two centres, and Cn, Nn the radii drawn
to the point of contact. But CfN, by not passing
through the point of contact, must cross some space out
of the circles, and be consequently greater than the sum
of the two radii. Now, CN in the triangle is, on the con-
trary, less than the sum of the radii On + nN. It is, there-
fore, impossible that CN passes out of the point of
contact. Hence, the normal ## drawn to CN is the
common tangent of both circles. In the second case
draw ss’ tangent to the external circle in m, the point
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of contact; the same ss’ must necessarily be tangent
also to the internal. Draw, then, from the centres ¢ and
M the radii to m: these two radii must be on the same
straight line; otherwise, we could draw two perpendi-
culars to ss’ from the same point m.

THEOREM IX.

The angle having its vertex at the centre is twice the angle al
the periphery when both terminate at the extremities of the
SaAme are.

The arc on which the angles rest is either less, or
greater, or equal to half the periphery, or 180°. In the
first supposition three cases may take

place. And, first, let the 2

o side PM of the inscribed
angle MPN pass through the centre
C of the circle. Join C with N:
thus we have another angle whose
sides pass through the same extremi- £
ties M and N of the are MN, but
having the vertex at the centre.
Now, from the isosceles triangle PCN
we have

CPN =CNP;
and, consequently,
CPN + ONP =2 CPN.
But the external angle to
MCN = CPN + CNP;
hence, MCN =2 CPN.
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Second Case.  PBut let the centre be P
within the angle MPN. Draw then
from P, PQ passing through the cen-
tre. We will have

MOQ=2MPQ, NCQ= 2NPQ.
Hence, MCQ+NCQ=2(MPQ+NPQ);

thatis, = MCN=2 MPN. %
il Let, finally, the centre o

C be out of the angle MPN, and

draw again PQ through the centre,

and join C with M and N': we have .
QCM =2 QPM, QCN =2 QPN. ‘

Hence, -
QON — QOM =2(QPN — QPM;) Y

thatis, = MCN=2 MPN.

In any case, therefore, when the arc MN is less than
180°, the angle at the centre is the double of the in-
scribed angle.

But, also, when the arc MN is greater than 180°, the
angle at the centre, measured by this arc, is twice as
great as the inscribed angle resting on the same

are.

Famsh Cems Let, in fact, NQM be
an arc greater than 180°. The

angle at the centre, measured by =
this arc, embraces the angles MCQ
and QCN.

But MCQ=2MPQ, QCN=2QPN; “
hence, MCQ +QCN =2(MPQ + QPN);
that is, MCQ+ QCN =2MPN.
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RPN Sem: In the supposition that 7
the are MN is equal to the semi-
periphery, then the angle at the cen-
tre becomes a straight line and dia- w o
meter of the circle, equivalent to an
angle of 180°; hence, the inscribed
angle MPN is a right angle. Draw- [y
ing, in fact, again PCQ, we will find,
as in the preceding cases,

MCQ + QCN=2 MPN.
But MCQ + QCN =180°;
hence, MPN =90°.

The inscribed angle, namely, whose sides pass through
the extremities of the diameter, is a right angle.
Several corollaries may be now easily inferred.
The measure of an inscribed angle is one-
CoRoLLARY T, i
Hlansure of in- half of the corresponding .
included arc. Hence,the , .
inscribed angles A, A’, A” . ..., in- A
cluding the same arc MN, are all
equal to one another. And, as the
angles including the semi-periphery
are right angles, so those including
an arc greater than the semi-periphery are obtuse; and
those including an arc less than the semi-periphery are
acute angles.
ComouamyIl. — The perpendicular ab,

The perpendi

colar drawn to drawn from any point a
the diameter from

;:‘a_rms;lu;:; of the of the periphery to the

Proporinal e diameter MN, is a mean
treen the s geometrical proportional

between the segments
Mb, Nb. For, joining @ with M and

with N, we have the triangle MNa

N
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right-angled in «; hence, (. 1. TH. 17, COR. 1,) @b is a
mean geometrical proportional between Mb and ON.

We may observe, also, that (B. 1L TH. 17, COR. 2) the
chord aM is a mean geometrical proportional between
the segment Mb and the diameter; or the chord aNisa
mean geometrical proportional between the adjacent seg-

ment Nb and the diameter.
ComouanrIl.  Diyide AE into two

Conecerning the .
squarsand rect- equal parts in C, and

angles construet-

ed on the equal egcribe the circle ABE,
and unequal see- - 1 i C
L f the sam -
gl i ha_a.v.mg the centre in C;

divide, also, AE unequally
in D, and draw the perpendicular

DB. Join, also, B with C. Now, since AC=BC, and
B_dz=-f3T)ﬁ+ DC, we have

AC’=BD +DC'
But, from the preceding corollary, BD'=AD- DE;
hence, AC=AD:DE —]—Tjﬁz.

That is, the square constructed on AC, one of the two

equal parts of AE, is equal to the rectangle constructed

on the unequal parts AD, DE, plus the square of the
intermediate segment DC.

CRorANT XV Let the arcs AmN, BdQ

Chords which

have equal i
have equal ares included by the chords

pralil, andvi:. AB, NQ be equal to each

other: the chords are ™ .
parallel. For, draw BN, and we will ¥
have the angle ABN measured by
the same arc as the angle BNQ;
hence, ABN =BNQ; hence, also, AB and AQ are two
parallel lines.

Vice versd, it AB and NQ are parallel lines, the in-
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cluded arcs are equal. For we have ABN =BNQ; but
equal angles are measured by equal ares, and the measure
of the angle at B is half the arc AmN ; the measure of
the angle at N is half the are BdQ; hence,

AmN =BdQ.

?ﬁ‘t;‘:l;n Le..t the chords AB,
of the ares in- O intersect each other A o

o oras 1o in O: half the sum of

e e i the ares AC, DB will

angle med by ho the measure of the © 3

angle AOC or BOD. U

For, drawing CB, we have AOC =

OBC + OCB. Now, the measure of OBC is }AC, and

the measure of OCB is }DB, therefore, 3(AC + DB) is

the measure of DOB. In like manner, }(AD + CB) is
the measure of the angle COB.

Conowany VI. - But if the chords

Sobinad 1,,"1‘5.13 AM, CN meet

chords Interseet- F :
ing each other gaoh other in a /

of the circla
s bulf the i~ point B out of the |
«dbyit  circle, the angle
ABC formed by them is then
measured by half the differ-
ence of the ares AC, MN in-

cluded by it. Draw, in fact, MC: we will have

AMC =MCN + MBN;
and, consequently,
MBN = AMC — MCON.

Now, half the arc AC is the measure of the angle AMC,
and half the arc MN is the measure of the angle MCN;
hence, the measure of the angle ABC is

3 (AC —MN.)
11
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comouanyVIL  T,ot MN be the hypo-
The circle hav- =
ing fr its aiv thenuse of the right-an- B
meter the hypo- A o s
e I o gled triangle AMN; bi-
gle will ] 1t 1 10l
L T ie e, SOt it AN ¢, and join C
fex of the right with A; draw, also, from m— m ¢ N
A the perpendicular Am

to MN; we will have

CA'=Am + mC
But, Am = MmNm, and, from the third preceding corol-
lary, mC = MC — Mm * Nm; hence,

W=Mm’Nm+l\—t[-62-— Mm - Nm=mn,

and, consequently.
: A MO s

that is, the points M, A, N are equidistant from 0. A
circle, therefore, described with the radius CM and centre
C will pass through A.

In the supposition that the right-angled triangle be
guch that the perpendicular drawn from the vertex A
falls on the middle point C of the hypothenuse, then the
two triangles A’CM, A/CN are equal to each other, and
the angles MA’C, A’MC are respectively equal to NA'C
and A’NC; hence,

MA/C 4+ NA'/C=2MA’'C,

A'MC + A'NC=2 A’MC.
But MA’C + NA/C=90°, and A’MC + A’NC=90°;
therefore, 2 MA’/C=2 A/MC,
or, MA/C=A'MC;

and, consequently,
MC=CA".
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Comouazy VIIL.  The angles Amn, ,
The : I

which » ‘s Bmn, which the

drawn from the

point of contact tangent AB makes

makes with the

tangent are mea- with the chord mn,
sured by half the
o measured by
half the ares mn, n

mn'n. For, drawing mn’ per-
pendicular to AB, it will pass ¥
(r. 5) through the centre C and divide the circumfer-
ence into two equal parts. Now, the measure of Amn’ or
Bmn' is one-half of the semi-periphery, and the measure
of nmn’ is Jn/. But Amn = Amn’ — wmn!, and Bmn=Bmn’
+ n'mn; hence, the measure of Amn is Iman' — ynn' =
(mnn/ — nn') = mn, and the measure of Bmn is Jmn'n.
conouany 1x, i€t mnop be a quadri-
A quadrilstert lateral inseribed in the

Inseribed inacir- . .
oo has its oppo- circle: the opposite an-

gite angles equ!
T gy gles n and p make toge-
ther the sum of two right
angles. For, drawing mo, we have
the periphery divided into two parts,
mpo, mno, and one-half of each is the
measure of the opposite angle ; hence, half the periphery,
or 1809, is the measure of the two opposite angles taken
together.

Let the chords
CoroLLARY X,
The product of MN, PO meet
the segments of

wme chora is each other at F
equal to the

it of the o within the cir-

cle: we will have
MF - FN =PF :FO. Infact, v.<
the triangles MFO, PFN are
gimilar to each other; be-
cause the angle MFO is equal to its opposite PFN,

and the angle M of the first triangle is equal to the angle




124 GEOMETRY. BOOK 1V.

P of the second, for both are measured by the same arc;
and for the same reason the angle O is equal to the angle
N ; hence, we have
MF : FO :: FP : FN.
and, consequently,
MF :FN=FO - FP.

But let the chords PO, QR meet each other in V out
of the circle. Join P with Q, and O with R; we will have
the angles ORQ and OPQ making together two right
angles, and likewise the angles POR, PQR; hence,

ORQ + OPQ—180°,
POR + PQR=180°;

but, also, ORQ + ORV =180°,
POR + ROV =180°;
hence, . OPQ=ORYV, PQR=ROV;

and, consequently, the two triangles VOR, VQP are
similar to each other. And from their homologous sides
we infer

Q= VO VP2 VR
hence, VQ -VR=VP-VO;

_hat is, even when the chords meet each other out of the
circle, the product of the segments of the one between
the point of concurrence and the circle is equal to the
product of the segments of the other.

cmomanryr. Lot VM be a
N

The square of
e e tangent drawn

%Eﬁ%?ﬂ?ﬁg to the cu‘fﬂe
theproductofthe from any point
fromt 1ot omver V» and let VOP
lssgments. bhe any secant
drawn from the same point.

Join M with P and O: we

#
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will have two triangles VMO, PMV similar to each
other; for the angle V is common, and the angle VMP
of the one is equal to the angle MOV of the other;
because the angle VMP is measured by half the arc
POM, and the angle MOV — OMP +MPO. Now, the
measure of OMP is one-half of PO, and the measure of
MPO is one-half of MO; hence, the measure of MOV
is one-half of POM, and, consequently, PMV=MOV.
Now, from the homologous sides of the two similar tri-
arigles we have

PY + MY 'y BV OV;
and, consequently,
MV =PV - OV.

conornany XIL. Liet the straight
ing th a w

e e line. AD be' Bit
les of the -
segments of a sected in C, and
straight line and

of theline itsalt. 1ot DF be added

to it, or let AD - C D r
be produced to . With the
centre C and the radius CA

describe the circle AMN, <,

which will pass through D

and from F draw FM tangent to the circle: we will have
from the preceding corollary

MF = AF - DF.

Join, now, C with M: we will have the triangle MCF
right-angled in M, and, consequently,

CF =CM'+MF
But & CM=CD;
hence, CF =CD + AF - DF,
1% s
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the square, namely, of half the line AD plus the rect-
angle constructed on the sides AD+DF; and DF is equal
to the square constructed on $AD + DF.

THEOREM X.

Three points that are not in the same straight line are certainly
on the periphery of a circle.

Let A, B, C be three points not
gitnated on the same straight line;
the same points must be on the peri-
phery of a cirele. For join B with
A and with C, and bisect AB and
BC; then from the points m and n
of section draw mo and no perpen-
dicular to AB and to BC. These two
perpendiculars must meet some-
where. Let o be the point of their common intersection.
But o, being a point of no, is equidistant from B and C,
(8. . TH. 8,) and, being a point of mo, is also equidistant
from B and A; hence, Ao=0B=0C. Therefore, de-
geribing the circle with the centre o and the radius oA,
this circle must pass through B and C also.

O Any polygon whose angles or vertices are
Sy e On the periphery of a circle is called an in-
in 8 cicle. scribed polygon; and when the polygon has
three sides, an inscribed triangle ; when four, an inscribed
quadrilateral, &c. Now, since the vertices of any triangle
are three points not situated on the same straight line,
any triangle may be inseribed in a circle.
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THEOREM XI.

When mﬁy number of triangles have the same base, and the
angles opposite to the base are all equal, the same circle
circumseribes them all.

Let AD be the common base of
the triangles AmD, AnD, &e., and
let the angles m, n, &ec., opposite to
the base, be all equal. Tet, more-
over, ABD be the cirele in which
the triangle AmD is inscribed: the
same circle will pass through =, o,
&e. For else n, for example, would
be either within the periphery, sup-
pose in #/, or out of the circle, for
instance in #”. In the first case, produce An’ to n and
join n with D. Now, An'D, by supposition, is equal to
AmD. But the inseribed angle AnD also is equal to AmD
hence, Aw'D and AnD would be equal to each other,
which is impossible, because (8. 1r. TH. 10, sca.) An'D =
w'nD +7Dn’. In the second case, from the point of inter-
section of An'! with the periphery draw the chord #D: we
have again the inscribed angle AnD=AmD, and, by
supposition, An/’D also equal to the same angle, which is
impossible. The vertex n, therefore, of the triangle AzD
must be on the periphery, and the same can be proved
of the other triangles.
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THEOREM XIL
Any reqular polygon may be inseribed in the cirele.

Let ABCD .... represent any
regular polygon. The periphery
of a circle may pass through three
vertices, for example, A, B, C.
Now, the same periphery must pass
through the remaining vertices.
For, join the centre O of the circle
with the points A, B, and C, and
draw also OD. Since the triangles
AOB, BOC are equal to each other and isosceles,

we have OBA =0BC;

that is, OBC = }ABC.

Now, the angle BCD = ABC, and the angle BCO =CB0;
hence, _ BCO = OCD.

But the sides of regular polygons are all equal; hence,
the triangles OBC, ODC, besides the commeon side OC,
have the side BC equal to CD; hence, the two triangles
have two sides and the included angle of the one equal
to two sides and the included angle of the other;

therefore, OD =0B;

and, consequently, the point D is equally distant from the
centre O as the point B, which belongs to the periphery;
hence, D also belongs to the same periphery. We prove,
in like manner, that E is equidistant from the centre as
the points A, B, C, D, and so on.
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Hence, since we may always deseribe a circumference
passing through three vertices of any polygon, and since,
when the polygon is regular, the periphery which passes
through three successive vertices passes also through all
the others, any regular polygon may, consequently, be
inscribed in the circle.

THEOREM XITIL.
Any regular polygon may be errcumseribed about the circle.

Let now a regular polygon of any number of sides be
inseribed in the circle ABO ....: another regular poly-
gon of the same number of sides may be circumseribed
about the circle.

‘We call polygon circumscribed about the circle that
polygon which has all its sides tangent to the circle.

Draw from the centre C, Cm,
Cm! perpendicular to the sides
AB, BO of the inseribed poly-
gon. Since these sides are chords
of the ecircle, the perpendiculars
bisect them, and, produced to n
and 7/, bisect the ares also.

But BnA =Bn'O;

hence, Bn = Bn/.

Draw now the radius OB, which will be the common

hypothenuse of the right-angled triangles CBm, CBw/,

and the triangles are equal to each other; because,

besides the common hypothenuse, the angle BCn of the

one is equal to the angle BCn’ of the other, having equal

ares for measure. .
Draw from 7 the tangent nb, and from =’ the tangent

I



130 GEOMETRY. BOOK 1V.

n'b; these two tangents must meet at a point b of the
radius OB produced ; for the triangles Cnb, Cn'b have the
side Cn of the one equal to the side Cr’ of the other, and
the angles adjacent to the equal sides likewise equal;
hence, the hypothenuse of the one must have the same
length as the hypothenuse of the other; but the two
hypothenuses are on the same straight line and have one
extremity, C, common ; the other extremity also, then,
must be common.

In like manner, the tangent drawn from the middle
point n’/ of the arc AF meets ab in a point of CA pro-
duced ; and the tangent drawn from the middle point »""
of the arc OD meets bo in a point o of CO produced, &e.
The tangents drawn from the points =, #/, n”/, &e. ... form
a polygon; and the radii drawn to the vertices of the
inseribed polygon meet, if produced, the vertices of the
circumseribed one; and the sides of the circumseribed
polygon are evidently the same in number as those of the
polygon inscribed.

It is now ecasy to see how the circumscribed polygan is
a regular polygon, having, namely, all its sides and all its
angles equal. And, with regard to the angles, the angle
b of the circumsecribed polygon is equal to the angle B
of the inscribed one; for ba and bo are respectively
parallel to BA and BO; and, in like manner, all the
other angles of the circumseribed polygon are equal to
the corresponding angles of the inscribed polygon. But
the angles of the inseribed polygon are all equal; hence,
also, the angles of the circumscribed polygon are equal,
With regard to the sides: from the similar triangles
ABCQC, abC, we have ab : AB :: Cb: CB;

Cb

_C_Bs

And, in like manner, from the similar triangles BOC,
boC, we infer,

hence, ab=AB -
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Ch
bo= BO EB-
But AB=BO;
hence, algo, ab = bo.

In the same manner we demonstrate that bo is equal to
the following side, and so on.

VLR We have seen, in the preceding 12th tht:zo-
Sl payhe v yoriy, thz?t any regular POlng!l may be in-
g yviar 1o seribed in a circle, and, when inseribed, each

side becomes a chord. Now, chords of equal
length are equidistant from the centre, (rH.2, cok.4;)
that is, the perpendiculars drawn from the centre to
every one of them are all equal. Now, describing a
circle with the same centre and with a radius equal
to the common distance, the circle will have all the
gides of the polygon tangent, and the polygon will be cir-
cumscribed about it.

THEOREM XIV.

The cirele may be considered as the limit of inseribed and cir-
cumseribed reqular polygons whose sides increase constanily in
number, or as a reqular polygon of an infinite number of sides.

Let AB represent the side of a regular polygon
inseribed in the circle, and ab the parallel side of the cor-
responding circumseribed and similar polygon. Drawing
the radius Om at the point of contact, it bisects AB and
ab, forming right angles with both sides; the segment,
moreover, mo of the radius, being the common perpen-
dicular between the parallels ab, AB, is the measure of
their mutual distance, which is the same with regard fo
all the other sides of the polygons.
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Join, now, A with :
m: the chord Am will GW b
be the side of a regu- = : : % _
lar polygon insecribed \
in the circle and hav- \
ing double the num-
ber of the sides of
the polygon to which
AB belongs. In fact, o
joining m with B, we
will have a chord equal to mA, and bisecting likewise all
the remaining arcs subtended by the other sides equal to
AB, and joining the middle points with the extremities
of the ares; for each chord equal to AB we will have two
equal to Am, and forming angles equal to one another
because measured by equal arcs. Draw, now, the radius
Cm’ perpendicular to Am, and from m’ a tangent to the
circle. In the same manner as Am represents the side of
a polygon containing the double of the sides of that to
which AB belongs, so the tangent drawn from ' and
included within the angle ACm represents the side of the
circumscribed regular polygon having the same number
of sides. o/, moreover, is the distance between the
sides of the two polygons inscribed and circumseribed.
Now, let us compare this distance, which is equal to n/'C
— Co’, with the distance mo=mC — Co. But the normal
Co is less than any oblique line drawn from C to AB,
and, consequently, it is much more less than C¢/, which
goes beyond AB ; hence, since m/C, mC are radii of the
game circle,

m'C — Co’ <mC —Co,
or, m’o’ << mo.

Now, duplicating again the number of sides of both
polygons inscribed and circumseribed, and continuing
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indefinitely this duplication, we will have the two poly-
gons constantly approaching coincidence ; but they can-
not approach each other without approaching at the same
time the periphery of the circle between them, and they
could not coincide with each other without coinciding at
the same time with the periphery. Hence, the periphery
of the circle is the limit towards which regular polygons,
inscribed as well as circumseribed, tend, when their sides
constantly increase in number; or the circle itself may be
considered as a polygon having an infinite number of
sides.

But also without duplicating the number of
sides, but only increasing it in any manner, we
come to the same conclusion; for the two polygons, in-
scribed and circumscribed, approach each other by in-
creasing the number of their sides.

e T Since the periphery of the circle is con-

The porimeter stantly between the perimeters of the two

of the inscribed i 5 N -
polygon increases polygons, inscribed and circumscribed, and

%}ﬁﬁ% Zitr-:ﬁ?eby l’mcrea.siug the number of the sides
L o polygons they approach constantly each
e other, we infer that the perimeter of the in-
scribed polygon increases and that of the circumscribed
polygon decreases by increasing the number of sides.
And, in fact, let AB be

one of the n sides of the
regular inscribed polygon
whose perimeter we will
represent by pa: we will
have

BemoLrow L.

i
AB =}EP”.

Divide the arc AmB into
two equal parts in m, and
12
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join A with m : Am will be one of the 2n sides of a-nother
regular inscribed polygon; and, calling pa, the perimeter
of this polygon, we will have

Ak
Am—ﬂpan.

Join, now, B with m: we will have Am +mB=2 An;
But from the last equation

1 *
2Am = 7P
1
hence, Am—+mB= 7 P
Now, Am+mB> AB;
1 1

hence, 7P > 5, Pn
that is, P> Pn-

Draw, now, from O the radius Om’, perpendicular to Am,
and produce it to g on the side ab of the circumseribed
polygon of n sides, and call P, the perimeter of the same
polygon. The tangent gn, limited by the sides oa, on, and
passing through the middle point of the arc Am, is one
of the 2n sides of another regular polygon, which may be
circumseribed about the circle, and whose perimeter may
be represented by Pa,;

hence, we have qn =]§?%f,

B
and, since ab =2 am, we have also

am=_"
2n
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Now, am> qu; for, drawing from g, gr parallel to ¢gn, we
have, from the increasing proportional sides of the tri-
angles rg0, gn’O,

_ rg> qm’.
But ag> rg; hence,
ag> qm’;

and from the equal triangles gm0, nm’O we have

. gm=m'n;
hence, ag + gm > g’ +m'n;
that is, am > qn,
and, consequently, %) g—";;
that is, P, > Pa.

Comouzany L. Hence, we infer this important corollary :

Tho perighery hat the periphery of the circle is con-
than the perime ctantly between the perimeters of the two
E'ﬁ’:fﬁ%l “.1f polygons; for they approach at the same time
any perimeter of " 0oh other and the periphery, the one con-
4 9 stantly increasing and the other constantly
diminishing.

omonay, Lot AM be a tangent to the circle at A,
 Comcsraingthe and suppose’ the same circle to be rolled on
eporiphery. . the tangent till the point A comes again in
contact with the tangent at A’. The length of AA’
is evidently equivalent to the periphery of the circle,
and the value of this periphery or of any fraction of
it given by AA’, or a fraction of AA’ corresponding
to that of the circle, is called rectification of the

periphery.
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Now, between the
radius and the peri-
phery, as we will see,
there is not a com-
mon measure. Tak-
ing, however, the ra-
dius of the circle as
unity of measure, we
may have the value
of the periphery given
by units and fractions
of unity as near to
the exact value as we
may desire. Let, in
fact, @ represent one
of the n sides of the
regular polygon cir-
cumseribed about the
circle, and let @’ be one of the n sides of the regular
polygon inscribed in the same circle AB: if we take
two straight lines having the one 7 -« for length, and
the other n: o/, the two straight lines represent the
perimeters of the two polygons in the same manner
in which AA’ represents the periphery of the circle;
hence, according to the preceding corollary, we have

na>AA'>n-a'.

Now, if for any number 7 of sides we may obtain the
values of # * @ and # - &/, given by the radius and fractions
of the radius, a numerical value between that of n*a and
that of * ’ is the value of A A’ given by the same radius.
Bat, by increasing indefinitely 7, n +« and n - a’ approach
indefinitely each other and AA’; hence, much more, any
value between them approaches the same AA’. But let
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us see how n*a and 7 a’ may be numerically given by
the radius taken as unity of measure.

peimoters of i€t mn be the side ‘of B
thoplvzons €+ & regular hexagon in- ™, n

seribed in  the ecircle
BCAp. Draw the radii Om, On at

the extremities of the side: we will c ¥
have mOn = 36600 = 60°. But in the

triangle mOn, mO = n0; A

hence also am0 = mnO.

But wmQ + mnO + mOn =180°;

that is, 2nmO + 60° = 180;

hence, nmQ, and, consequently also, mnQ =60°;
and, therefore, (8. I. TH. 13,)
mn =m0 = n0.

That is, the side of the regular inscribed hexagon is
equal to the radius of the circle, and, consequently,
making Om=1, the perimeter of the hexagon, numeri-
cally given by the radius, is 6.

Now, when the numerical value of the regular in-
scribed polygon of v sides is given, we may infer from
this the numerical value of the corresponding circum-
scribed polygon and that of the regular inseribed polygon
of 2v sides, as we will presently see. Hence, from the
numerical value of the inscribed hexagon we infer the
numerical value of the circumseribed hexagon and of
the inscribed regular polygon of twelve sides. Again,
from the numerical value of the inscribed polygon of

twelve sides we infer the numerical value of the circums-
12%
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seribed polygon of the same number of sides, and that
of the inscribed polygon of twenty-four sides, &e.

To see how, from the primeter p, of the regular
inseribed polygon of v sides, we may obtain the peri.
meter P, of the corresponding circumseribed polygon;
let AB represent one of the v
gides of the inseribed polygon,
and ab the parallel side of the
corresponding circumscribed poly-
gon: the radius On, drawn to the
point n of contact, is perpendicular
to both sides, and bisects both of
them. Now, from the right-angled
triangle AmO

we have .A._Oi, or 1=0m +R;

and, consequently, Om=\1—An’

and from the similar triangles anO, AmO,

we have an: Am::1:m0;
Am
h S 0D I
ence, it e
that is, 2

and, consequently,

2 an, or ab= it = - i
Jram ot
Now, AB is one of the v sides of the perimeter p;
that s, AB =12,

v
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and, in like manner, ah = I;' .
Again, since Am = % )
Mg g
we have also Am =28 _ s

4 4y

Hence, from the preceding equation,

Sl Py
v —5—% 2
p P
M
and, consequently,
B 2B g
—s —2
4y —p,

a formula giving the value of the perimeter P, by that
of the.corresponding inseribed p,. TLet us now pass to
see how pu, or the perimeter of a regular inseribed
polygon of 2v sides, may be given likewise by p.-

Draw An, which is the side of the regular inscribed
polygon, having ps, for perimeter.

Since nmnOn—0m=1—\‘l—Am,

and R=Am+??t?,

therefore, An = Am +1—2\1—Am +1—Am =

2 (1= =3
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and An = J2(1 —-\V1 —-W)

Now, An= &

and Am ——-;Ag]i = 2};’;
hence, —gpﬂ = ‘/2(1 - J1 -—%:'_:_),
and Py = 2;:\12(1 ek

4 formula by which the perimeter of the inscribed poly-
gon of 2y sides is given by that of the inscribed polyzon
of v sides.

Nothing else remains to be found to obtam a series
of the numerical values of the inscribed and correspond-
ing circumseribed polygons of six, of twelve, of twenty-
four sides, &e. Thus, for example, by making, in (a/),
py=16, or supposing the regular inscribed polygon of
v sides to be a hexagon, we will find py, or p,=
6.2116571 ....; and, substituting this value of p,
instead of p,, in the formula (@), we will obtain the
numerical value of the perimeter of the circumseribed
polygon of twelve sides,—that is, P,, = 6.4307806....
Substituting, then, in (@), the found wvalue of p,, instead
of p,, we will find p,, &c..... Continuing in this
manner, we will obtain

Poee = 6.2881850 . . . .,
Py, = 6.2831858 . . . .,

for the numerical values of the inseribed and circum-
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seribed polygons of 6144 sides, the radius of the circle
being taken as the unity of measure. Now, the nume-
rical value of the periphery of the circle given by the
radius is, as we have seen above, between the numerical
values of the polygons inscribed and circumseribed,
whatever may be the number of their sides; hence, it is
also between Py, 8nd Py, But these two values are
equal to each other as far as the gixth decimal figure; the
same number, therefore, as far as the sixth decimal figure,
represents also the numerical value of the periphery.

The periphery of the circle is usually expressed by 273

hence,

27 =6.283185....3;
and, consequently, we have, also,
7=238.141592. ...

for the numerical value of the semi-periphery.

THEOREM XV.

The area of the circle is equal to the product of the radius into
the semi-periphery.

The area of the circle is evi-
dently between the areas of the
two polygons inscribed and circum-
geribed. Let, now, v be the num-
ber of the sides of the inseribed
and of the circumseribed polygon,
and let AB and ab represent one of
their respective sides. Now, the
two polygons are divisible into as many triangles equal
to AOB and aOb as there are sides; and the area of
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AOB is $AB-Om, and the area of «Ob is }ab:On,
Hence, the area of the inscribed polygon of v sides is

(3AB " Om)y,
and that of the eireumscribed is
(3ab - On)v.

Observe, now, that $AB-y and 3ab ‘v are half the peri.
meters of the inscribed and circumscribed polygons;
hence, the areas of both polygons are given by the pro-
duct of half the perimeter into the perpendicular drawn
to any of their sides from the centre of the circle. Now,
by increasing indefinitely the number v of sides, the peri-
meters of the two polygons approach each other, and the
difference between Oz and Om approaches zero, and, con-
sequently, the areas of the two polygons are becoming
identical ; but then only will they be identical when On
will become equal to On, and when the perimeters of the
polygons coincide with the periphery of the circle. But
the semi-perimeteris then changed into the semi-periphery,
and the perpendicular drawn from the centre to any side
is changed into the radinus. The common ares, there-
fore, of the two polygons, which is the same as that of
the circle, is given by the product of the radius into the
semi-periphery.
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THEOREM XVI.

The area of the circle, having R jfor radius, is numerically
expressed by B m.

Let OF, of be the

A O

radius R and r of two

circles, and let MN, mn, »
touching the circle in F ‘W\
and f, be the sides of 0

any two regular poly-

gons circumscribed about them, containing, however, the
game number n of sides. In this supposition the tri-
angles MON, mon are gimilar to each other;

hence, MN : ma :: MO : mo.

And from the similar triangles MFO, mfo we have, also,
MO : mo :: FO : fo;

hence, MN:mn:: B : 7.

Now, MN, mn are the ath parts of the perimeters of the

polygons circumseribed about the circles; and, calling

these perimeters respectively P and p, from the last
proportion we will have

p Bl | ;
EP'FP:'R""

that is, P:p :t:R:7
Now, this ratio does not depend on the number 7 of sides,
which may be indefinitely increased; hence, we will

have also the same rtatio when the two polygons co-
incide with the peripheries; and, calling 2=/ the peri-
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phery whose radius is R, and 2"/ the periphery whose
radius is r, we will have 8

2 = 27 2n B oz TS
and, also, AR AR LR
that is, the peripheries or semi-peripheries of two cireles are

to each other as the radii of the same circles.
Let us now make r=1; then 22/ becomes 6,283185

«...=27; and from the last proportion, which becomes
#a':x:: R : 1, we have
' = Rx.

Now, the area of the circle having R for radius and
for semi-periphery is given by R*=z’; hence, from the
last equation the same area is given, also, by

R2-x.

Conotrany T. Let now R and R’ be the radii of two dif-
The areas of .
twocrlesare o ferent circles, and let @, &' represent their
each other as the

of thei . -
sauares of their greas; we will have

ters.

a=R'r, o/ =R
hence, ¢y wss Rt B
and, also, a:a :: (2R} : (2R

SHOMIRE JE. Let ABC be a

The sum of the L <
areasof thelunu- triangle  right-

that of tho corne -

enaings come angled in A, and »
angled trlangle.  with m, the mid- o
dle point of the hypothe- Y /
nuse, as centre, and mB as - >
radius, describe the semi-

circle BpgC, which will pass through A; deseribe, also,
on AB and AC, taking them as diameters, the semicircles
BrA, AoC. The surfaces ApBa, AgCo are called e
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or lune. Now, the sum of the areas of the lunule is
equal to the area of the triangle ABC. Call, in fact, &/,
a'’y @’", the areas of the circles having BC, AB, AC for
diameters: we will have

al' 7o = B0 « AR
a' 3 a2 BO :AC;

—
AC
hence, a'l = d, =
’ B o O
and " A e
A i ke =G (AR’ +ET)
But AB +AC =BC;
hence, a'+ " =d;
and, also, 3a"" + 3o =3d';
that is, ABn + ACo=BCqgp.
Now, ABn=ApBn + ABp,
ACo= AgCo + ACq,
and BCgp=ABp+ ACq + ABC.

Hence, substituting and eliminating the equal terms to
be found in both members, we will have

ApBn+ AgCo= ABC.

Gomatusx .~ Tiet o/, v be the radii of the two circles

to one another ipp, MNP, and call «/, =’ their semi-
similar oeetm
aré to one another

K 13
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peripheries. Let, also, mn, MN be two similar ares; that
is, each containing the same number of degrees and frac-

Itie F P p
tion of a degree; that is, if mn= §:r’, MN be equal to?-ﬂ-"

and

mn.: MN ¢ o’ s =
Now, el e ety
hence, s M v e v

It is evident, moreover, that the sector mno takes as
much of the area of its own circle as the sector MON
takes of the area of its own; so that, calling ¢ and o’

the areas of the two circles, and Ea’ the area of the sec-

tor mno, —Ea” will be the area of the sector MNO, and we

will have
mno : MNO :: & : a'.

2 2
But @licaglicss el o2 P
2 2
hence, mon : MON :: o' : ¢/,
PROBLEMS.
Prosex I. Let AmBn be a given circle, the centre of

treot s given ar. Which is to be found.

¥ Draw any chord mn,
and from the middle point p of it
draw AB perpendicular to the same
mn; AB (TH. 2, COR. 2) passes
through the centre of the circle,
and, consequently, it is a diameter.
Now, bisecting the diameter, the
point C of section is the centre of
the ecircle.
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Puostax 11 Let M and M’
iy deeerite & be  two given

fowbgvealie points, the first
st on the straight
s line HK, and the .
other out of it. To de-
seribe a circle which touches
HEK in M and passes through = M €
M/, join first M with M’ and
bisect MM’. From the point @ of section draw «O perpen-
dicular to MM’, and from M draw MO perpendicular to
HEK. The point O of intersection is equidistant from M
and M’; hence, a circle having the centre in O and de-
seribed with the radius OM will pass through M’; but the
same circle touches also (ra. 5) HK in M.
Let M, N be two given straight lines. To
Prosuex 1L find a mean geo-

To find the trical M
maal fuil '
pmp'f;ﬁwﬂm um'lﬂlhe_ mefrical propor: -

Prose v g “tigoal between
them, take on
AB, Ap=M and pD=N;
bisect AD, and let C be the
point of section: with the -
radius CA and centre C de-
scribe the semicircle AgD, and draw from p, pg perpendi-
cular to AB: we will have (TH. 9,
coR. 2) pg a mean geometrical pro-
portional between the segment Ap =
M, and pD =N. j
ALY Let mpn be 8 given cfir- {
Yrom a given cle and A a given point
ngent to the OUt Of it. To draw a tan-
i gent from A to the circle,
join first A with O, the centre of the
circle, and bisect AO. Let R be the /




148 GEOMETRY. BOOK 1V.

point of section: with the radius RO and centre R de-
seribe the circle OmAn, and join the point m of intersec-
tion, or, also, n, with A: Am or An is the required
tangent. Because, drawing Om, we have the angle Am0
a right angle; hence, Am being perpendicular to the
radius, Om is a tangent to the circle.
Sk T Let ABC be a given cirele and abe a given
To asserive in triangle, To inscribe in the circle a triangle
a given circle a ",
wriangle similer gimilar to abe, draw from any point B the
SPEie: tangent mn, and also two chords BA, BC, the
first making with mn the angle mBA. equal to the angle
¢ of the given triangle, and the second the angle #BC
equal to the angle « of the same triangle. Join, then, A
with €, and the inseribed triangle BAC will be similar to
the given triangle. In
fact, the angle BCA is N

e

equal to the angle o
mBA, for both of them “‘*\\
Kl

(rH. 9, cor. 1 and 8) are

measured by half the

arc BA. But mBA=c; A ¢4

hence, the angle C of e
the inscribed triangle

is equal to the angle ¢

of the given triangle.

In like manner the angle A of the inscribed triangle is
equal to the angle @ of the given triangle, and, conse-
quently, the third angle B of the first triangle is equal to

the third angle of the*second, and the triangles are
similar to each other.
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THE STRAIGHT LINE AND THE PLANE.

THEOREM I.
The inlersection of two plane surfaces is a straight line.

It is evident that a straight line cannot coincide with a
plane in two different points at any distance from each
other without coinciding altogether with all its other
points.

It is likewise evident that the intersection between any
two surfaces cannot be but a line.

Now, if we draw a straight line through two different
points of the intersection of two planes, this line will
coincide altogether with both planes. But the intersec-
tion of the two planes cannot be but a line; hence, the
straight line being at the same time on both planes, it
must coincide with their intersection, which, conse-
quently, is likewise a straight line.

THEOREM 1I.

An indefinite number of planes may pass through the same
straight line.

When two points are given in space, or the straight line
which joins them, we may conceive a plane passing
18% 149
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through them, which, if revolved about them, is evidently
capable of taking an indefinite number of different posi.
tions, and, consequently, an indefinite number of planes
may pass through the same straight line.

THEOREM IIL

Only one plane may pass through three different points not
situated on the same straight line.

Let A, B, C be any three points !
not situated on the same straight
line. Join two of them—for ex-
ample, A and B—with the straight
line AB, and let a plane pass through il
AB. This plane may be turned in B
such a manner as to pass also through C. But evidently
the same plane, being raised above or depressed below
s that point, must in all cases escape it; hence,
e . two lines AB, AC, forming an angle, deter-
ing an angle de . P
fernine th pos: mine Fhe position o-f a plane, because the ex-
tremities of these lines are three points not
situated on the same straight line ; hence, only one plane
may pass through them; and the two lines will coincide

with it.

THEOREM IV.

Only one perpendicular to the plane may pass through the sunt
point.

A straight line AB is said to be perpendicular to the
plane MN when it is perpendicular to every straight line
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Ae, Ad, Ae, &e. on the plane
and passing through its foot.

14
B
In one of the following theo- ( ‘ /
N

rems we will see how such a |
perpendicular may be erected A é’:
from any point of a given % \’_
plane. Now, we say that only *
one perpendicular may pass through the same point.

Suppose, in fact, AB’ to be another perpendicular to
the plane, having the point A common with the plane
and with AB, and let BAd be the plane determined by
AB, AB’, and Ad the intersection of this plane with MN.
Since Ad on the plane MN passes through the foot of
both perpendiculars, the two angles BAd, B’Ad will be
both right angles, and, consequently, BAd =DB’Ad; that
is, a part equal to the whole, which is impossible ; hence,
another perpendicular AB’ cannot be erected on MN from
A besides AB.

Perpendiculs AT Plane pg which passes through the per-
and .. "9 pendicular AB is said to be perpendicular to

the other.
Two planes M, N, to which the

p . M
same ab is perpendicular, are /_’ 3 ;

gaid to be parallel to each other. .

The reason of this expression o
will appear in the following theo- i &y

rem:i:—

P
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THEOREM V.

Any. straight line which s perpendicular to one of the parallel
planes is perpendicular to the other also.

Let M, N be two parallel
planes, and ab their common per-
pendicular; let, also, a/6’ be per-
pendicular to N: the same a't!
will be perpendicular to M also.
In fact, join a with a’; the plane
determined by ab, a«’ may be
conceived as generated by a straight line coinciding first
with ab and then passing successively through all the
points of aa’ and always parallel to ab. Now, this mova-
ble line is, with regard to both planes M and N, in the
same relative angular position as ab; hence, it will
remain constantly perpendicular to both. But when the
movable line will pass through a’ it will coincide with
«'b'; otherwise, two perpendiculars could be drawn to N
from the same point @/, which is not possible; hence,

a'b’ is perpendicular to both planes.

s From the process of the preceding demon-

e two per-
pendivutare e stration we see that the two perpendiculars

on the samé

i Pl the same plane and parallel to each

A, other. Nay, if we imagine any other straight

line /6" perpendicular to N, ¢”/¢"" will be parallel to ab

and to a’b’; and ab, a’’b"" will be both on one common
plane, and @'l’, @’’b’" on another common plane.

Hence, also, the two planes M, N are equi-

Comouawr Il gictant everywhere. For, take the common

Two  planes

havingeommon. perpendicular ab as the measure of this

aro equidisiant Jigtance: then the distance of the point @,
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taken at pleasure, will be measured by a'b’. parallel to
ab. But, joining a with /, b with ¢/, all the angles of the
quadrilateral ba’ will be right angles, and, cousequently,
b'a’ = ba: hence, the distance of any point of the plane
N from the corresponding point of M is always the
game. For this reason, two planes having a common per-
pendicular are ealled parallel planes.
R e non, ven i they would bo. pro
@an pever 5 y would be pro-
duced beyond all limits.
Wm&g It follows, moreover, that if two parallel
tions of two planes M, N are met by another plane PQ,
By shother the intersections PG and QF are two parallel
g lines; because PG, FQ ¥
are two straight lines of the plane

r
PQ, and if they are not parallel ™ / /\/
«

they will gsomewhere meet each \ \’
other. But PG is on M, and

FQ on N; hence, where the lines Nﬁ \//
meet, the planes also must meet. -

But the planes nowhere can meet; hence, neither can the
intersections P&, FQ.

THEOREM VI.

The segments of any two straight lines between parallel planes
are proportional.

Let P, P/, P be parallel planes,
and AA’, A’A” the segments of any
straight line; that is, AA’ limited by
P and P’, and A’A” by P’ and P";
let, also, BB/, B'B”” be the correspond-
ing segments of any other line BB”.




154 GEOMETRY. BOOK V.

Join A with B”, and let C’ be the point of P’ met by
B”A. Join, also, A’ with C/, and A’ with B”, A’C’ is
at once on the plane P’ and on that determined by
AA”, AB”; hence, A’C’ is the common intersection of
these two planes; and, in like manner, A"B" is the com-
mon intersection of P’ and of the same plane A”AB".
The two intersections, therefore, A’C’, A’’B" are paral-
lel lines, and, consequently,

AA’: A’A” :: AC : O'BY;
. AAY L AC
ok ATAT T OB

Join now ¢’ with B, and A with B; we will have, in the
same manner,

AC BB’

o'B” s B'TBF 3

AA BB/
hence, ATA =BB"

That i, AA’ : A’A” :: BB’ : B'B".

THEOREM VII.

When a straight line is perpendicular to two other lines infer-
secting each other, it is also perpendicular to the plane deter-
mined by them.

Let AB, CD be any two lines P

intersecting each other in O. If

the straight line OF passing a2 ¢y
through their intersection is per-

pendicular to both of them, it is
perpendicular, also, to any other

straight line of the plune deter- P
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mined by AB, CD, and passing through O, and, conse-
quently, perpendicular to the plane itself. In fact, pro-
duce FO to F’ in such a manner as to have OF’=OF.
Draw, then, on the plane determined by AB, CD, any
straight line mn passing through O; then from any
point % of mn, draw pg any straight line reaching some-
where in p and in g the two given AB, CD. Join,
moreover, ¥ and ¥’ with the points p, & and ¢: we will
have

Fq=¥'q, Fp=F'p.

Hence, the triangles Fpg, ¥'pg are equal to each other,
and, consequently, the angle

Fpg=F'pqg;

hence, also, the triangles Fpk, F'pk are equal to each
other. Because, besides the common side pk and the
side Fp of the one equal to the side F’p of the other, the
included angles Fpk, kpF’ are also equal;

and, therefore, Fh=T"Fk

L
Now, the triangles FOk, F’Ol, besides the common side
Ok, have the side OF equal to the side OF’; and since,
also, ¥k =K'k, the triangles are equal,

and, consequently, ~ FOk=T"Ok;

that is, FF’ is perpendicular to mn; and, since mn is any
straight line on the plane determined by AB and CD,
the same FE is therefore perpendicular to any straight
line of the plane passing through O, and, consequently, to
the plane itself.
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Comorzagy L. Let ¢ be any point of the +
[Mhrough_wny taight line MN. A plane /*‘“~1

ine a plane may

poss perpendice: may pass through ¢ to which b /

e MN is perpendicular. Let, |
in fact, P and P’ be two planes passing FrETIn |
throngh MN. Draw on the first of ‘—L
these planes gr perpendicular to MN, o

and on the second ¢s perpendicular to” l/‘m

the same MN. This MN will then be

perpendicular to the plane determined by g¢r and gs.
e e - Tiet AB, AC, AD e
Three steaight three straight lines per-

lines i

4 »
through me 5
hrosih the sy pendicular to MA and

fie s20 puroen. passing  through the
S WY e point A of it: the

three lines are on the
game plane. Else, let P be the
plane determined by AD and AM;
if the plane on which AB and AC
are does not pass through AD, it will cut the plane P
along another line,—for instance, AF. But then, since
AF is on the plane to which MA is perpendicular, it
must make a right angle with MA ; bug, by supposition,
MAD also is a right angle; hence, MAF = MAD, which
being impossible, it is impossible also that AD be out
of the plane determined by the other two perpendiculars
AB, AC.
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THEOREM VIIIL

If two straight lines on a plane are perpendicular to each other,
and one of them passes through the foot of a normal to the
plane, this line, together with the mormal, determines the
plane to which the other straight line is perpendicular.

Let AB, AC be two straight D
lines of the plane P perpendi-
cular to each other, and let AB
pass through the foot of DB
normal to P: the other line
AC will be perpendicular to the
plane determined by AB and
BD.

Take, in fact, AC equal to BD, and join A with D and
C with B: the two triangles ABD, ACB, besides the
common side AB, and the side BD of the one equal to
the side AC of the other, have the included angles ABD,
BAC also equal ; therefore,

AD=BC.

Join, now, C with D: the triangles CDA, CDB have the
common side 0D, and the two remaining sides of the one
equal to the two remaining sides of the other; therefore,
the angles also opposite to equal sides are equal ; hence

CBD = CAD.

But OBD is a right angle; hence, CAD also is a right
angle. But CAB is likewise a right angle; therefore AC
is normal to the plane of the triangle DAB, which is that
determined by AB and BD.

14
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Py Let mn, rq be paral-

Ifone of two lel to each other, and
33%::‘1}:: i consequently on the
atko I porpend. gamme plane. If mn is
cular to it

perpendicular to the

plane P, rq also is perpendicular
to the same P. Because, joining n with ¢, and drawing
on P, qf perpendicular to ¢n, we will have ¢/ perpendi.
cular to the plane determined by gn and nm, which is the
same as the plane of the parallel lines; hence, r¢f is a
right angle. Besides, since rg, mn arve parallel and the
angle mng is a right angle, rgn also must be a right angle;
hence, rq is at once perpendicular to ¢gn and to ¢f, and,
therefore, perpendicular to the plane P.

Seerr~ et B, (B he f two

1 fom any planes perpendicular »

point of the com-

mon intersection 0 each other, and let i

of two lanes i
perpendicular to 9ps he their common }

each other we

draw a perpendi jntersection. The L
them, it will bo plane P cannot be per- ¢ !

s pendicular to P’ with-

out passing through some line perpendicular to the same
P’.  Let nr be this line. Any other line fg on the plane
P, parallel to nr, is likewise perpendicular to P’. Now,
if from f, which is any point of the intersection of the
planes, we draw f7 perpendicular to P, fg must lie on I,
else it will be either above or below P/, and have, for ex-
ample, the direction fy’. And let fg’ be the intersection of
the plane determined by fg, fy’ with P’; then, since gf is
perpendicular to P/, the angle gfy’ is a right angle; and,
since by supposition fg’ is perpendicular to the plane P,
the angle also ¢/fg is a right angle ; we would have, there-
fore, the angles ¢’fy, ¢'fy equal to each other, which is
impossible; hence, the perpendicular drawn from auy




THE STRAIGHT LINE AND THE PLANE. 159

point of the common intersection to the plane P must lie
on the other plane P’.
corowany . From the same theo-

amne perpendl o we  infer  that

common inter when the planes P and
e omice. P’ are perpendicular
1o e to each other, and mn
gy on the plane P’ is per- «
pendicular to the intersection ab,
the same mn is perpendicular to P ; because, drawing mg
perpendicular to P’ it will coincide with the plane P, and
gmn is a right angle; and, since bmn also is a right angle,
thus mn is normal to the plane determined by mb, mg,
which is the plane P.

o c1v. et mn be the inter-
e section of two planes
pendicular o 2 P and P/, both per-
Intersection i & pendicular to P’: mn
same thirdplave. gt then be a normal
to P”. In fact, if from n we erect
a perpendicular to P/, it must be at once on P and on P”.
But no other straight line is common to both planes
except their intersection ; hence, mn is a normal to P’’.

ey Let ab and ed

When two lines s & P
s bopnll i =
B o
lines aro parallel g n space,
Mmakothe and lot Pibe s Ty L el
plane to which fy is perpen-
dicular: then (cor. 1) ab and ¢d are also perpendicular to
P. Join, now, b with d; the angles abd, cdb are both
right angles, and &d represents the intersection of the
plane perpendicular to P, determined by ed and bd, with
P; hence, (cor. 2,) ba must coincide with the same plane,
and therefore is parallel to de.
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THEOREM IX.

Two angles in space are equal when their sides are respectively
parallel.

Let the sides AB, AC of the angle BAC in space be
respectively parallel to the sides A'B/, A'C’ of the angle
B’A’C’ on another plane.

Take AB=A’B’, and AC=A'C/,
and then join A with A’, B with
B/, C with ¢/, and also B with C
and B’ with ¢/. Now, BB/, AA’,
joining the extremities of two pa-
rallel and equal lines, are parallel to
each other and equal. But, for the
same reason, AA’ is parallel and
equal to CC’; hence, BB’ and
CO’ are two parallel and equal
lines ; therefore, BC, also, and B/CY,
which join their extremities, are parallel and equal
Hence, the three sides of the triangle BAC are equal
to the three sides of the triangle B’A’CY, and, con-
sequently, the opposite angles to equal sides are also
equal. 'We have, therefore,

BAC=B'A'C'".

THEOREM X.

The planes determined by parallel lines forming angles in space
are parallel,

Let AM be the perpendicular let fall from A to the
plane determined by A’B’, A’CY, and draw from M, MR,
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MQ parallel to A’C’, A’B’, and, consequently, parallel
also to AB and AC, (18. 8, cor. 5.) But QMA and RMA
are right angles; hence, also, BAM and CAM. MA,
therefore, is perpendicular to the plane determined by
AB, AC. But it is perpendicular also to the plane deter-
mined by A’B’; A’C’; hence, the two planes are parallel
to each other.

THEOREM XI.

The straight line parallel to a given plane lies on a plane
likewise parallel to the given plane.

Let the line ab be parallel

to the plane P,—that is, such - "
that it can never reach the
plane, even indefinitely pro-
duced. Now, through any P~ o,
point m of ab, let a plane P’

pass parallel to P, having a common perpendicular with
P: if we suppose mn parallel to the common perpendi-
cular, mn also (TH. 8, cor. 1) will be a common perpendi-
cular to both planes. Let ¢r also represent the section
of the plane P made by the plane determined by the
parallel line ab and the normal m#n: we will have mng =
mnr =90°. Now, if ab does not lie on the plane P’, let
fg be the section of the plane P’ made by that deter-
mined by @b and mn, so that ab, rg, fg are supposed to be
on the same plane. But, since mn is perpendicular to P/,
we would have nmf = nmg=90°, and, consequently,
bmn << 90° ; hence, ab and g¢r would not be parallel, and
would somewhere meet each other. But ab cannot meet
gr without meeting the plane P, which is against the

supposition ; therefore, ab lies on a plane P’ parallel to P.
L 14%




162 GEOMETRY. BOOK V,

THEOREM XII.

From any point out of the plane only one perpendicular may be
drawn to the plane.

Let m be any point out of

the plane P, and let mf be 4 o
any straight line drawn from
m to P; let also fg be a per-
pendicular to the plane P, B gk e
and fg the intersection of the

plane P made by the plane determined by gf and fin.
From m, which is one of the points of this plane, draw
mg parallel to fg, and, consequently, perpendicular to P.
But any other line, for instance mf, drawn from i to P,
cannot be perpendicular to the plane. Join, in fact, !
with g: we will have the triangle mq? right-angled in ¢,
and, consequently, mig less than a right angle.

THEOREM XIII.

The least angle of an oblique line with the plane is that whith
it makes with the straight line joining the foot of the oblipue
line with that of the normal drawn lo the plane from any
point of the oblique line.

Let m be any point of the oblique
line which reaches the plane P in C;
let also mg be the perpendicular
drawn from the same point, m, to the
plane: join C with ¢, and with the
centre C and radius Cg describe the
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circle grs on P; draw also from ¢ the chords ¢r, ¢, and
join r, 2/ with the centre of the circle and with m.
From the right-angled triangles mgr, mgr’ we have

S | < e g

—z
mr = mg <+ qr
T ="mg + g -

Now, ¢r'> qr, and, consequently, ms'>mr. Hence,
from the triangles mCr, mCr/, which have the common
side mC, and the side Cr of the one equal to the side Cr’
of the other, we have (. 1. TH. 6)

mer! > mer ;

and, since the more the chords increase the more
approaches s, and the more the same chords decrease the
more r approaches ¢, thus, of all the angles which mC
makes with the radii of the circle, mCs is the maximum,
and mCyq is the minimum.

We may here observe that when the angle which a
straight line makes with a plane is given, we understand

the minimum, unless it is otherwise expressed.
L}

THEOREM XIV.

The angle formed by two planes is measured by that formed
by two straight lines, one on each plane, and both perpendi-
cular to the common intersection.

We had already occasion to observe that when two
quantities m and m’ are such that if, when m becomes

m m
2m, 8m...., or -f,-g....,m’alsobecomesﬁm’,am'
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m! m
-ﬂ', 'B" LU |
the other in all cases.
Again: an angle formed by two planes is double or
triple, &c. the angle formed by two other planes, when
this second is contained twice, three times, &e. in the
first. Or, vice versd, an angle formed by two planes is
one-half, one-third, &c. of another, when the first is
eontained twice, three times, &c. in the second.
Let now ABCD, AMND be two
planes forming an angle, and let AD i«
be their common intersection. Let N s)
also AB, AM, and DC, DN be per- 3 | s
pendicular to AD. Describe on the
plane determined by AB, AM, with
the centre A and radius AB, an arc
BMS of a circle, and also on the

e aai DX one quantity is the measure of

plane determined by DC, DN, with e d )

the centre D and radius DC, describe | >7

an arc CNL of a circle. Now, if on © ¢F ¥

BMS we take MR, RS.... equal to

BM, and join A with R, with S...., we will have
BAR=2BAM,

BAS =3 BAM, &c.,

and, since DA is perpendicular to the plane MAB, the
radii AR, AS . .. are all perpendicular to AD. But
AD and AR, AD and AS, &c. determine the positions of
the planes DAR, DAS . . . ; and the angle which DAR
makes with DAB is the double of the angle which MD
makes with DAB; for, if we imagine the two planes DB,
DM, preserving the same mutual inclination, to be turned
about AD, when BD will take the place of MD, MD wil
take that of DR. In like manner, the angle formed by the
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planes BD, DS is three times the angle which DB makes
with DM, &e.; hence,

BDAR =2 BDAM,
BDAS =3 BDAM, &ec.

Let us now take, on the are ON, CF = }CN, GC = }CN,
&c., so as to have the angles

ODF = }CDN,
ODG = }CDN, &e.

AD and DF, AD and D@, &c. determine the position of
the planes AF, AG, &c. Now, in the same manner in
which the angle formed by the two planes BD and DR
contains twice the angle BDM, and the angle formed by
BD and DS contains three times the same BDM, so BDM
contains twice the angle formed by AC and AF, three
times the angle formed by AC and AG, &c.; hence,

BDAF = }BDAN,
BDAG = {BDAN, &c.

The angles, therefore, formed by the perpendiculars
drawn to the common intersection of two planes, change
like the angles formed by the planes; hence, the one is
the measure of the other. }

Hence, to measure the angle
which two planes P, P’ make
together, it is enough to draw from any
point m of the intersection on the planes
P and P’ the perpendiculars mn, mg to the
same intersection: the angle mmg is the
angle formed by the two planes. It is plain, also, (TH. 9,)
that if from any other point m/ of the intersection we
draw on the planes the perpendiculars m/»/, m'q’ to the

Corollary.

e L s
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intersection, and, consequently, parallel to mn, mg, the
angles n'm’q’, nmq are equal to each other.
We may now see

ScHOLIUM. i

Coneerning  the  Teason why we ™
planes perpeaeh call a plane P per- 2
oy pendicular to an-
other plane P’ when P passes o ly
through a straight line perpen- X
dieular to P’. For, let nm be
the straight line perpendicular to P’ and through which
P passes; now, since any line on P’ passing through a
is perpendicular to mn, ng also perpendicular to the com-
mon intersection and ab itself, are perpendicular to mr,
hence, mng measures the angle formed by the planes; and,
since mng is a right angle, the planes also are perpendi-
cular to each other.

THEOREM XV.

The perpendiculars to two planes inelined to each other form an
angle equal to the angle of the planes.

We have seen that from any point out of the plane &
perpendicular may be drawn to
the plane, and also any straight
line parallel to the perpendicu-
lar to the plane is also perpen- y
dicular to it; hence, from any
point of a plane we may erect & s B
perpendicular line to it.

Hence, from the point m of
the common intersection of two planes P and P/, erect
ms perpendicular to P, and mr perpendicular to P’. Since
the intersection ab is on both planes, it is perpendicular

b P

i
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to mr and to ms, and, consequently, to the plane deter-
mined by them. Let, now, mg, mn be the intersections
of the plane determined by mr, ms with P and P’: we
will have amg=amn=90°; consequently, the angle gmn
is the measure of the angle of the planes. But gmn=
gmr; because

smg = 90°, rmn = 90°,

and, consequently, smg = rmm,
or, smr + rmg = nmq +rmg;
that is, smr == nmng.

The angle, therefore, formed by the perpendiculars to
the planes is the same as that formed by the planes
themselves.

S0LID ANGLES.

Although a plane intersecting another plane forms an
angle, the angle formed by them is
not a solid angle. To form solid
angles three planes at least are re- ¥
quired. The angle A, for instance,
formed by the planes P, P/, P is a
solid angle; the angle B also, formed pe
by the planes p, p’, p’s p""'s "5 is a
solid angle, &e. A solid angle, then, is formed by more
than two planes whose mutual intersec-
tions concur in the same point. Solid
angles are called also polyedral angles, 7
because they are formed by several plane
angles.

A
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THEOREM XVI.

When. the polyedral angle is formed by three plane angles, the
sum of two of them. is always greater than the third.

Let BAC, BAD, CAD be three
plane angles forming the solid
angle A, and let BAD be greater
than either of the other two.
Draw from A, Af on the plane
BAD, so as to have fAD = CAD,
and take Af=AC. Join, also,
D with £, and produce Df till it
meets AB somewhere in m.

From the equal triangles CAD, fAD we have CD=
Df; hence, joining C with m, since mD <mC+ CD: we
have, also,

mD <mC + Df,
or, mf +fD<mC+Df;
that is, mf < mC.

Now, the triangles fAm, CAm, besides the common side
Am, have Af = AC; hence, from the last inequality,

mAf < mAC,
and, consequently,
DAf+ mAf<DAf+mAC;
, that is, DAB<DAC+BAC.
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THEOREM XVII.

The sum of the plane angles forming a polyedral angle is
always less than four right angles.

Let K be any poly-
edral angle, and P a
plane cutting the sides
of the plane angles in

£
a, b, ¢, &e. Join these \ £ ’W)
#

points, so as to have
the plane polygon abe
...,and let n be the
number of sides of the polygon, we will have the sum
of the internal angles of the polygon equal to (n —2) 180°.
But, from the preceding theorem,

abe < abK + Kbe, bed < beK + Ked, &e.;

hence, the sum of the internal angles of the polygon is
less than the sum of the angles formed at the bases ab,
be....of the triangles Kab, Kbe. . .. But the sum of
the same angles 1s

n+180° — (aKb + bKe + + + . )

Hence, (n — 2)180° < 7+ 180° — (aKb + tKe +. . . . ;)
and, eonsequently,

aKb+bKe +. .. .<2+180°,

That is, the sum of the plane angles forming any poly-
edral angle is less than four right angles.

156
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POLYEDRONS.

PRELIMINARIES.

In the same manner in which surfaces are termi-
nated either by straight or curve lines, so also solids are
terminated either by plane or curve surfaces. Those
solids that are terminated by plane surfaces are called
polyedrons.

Polyedrons, like polygons, are either regular or not, ac-
cording as their terminating planes are orare not regular
and equal polygons. The terminating planes are called
faces, and the straight lines in which adjacent faces meet
each other are called edges.

Now, the edges either meet together in one com-
mon point, a8 ab, ¢b, db, eb; or are
parallel, as mn, op, qr, Sl; OF, finally,
variously inclined in different directions,
as lt, ts, tm, In, &c.

In the first case, and when the con-
verging edges are terminated by one
face, aede, the solid is called a pyramid; ¢
the point b of concurrence is called the
vertex of the pyramid, and the face aedc opposite to the

vertex is called the base of the pyramid. A perpen-
170
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dicular, drawn from the vertex to the base, is called the
altitude.

In the second case, and when the pa-
rallel edges are terminated by two faces
nprt and mogs, the solid is called a
prism, and the two terminating faces
just mentioned are called the bases of
the prism. When the parallel edges
are perpendicular to the bases, the '
prism is a right prism: otherwise, the prism is ob-
lique. The prism is called triangular or quadran-
gular, &c. according as the bases are triangles, quadri-
laterals, &c. When the bases are parallel, their mutnal
distance is the common’ perpendicular, and this dis-
tance is the altitude of the prism. When the bases
are not parallel, the altitude of the prism is evidently
different for different points of the
bases.

In the last case, when the edges
are variously inclined, the solid pre- ! ¢
serves the general appellation of
polyedron. P

Any straight line joining two ver- = g
tices that are not in the same face of any polyedron is
called diagonal.
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THEOREM I.

The section of a pyramid made by a plane parallel to ths
base is a polygon similar to that of the base.

Let P be a plane parallel
to the base of the pyramid
VABCDE, and let abede be
the section of the pyramid
made by P: we will have
AB and BO respectively paral-
lel to ab and be, and, conse-
quently, the angle B is equal
to the angle 4. In like man-
ner,

C=¢,D=d,E=¢, A=a.
Again, from the similar triangles abV, ABV we have
ab : AB :: bV : BV.
And, from the similar triangles, b¢V, BCV,

be : BC :: bV : BV;
hence, ab : AB :: be : BC,
or ab : be :: AB : BC.

In like manner, we have
be : ed :: BC : CD, &e.

But two polygons having equal angles and the homo
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logous sides proportional are similar; hence, the polygon

produced by the section of P is similar to that of the -
base.

SONGGERR®, Draw from V, VH perpendicular to the

The section is

el s base, and, consequently, also to P; and let A

finceot theptams be the point of P met by VH. Join H with

of the section

fomtovetes ¥ ‘D), and A with d: we will have two triangles
of the distance of VH), Vhd similar to each other, and, con-

mue vertex-  gequently,

Vh o VH 22 Vdi; VB;

and, also, Vi VI :: Vd : VD.

But Vd : VD : de : DE;
hence, Vi :VH :: de : DE.

Now, similar polygons are to one another as the squares
of any two homologous sides;

therefore, dc : DE :: ace : ACE;
hence, ace : ACE : ‘Vh : VH.

15%



»

174 GEOMETRY. BOOK VL

THEOREM IL.

The surface of @ pyramid having a reqular polygon for base,
and dll the edges equal, is given by the product of the semi-
perimeter of the base into the perpendicular let Jall from the
vertex to any side of the base.

Let the base of the pyra-
mid VEABCD be a regu-
lar polygon, and let the
edges VA, VB, &e. be all
equal to one another. The
faces of the pyramid will
evidently be all isosceles
and equal triangles, and the
surface or area of the pyra-
mid without the base will
be as many times the area
of one of these triangles as there are sides in the base.
Now, the area of ABV, for example, is given by the pro-
duet of Vg, the perpendicular drawn from the vertexto
AB, into 3AB. Hence, supposing 7 to be the number of
the sides of the base, the surface of the pyramid will be
expressed by

Vg -3AB-n;
that is, by 3(n+AB)-Vq.

Vel Let now the pyramid be cut by a plane
e o parallel to the base, and let abede be the

atranested pew goction. This section, together with the
'hq..": b‘é".,;;;'ﬁ'ﬂi edges Va, Vb, &c., forms another pyramid,
een the <which, being taken from VABC. ..., leaves

fin - . .
the .f:"m'“g?rht?g a section of the given pyramid, called tru-

Parpeters ot e ated pyramid, or frustum of a pyramid.
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Calling M and m the perimeters of the two bases ABC
..... abe . ..., observe that the faces of the frustum
are all equal trapezoids; for the perimeters of the parallel
bases are regular polygons, and the edges of the frustum,
being the same differences of the sides of equal isosceles
triangles, are also equal. Observe, also, that g¢¢’, the
difference between the perpendiculars Vg, Vi, is the same
for all. Now, the product of this perpendicular by half
the sum of the parallel sides gives the area of the
trapezoid; therefore, g’ * 1 (AB + ab) multiplied by the
number 7 of the sides of the bases gives the surface of
the frustum, the bases being excluded.

Now, ¢’ * H(AB +ab) n=gqq' }(n - AB+n*ab).
But n+AB=M, n - ab=m;

hence, the surface of the frustum of our pyramid is

expressed by
qq’ * 1M+ m).

THEOREM IIIL.

The section of @ prism made by a plane parallel to the base
is equal 1o the base.

Let the prism MNAC
be cut by a plane, P, M
parallel to the base AC, N
and let abed be the sec-
tion effected by the plane.
Now, AB and ab are pa-
rallel between parallel

lines, and, consequently, »
equal. In like manner,
A

be is equal and parallel to B c
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BC, &e.; hence, the polygons ABCD, abed are equal to
each other, and the faces aB, bC, &e. are all parallelo-

gI'BIIlS-

 orious Kinds It is now plain that when the paralled

bases of the prism are parallelograms, the
prism is a polyedron having six parallelograms for
faces, and each face is equal and parallel to its op-
posite. A prism of this kind is called a paralicl-
pipedon. And if the parallelograms are rectangles, the
prism is called a rectangular parallelopipedon ; and when
the parallelograms are all squares, the prism is then
called a cube.

THEOREM IV.

The surface of a prism having parallel bases is expressed by
the product of any one of its edges into the perimeler of 4
section made perpendicularly to the edges.

Let the bases MO, AC
of the prism QB be paral-
lel to each other; let also
P be a plane cutting per-
pendicularly the edges, and
let abed be the section of
the prism made by it: ab
will be perpendicular to
MA and to NB; be perpen-
dicular to NB and to OC,
&e. Now, MA=NB=0C
= &ec.; and the area of the parallelogram MB is given
by MA - ab, that of NC by NB - be, or MA - be:
in like manner, the area of QC by MA - d¢, &e
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Hence, the surface of the prism, except the bases, is
given by
MA (ab+be+ed+ ... .)

the product, namely, of any one of the edges into the
perimeter of the section vertical to them.

SOLIDITY OF EODIES.

We call, in geometry, the solidity of a body the amount
of space occupied by it.

Thus, the space occupied by the
parallelopipedon BH is its solidity,
or the measure of its solidity.
Hence, to measure and compare the
solidities of bodies a certain space
must be taken as their common
measure, in the same manner in
which a certain straight line is
taken as unity of measure for linear lengths, and a certain
area is taken as unity of measure for surfaces.

Now, the unity of measure for solids is a cube.

The cube has all its edges equal, but evidently it oceu-
pies a larger or smaller space, according to the length
of these edges. Therefore, a cube oceupying a deter-
mined space must have a determined length for its edge,
which becomes a linear measure ov unity,—for instance,
an inch, a foot, &e.—in the same manner as the square
used as unity of measure supposes a certain determined
linear length for its cide. In the supposition that the
same linear unity is adopted for the sides of the square
and for the edges of the cube,—a foot for example,—the
square foot is then the unity of measure for surfaces, and

a cubic foot the unity of meusure tor golids.
M

B

1
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THEOREM V.

Two right-angled parallelopipedons having a common altitude
are as their bases when the base of the one is a seetion of the
base of the other.

Whatever be the li- 8 G

near length and the " a7 /r
0

unity of measure for E o
golids, let BH be any \/ X ‘ \
D 'h [ ]
(bl

rectangular parallelopi- ;
I
i A

pedon and BD its base.
Duplicate the base by
producing AB and DC to M and N, so as to have the
rectangle CM equal to the rectangle DB, and finish the
parallelopipedon CO. Now, CO is evidently equal to
DF; for, besides the equal bases, the face FC is common,
the faces ED, ON are equidistant from FC, parallel and
equal to it.  So that, if we imagine DB placed on CM s0
as to coincide exactly with it, DE will exactly coincide
with OF, and CF with NO, and, consequently, HF, HC,
EB will respectively coincide with GO, GN, FM
Hence, the space occupied by the parallelopipedon DO is
twice that occupied by DF. Therefore, when the base
of one of two right-angled parallelopipedons having
the same altitude is twice the base of the other, its
solidity also is twice the solidity of the other. It is
plain that, if the base should become three times, four
times, &ec. the rectangle BD, the solidity of the corre-
sponding parallelopipedon would likewise become three
times, four times, &c. that of DF.

Vice versd, if we divide the base BD into two equal
parts by mn parallel to AD, and finish the parallelo-
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pipedon Do, we have, in like manner, the space DF =
2Do, or, Do=131DF, and, cutting off by lines parallel
to AD one-third, one-fourth, &c. of the base DB, and
finishing the right-angled parallelopipedons, their solidi-
ties will manifestly be one-third, one-fourth, &c. of the
solidity of DF.

But it is well known that when one of two quantities
becomes twice, three times, &c. as great, or one-third,
one-fourth, &c., the other also increases and decreases in
the same manner: whatever be the change effected with
regard to one of these quantities, the same is the change
of the other.

Hence, if out of the base AC R
of the right-angled parallelopi-
pedon AF we cut off any rect- N\
anglé AP and finish the paral-
lelopipedon AS, whatever be A q
the ratio between AP and AC,
the same will be between AS B + c
and AF'; that is, we shall always
have

AP : AC :: AS : AF;

namely, the solidities of two right-angled parallelopipedons
having the same allitude, and one of them having for base a
segment of the base of the other, are to each other as the areas
of the bases.

THEOREM VI.

The solidity of a cube is given by the product of the solid cube
taken as unity of measure into the cube of the numerical value
of the edge.

Let the edge mn of the cube K be the linear umnty of
measure, and K the unity of measure for solids, and let
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MN (the edge of the 5
cube AD) be equal L
to v »mn=v; that is, e
let v represent the
numerical value of
the edge of the cube
AD, and, conse- 7
quently, »* repre- : ¥
sents the cube of the
game number. Let
us now take on AM =y, AF=am=1, and on AR, Ab=
ab=1, and, finally, on AB take Ac=ac= 1, and finish
the cube Ao, which, having the same base and the same
altitude as K, is equal to K. Produce, now, ¥l to G, and
on the base AG finish the parallelopipedon Ad, having
the same altitude as the cube Ao: we will then have, from
the preceding theorem,

Ao : At :: Al : AG;
AG AB:AF AB

o

nE N

hence, Ai=*'KEA0=-m K=E ‘K.
AB

But En—;-:]},

hence, Ai=y K.

Produce, also, Fe and Gi to L and P, and finish the paral-
lelopipedon AP: we will have

At : AP :: Ae : AL;

_AL_,,_AR-AF , AR
But %ﬂu, and At=y-K;

hence, AP =K.
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Compare, finally, AP with AD: we will have
AP : AD :: AL : AQ;

hence,
@=%'ﬁf%%§—§‘ﬂ=%'”-

Now, %= v, and AP = VK ;

hence, AD=/K.

That is, the solidity of AD is the solidity of K taken as
many times as there are units in the cube of the nume-
vical value of the edge; that is, the cube of the number
which indicates how many times the edge of K=11is
contained in the edge of AD.

It is plain that v may be an exact whole number, or
with a fraction added to it.

Observe, also, that from the last equation we infer

K= AD,

AB
and, from TG TH

D rmie
v
Now, supposing AD to be taken as unity of measure

for solids, and, consequently, AB as unity of lengths,

Ac:l_

v

But K =%_,
unity of measure has its edge greater than the edge of
the cube to be measured, the solidity of the latter is
expressed by the cube of the fraction representing the
numerical value of its side into the solidity of the cube

unity of measure.

AD; hence, even when the cube taken as

16
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=

Henece, generally, when the side S or edge of any cube
is given, we may express the cube itself simply by 5% the
factor 1 or unity cube being understood.

T If the solid AD, instead of being a cube,
e, sotiey of would be any ﬂght—angled parallelopipedon,
peeslieloptpedon, then the edge AB, for instance, m‘easured by
grodack o be mn=1, may give v for its numerical value;
of theedges into the edge AM would have 4, and the edge AR

would have 7, for the numerical value, Aund
then, following the same process as in the preceding

demonstration, we will have

A=y "I,
APmr'At=;r'y'K,
AD=3:AP=37r'v'K,

or, AD=8d"7"%

The product, namely, of the numerical values ot the
three different edges of the right-angled parallelopipedon
into K = 1 gives its solidity.

We may here remark that, since 3y, on,
Important re-

mark. y'&'r=AB‘AM'AR,

and AB - AM is the expression of the base of the paral-
lelopipedon and AR is its altitude, we generally also
say that the solidity of any right-angled parallelopipedon
is equal to the product of the base into the altitude,
which is perfectly correct; for, if we conceive of the base
ascending parallel to itself to the top of the altitude and
leaving a trace, or multiplying itself continually while
ascending, we will have the whole space of the solid
exactly filled by the multiphed base. And if the ascent
and multiplication of the base should stop at one-half,
one third, &ec. of the altitude, the solid thus effected
would evidently be one-half, one-third, &e. of the whole.
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THEOREM VIIL.

Two parallelopipedons having @ cormmon base and the same
altitude have equal solidities.

Let ac be the base common t0 o BLUE r
the parallelopipedons bo and by,
and let the upper parallel bases
no, tr be equidistant from bd; that
is, let both of them lie on the
same plane; and let us suppose, @ B
also, on the same plane the faces
bm, bt, and, consequently, in another common plane, the
faces co, ¢q. :

Thus, we have two triangular prisms algdom and bsrpen
equal to each other, because the face ao of the one is
equal to the face bp of the other, and the face ag of
the first is equal to the face br of the second. Now,
placing bp on ao so as to have be coinciding with ad and
am with bn, the two faces will exactly coincide with each
other; and, since the angles mat, nbs, odg, per are all equal,
we cannot have the face cn of one prism coinciding with
the face dm of the other without the face cs coinciding
with df, and, consequently, the edge sr with fg; hence,
also, pr with og and 7s with mt; that is, the two prisms
may be made to coincide exactly; hence, their solidities
are equal. Now, if from the whole solid morsba we take
the prism afo, there will remain the parallelopipedon ags;
and if from the same solid we take the prism bps, there
will remain the parallelopipedon bo. But the two trian-
gular prisms taken from the common solid are equal in
solidity ; hence, the remainders also must be equal, and
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the two parallelopipedons ar, ap have the same solidity, or
are equivalent.
In the preceding
pomouoe. . demonstration we
rem extended ©© Jyqve gupposed the
faces bm, bt to be
on one common plane, and,
consequently, their opposite
faces co, cg also. But let the
two parallelopipedons have the common base ae, and the
upper parallel bases on the same plane, but the remaining
faces on different planes: the two parallelopipedons will
be equivalent also in this case; for, produce #o, np and
st, gr so as to form the parallelogram P on the common
plane of the upper bases. Now, P is equal to the bases;
and, finishing the parallelopipedon  bdfeql, the faces
aq, ao will be on the same plane determined by g, ma,
and the faces, bl, bp on the same plane determined by I,
nb: hence, the parallelopipedon bo is equivalent to by.
Again, the faces fb, th are both on the plane determined
by fs, sb, and the opposite faces on the plane determined
by ¢r, re; hence, also, the parallelopipedon gb is equie
valent to bg. Therefore, the two parallelopipedons gb
and ob are equivalent,—that is, have the same solidity.

THEOREM VIIIL

The solidity of any parallelopipedon is given by the pro-
duct of the numerical values of the base and altitude b
K=1

It is plain, from the preceding demonstration, that
any parallelopipedon MN is equivalent to another
parallelopipedon MA having the same base and the
same altitude as MN. Suppose now the edges of the
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parallelopipedon  MA  to be

perpendicular to the base. If A N
the base is a rectangle, then

MA is a right-angled paral- i
lelopipedon whose solidity is /

given by the product of the 0 ST

numerical values of the base
and altitude into K=1. Now, the base and altitude
and the solidity of MA are equal to the base and alti-
tude and the solidity of MN; hence, to have, in our
supposition, the solidity of MN, it is enough to mul-
tiply K=1 by the numerical values of its own base and
altitude.

But if the base common to both parallelopipedons
is not a rectangle, but any parallelo-
gram  abde, produce, then, ab, and p b1
from ¢ and d draw ce, df perpendicular I B
to af, and on the rectangular base cefd
finish the right-angled parallelopipedon |
ceild. Now, the two parallelopipedons A 2
edbgmh, cdfiml are equivalent; because, ¢ a
if we take their common face mndc as
base, they have the same base and equal altitude. But
the solidity of the right-angled parallelopipedon cmild is
given by the product of the numerical values of ece, cd,
em into K=1; hence, the solidity also of dehga is

expressed by

-

ed = ce * cm.

But ¢d + ce gives the numerical value of the base abde;
hence, whenever the edges are perpendicular to the bases,
the solidity of the parallelopipedon is given by the pro-
duct of the numerical values of the base and altitude into
K =1, whether the parallel bases of the parallelopipe-

don be rectangular or not.
1L%
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THEOREM IX.

The solidity of a triangular prism having parallel bases is
given by the product of the numerical values of the bas
and altitude into K = 1.

Let ABCDEF be any triangular prism. ...
Draw on the planes of the parallel bases F4vs
AFE, BCD, EM, FM parallel to AF, AR, *
and DN, CN parallel to BC, BD, and
finish the parallelopipedon BMNA having
the same altitude as the prism and the
bases equal to twice those of the prism.

Now, if the edges of the given prism are
perpendicular to the bases, then the solidity
of the prism is manifestly one-half that of
the parallelopipedon, becanse the other prism DFMX
may be made to coincide with the given DFAB. TIn
fact, the base DON placed on DBC may be made to
coincide exactly with it, and, consequently, the perpendi-
cular and equal edges with the corresponding edges and
the prism with the prism.

But, if the prism DFAB is not a right prism, draw
from the extremities D and E of the edge ED the planes
Eafm, Dben perpendicular to the edges, which, produced,
form the right prism Dfab and the parallelopidon mabn=
2 Dfab. Observe now that the solids EaAFMmf,
DIBCNne are equal to each other; because, first, the
parallelogram am placed on br may be made coincident
with it, the point D with E and « with b, f with ¢ and n
with 7. But, since aA, fF, perpendicular to the plane am,
are respectively equal to bB and ¢C, perpendicular to b,
am cannot coincide with én without tiie face aF coin-

i
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ciding with 6C and Acll with 6BD. In like manner,
since M, perpendicular to am, is equal to Nz, perpendi-
cular to bn, when am coincides with bn, the faces JM
and MmE must coincide with ¢N and NuD, and, conse-
quently, the solid AFMEafm with BCNDben. Hence,
the two polyedrons are equal ; hence, also, if we add to
the solid benDEAFM either of the two equal polyedrons,
the result will be the same. But when we add the first,
the resulting solid is the parallelopipedon bmna, and
when we add the second, the resulting solid is the paral-
lelopipedon BMNA ; hence, the two parallelopipedons
are equivalent; that is,

BMN A = bmna,
and, since bmna = 2 Dfab,
BMNA = 2Dfab.

Now, the polyedron aFmE cannot coincide with its equal
pCnD without the pyramid FEAfa coinciding with
ODBeb; hence, the two pyramids are equal. Andif we
add to the solid beDEATF either of them, we will have
the same result in solidity. But, by adding the first
pyramid, we have the right prism Dfab; and, by adding
the second, we have the given prism DFAB;

hence, DFAB =Dfab;
and, consequently,

9 DFAB =2 Dfab.
But 2 Dfab=BMNA ;
hence, 2 DFAB =BMNA, >
and, finally, DFAB =1BMNA.

Tence, the solidity of the triangular prism is one-hal’
that of the corresponding parallelopipedon in all cases
But the solidity of the parallelopipedon is given by the
product of the numerical values of the base and altitude
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into K =1; hence, the solidity of the prism is expressed
by one-half this same product; or, since the base of the
triangular prism is one-half that of the parallelopipedon,
and the altitude is the same for both, the solidity of any
triangular prism having parallel bases is given by the
product of the numerical values of its own base and alti-
tude into K=1.

Sy Let, now, the pa-

The solidity of pallel bases of the

any prism V-

ing parallel bases 1
ing parallel bases  pYISI be any two

product_of the polyeons ABCDE,

numerical values
of tho base and ghede. Draw through

altitude into K

e the edge Az and the
opposite edges Dd, Ce the planes
Da, Ca: the polygonal prism
will be thus divided into trian-
gular prisms having parallel bases and a common alti
tude. Call s, &, s the solidities of these prisms, b, V', 1"
the numerical values of their corresponding bases, and
o the numerical value of their common altitude. Repre-
senting, also, by 8 the solidity of the polygonal prism,
and by B the numerical value of its base, we will have

S=s+s +

But s=b-a, s=b-a s"=b""a;
hence, B=(b+V+b")a
But b+ b +b"=B;
b hence‘ 8=B-q,
or, 8S=B-a'K.

The solidity, namely, of any prism having parallel bases
is given by the product of the numerical velues of the
base and altitude into K=1.
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THEOREM X.

Two triangular pyramids having equal altitudes and the areas
of the bases also equal are equivalent in solidity.

Let P be the
common plane of
the bases of two
triangular pyra-
mids having the
same altitude and
the areas of the
bases ABC, A’B/C’ equal.

Conceive another plane, first in coincidence with P,
and then brought up to the summit of the pyramids,
always parallel to P. Let P’ represent any of the posi-
tions of the movable plane, and mno, m'n'o’ the sections
of the pyramids made by it. Observe, now, that the
spaces described by the parts of the movable plane con-
tained within the faces of the pyramids, from the bases
to the vertices, do not differ from the spaces filled by the
pyramids themselves. Secondly, the spaces deseribed by
plane areas constantly equal to one another, and equally
moved, are also equal to one another.

Let now DH be the common altitude of the pyramids
DABC, D’A’B/C’, and DA the common altitude of the
pyramids Dmno, D'm/n’o’. Ji oin H with C and A, and %
with o and m: the siinilar triangles AHC, mho give

mo : AC :: ho : HC.
But ho : HC :: kD : HD;
hence, mo : AC :: kD : HD,
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—2 2

and mo : AQ :: kD : HD.

Now, the triangles ABC, mno also are gimilar to each
other; hence, their areas are as the squares of the homo-
logous sides. Representing, therefore, the areas by the
triangles themselves, we will have

A.’BC:mna::AC:W;
—_—

that is, ABC : mmo :: HD : kD

In the same manner, from the base and the section of the
other pyramid we have

A'BIC ; m'n'o’ : : HD : Xﬁg;
hence, ABC : mno :: A’B/C': m'n'd.
But ABC=A’B'C’;

hence, also, mno = m'n'o’.

Now, mno, m'n’o’ represent the areas of any two sections
of the pyramids effected by the movable plane; there-
fore the areas of these sections are constantly equal, and,
consequently, the spaces described by them from the
bases to the vertices are likewise equal. But these spaces
are the same as those occupied by the pyramids; hence,
the two pyramids have equal solidities.
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THEOREM XI.

The solidity of any triangular pyramid is expressed by one-
third of the product of the numerical values of the base and
altitude into K=1,

Let ABC be the base and V the
vertex of any triangular pyramid.
From B and C draw BM, CN paral-
lel and equal to the edge AV, and
finish the triangular prism AMN.
Join then C with M; the parallelo-
gram NCBM will thus be divided
mto two equal triangles, and the plane of the triangle
VMO bisects the solid VBOMNV; for the sections
VMCB, VMCON are two pyramids, having the bases
CMB, CMN equal and a common altitude.

Take now VMN for the base of the pyramid VMCN,
and, consequently, C for the vertex: we have a pyramid
having a base equal to the base of the given pyramid,
and for altitude the distance between the parallel
planes VMN, ABC, which is the same as the altitude
of the given pyramid; hence, the two pyramids ABCV,
MNVC are equivalent. But MNVC is equivalent to
CMBYV; hence, the amount in solidity of the three pyra-
mids is three times the solidity of the given pyramid.
But the three pyramids form the prism ; hence, a trian-
gular prism having the same base and altitude of a given
pyramid has a solidity three times that of the pyramid.
But the solidity of the prism is the product of the
numerical values of the base and altitude into K=1;
hence, the solidity of any triangular pyramid is one-
third of the same product.
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ey But let the. base AB_O
e solidity of . o of the given pyl‘amld.
E‘h‘:.'é',,f";},,m be any polygon. ll)ra.w
auet of the m. from any of the angles—

thelase snd witl- for instance, B—the dia-

gonals BF, BE, &c....»
the polygonal pyramid is thus cut into
a number of triangular pyramids, all
having the same altitude a. Call b,
b, &e. . . . the different bases of the triangular pyramids,
and s, &, &e. ... the corresponding solidities, which,

taken together, give the solidity S of the given pyramid;

that is, BR=s+8+8"4+ ...
But s=}a-b-XK g=3a- b K, &e ..
hence, S=3(b+b+b"+....) a+ K.

Now, the sum b+b/+.... is the base 8 of the given
pyramid. Hence,

S=3p-a"K;
ar, s:iﬂ'a‘,_

o Let AD, ad be the pa-
Coneerning the
sonaityofa trun- rallel bases of a truncated
cated pyramid. "
pyramid. Finish the pyra-
mid, and let V be the vertex com-
mon to Vad and VAD: let also VH
be the altitude of the whole pyramid
and Vi that of the upper pyramid.
Qall, besides B and b, the bases AD,
ad, and a the altitude Hh of the trun-

cated pyramid. From the triangles VHA, Vha we have
VH : Vh :: AH : ah;
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and, from the triangles AHE, ale, .

AH : Ak :: AE : ae;
hence, VH : Vi :: AR : de;

and, consequently,
VH—Vh: Vh :: AE —ae : ae;
a:Vh:: AE—ae : ae;

. a " ae
from which Vh= m.
Now, since  * a=VH—Vh,

and, consequently, VH=a+ Vh:

we will have, also,
VH=a+ 1—,53%
=a(l+ sp—a)
[ iges AE
AE—ae

Call now S the solidity of the pyramid VAD, and s that
of Vad, and call ¢ the solidity of the truncated pyramid:

we will have =8 —3s.
- AE
Now, 8=3B-VH=3}B 5p——,
@-ae
and s=3b"Vh=10 A =
h _arB-AE—b-ae
ence, g iy ]
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THEOREM XIL

The solidities of pyramids and prisms are as the bases when
the altitudes are equal, and are as the altitudes when the
bases are equal. The same solidities are equal when the
bases are reciprocally as the altitudes.

Let us represent by P and P’ the solidities of two
prisms, and by p and p’ the solidities of two, pyramids,
and let A, B represent the altitnde and base of P, and
p and A’, B’ the altitude and base of P’ and p': we

will have
P=A"'B, P'=A’'"B,

p=3A'B, p/=3A' "B,

Hence, P:P:: A:-B: A'B,
p: 2 AB: AEB;

and, consequently, making A = A’,

P:P::B: B,
psp 2B B3

and, making B = B/,

o BT TR
per pv A AL

But, if the bases are reciprocally as the altitudes ; that i,

if Az Az BB,
since then A+Be= Al w8,
we will have also P=P,

and p=7p,
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ROUND BODIES.

PRELIMINARIES.

Tag round bodies or solids of revolution belong to the
class of bodies terminated by curve surfaces. They are
called solids of revolution, because they are conceived
as produced by the revolution of one line about another.
Thus, for example, let @ be any point
out of the circular plane bd, and let
ac be the straight line which joins a
with the centre of the circle: conceive
now another straight line ab, having
one of its extremities constantly at a, d
and describing, with another extre- o
mity, the circle bd: the surface traced /
by this line moved around ac is a curve surface; for
each point of ab changes continually its direction. The
solid terminated by the circular plane bd and the surface
generated by ab, is called a cone; the point a, the vertex,
and the eirenlar plane bd the base, of the cone. The per-
pendicular let fall from the vertex to the plane of the
base is the alfitude of the cone ; and when the perpendi
cular falls on the centre of the base the cone is called
a right cone; otherwise, obligue. The straight line which
joins the vertex with the centre of the base is, in all
cases, called the axis of the cone.

@

196
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If the straight line ab, keeping con-
stantly one of its extremities b on the circle
bd, is moved around the same circle, re-
maining always parallel to another straight
line cq passing through the centre, it will
trace a curve surface in space, and the
solid terminated by it is called a cylinder.
The line ¢g, passing through the centre and 3
parallel to the generating line, is called the
axis of the cylinder; the circle bd and another circle am,
or, more generally, two plane surfaces terminating the
cylinder, are called bases. When the axis is vertical to
the base, the cylinder is a right cylinder; otherwise, it is
oblique.

‘We may here observe that the cone and the cylinder
bear analogy to the pyramid and the prism.

The last round body considered in elementary geo-
metry is the sphere,—a solid terminated by a surface
which a semicircle turned around its diameter would
trace in space. All the points of the spherical surface
are evidently equally distant from the centre of the gene-
rating semicircle, which is, consequently, also the centre
of the sphere.

THEOREM I.

The cone may be eonsidered as a pyramid whose base is a
reqular polygon of an infinite number of sides.

Let abed . . . be any regular polygon circumsecribed
about the base of the cone VMN. A pyramid having
abed . . . for base and V for vertex will be also cir
cumseribed about the cone. Now, by increasing indefi
nitely the number of the sides of the polygon, and,
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consequently, the number of the edges
of the pyramid, since the more the
number of the sides of the polygon
increase the more the polygon ap-
proaches to coincidence with the cir-
cle, the pyramid also must approach
to the inscribed cone. The cone,
therefore, may be considered as the
limit of a pyramid having the same
vertex as the cone, and for base a cir- °
cumscribed regular polygon (or also
inseribed) about the base of the cone, with a continually-
inereasing number of sides. Or the cone may be con-
gidered as a pyramid whose base is a regular polygon
having an infinite number of sides.

THEOREM IL

The section of the cone made by a plane parallel to the base is
circular.

Let MN be the circular base of any
cone MVN, and mn a section of the cone
made by a plane parallel to the base: let,
also, VQN, VQa be any two planes pass-
ing through the axis of the cone. The
intersections QN, Qa of the base made
by these two planes are equal to each
other, because both are radii of the same
circle; hence, the intersections gm, g¢b,
also, of 7n, made by the same two planes, are equal to
each other. In fact, from the similar triangles VQN,
Vgn, and VQa, V¢b, we have

17%
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QN : gn :: VQ : Vy,
Qa : gb:: VQ : Vg;

hence, QN : gn :: Qa : gb.
But QN =Qa;
hence, also, gn=qb.

Now, the same equality would be found by changing at
pleasure the position of one of the two planes,—for ex-
ample, VQu; hence, mbn is a circle having for its centre
¢ the point of the plane mn met by the axis.

THEOREM IIIL.

The surface of a right cone is given by the product of the semi-
periphery of the base into the side of the cone.

Since all the angles of a regular polygon, either in-
scribed in the circle or circumseribed about it, are equi-
distant from the centre, the pyramid inscribed in the
right cone or circumscribed about it, having a regular
polygon for base, must have all its edges equal. For, in
the supposition of the right cone, the axis
VQ is perpendicular to the base; hence,
supposing m and n to be any two of the
vertices of the circumseribed polygon,
and, consequently, Vm, Vn, two of the
edges of the circumscribed pyramid, we
will have the right-angled triangles VQin,
VQnr equal to each other, and, conse-
quently, Vim=Vn. It is proved, in like manner, that any
two edges of the inseribed pyramid are equal to each
other; hence, the pyramid either inscribed or circum
scribed about the cone, and having a regular polygon for
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base, has all its edges equal. But the surface of any such
regular pyramid, not taking the base into account, is
given (B. VL TH. 2) by the product of one-half the peri-
meter of the base into the perpendicular drawn from the
vertex to any side of the base; hence, in the case of the
circumseribed pyramid, and supposing m, n to be two
contiguous vertices of the base, and, consequently, mn
one of its sides, the vertical Vo, drawn to it from the
vertex of the pyramid, multiplied by half the perimeter
of the base, gives the surface of the circumseribed pyra-
mid. Now, the point o of mn, met by the perpendicular
Vo, is the point of contact of the side mn with the cir-
cular base of the cone. Because, since mQn is an isos-
celes triangle, having Qn=Qm, the perpendicular drawn
from the centre Q to the tangent mn will bisect it. But
the perpendicular Qo falls on the point of contact: heres
the middle point o of mn is the point of conte

the triangle nVm, also, is an isosceles triangle, -
perpendicular drawn from V, the vertex formed DY wi
equal sides, to the opposite side mn, must bisect it, and,
consequently, fall on the point of contact. Vo, therefore,
having common with the cone the vertex and one of the
points of the base, coincides with the generating line in
one of its positions, and coincides, therefore, with the
cone itself. Call, now, ¢ the generating line and P the
perimeter of the base of the circumscribed pyramid: we
will have for its surface

-

S=31P-4,

independently of the number of the sides of the base.
But, by increasing beyond all assignable limits the num-
ber of the sides of the base, it becomes coincident with
the base of the cone, and the pyramid with the cone
itself. Hence, calling r the radius Qo of the base of the
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cone, and, consequently, 27z its periphery, and calling ¢
the surface of the cone without the base, we will have

o=32rn"i;
that is, o=rx-t.

WO 5. The surface of the right cone may be ex.
Another useful
expressian of the pressed, also, as follows:—
cone. Let PQ_ be the radius r of
the base, and VQ the generating side £
Divide VQ equally in m, and from m draw

mn perpendicular to VQ: we will have

VQ, or t=2Vm

Hence, from the preceding equation,

a=r-n:-2Vm;
or, since r=PQ,
o=27"-PQ:Vm.

Now, the two triangles Vmn, VQP, right-angled the one
in m, the other in P, and having, besides, the angle V
common to both, are similar.

Hence, Vs VP PG,
and 3 Vm+PQ=mn-VP,
and, consequently,

c=2x mn-VP.
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Sewonrvym ILL -
Soiourx I~ Let now the right cone .
tracated vight VMN Dbe cut by a plane b

mn parallel to the base.
Let r be the radius of mn, and R the
radius of MN: we will have (8. vL
. 2, scH.) for the surface of the
truncated cone maNM, excluding the
bases, (calling & the surface of the
truncated cone, and u the difference
Mm between VM and Vm,)

d=R+r) 7 u

Observe, in fact, that in the same manner in which
VM represents the perpendicular to any of the sides of
the base of the circumscribed pyramid, so Mm represents
the common perpendicular to any two corresponding
sides of the bases of the truncated pyramid, whatever be
the number of the sides of the same bases. But the
product of Mm into the semiperimeters of the bases gives
the surface of the trunecated pyramid; and, when the
number of the sides of the bases is increased beyond all
limits, the perimeters become the peripheries of the two
circles, and the pyramid coincides with the truncated
cone. Hence follows the preceding expression of the
surface of the right truncated cone.

Baogrme FIL. Let now MN be the radius M w
e Tl Ay
right truncated ’ ™
e dius R of the other base, and et by
MP the generating side u: we will have ¢ AP RORY

d=(PQ+ MN)=z-MP.
Divide MP equally in /, and from ! draw lg perpendicular
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to NQo, and lo perpendicular to MP; and, also, If per-
pendicular to PQ,—that is, parallel to No: we will have

MP = 21P;
hence, 3=2x(PQ+ MN)IP.

Observe that, drawing Mr parallel to No, the triangles
Mir, IPf are equal to each other; hence, Ir=Pf.

Again, MN=lg—1, PQ=lg+Pf=lg+1r;

hence, PQ+MN=21/y,
and d=2x-2lg: P
=4z-lg'IP.

Now, the triangles IfP, lgo are similar, because the sides
of the one are perpendicular to the sides of the other;

hence, P el 2y,
and P-lg=1f"*lo;
and, therefore, d=4xlflo.
But If=9Q=31NQ;
hence, 8=2zNQ:lo.
THEOREM IV.

The solidity of the eone is given by one-third of the product
of the base into the altitude.

Let, again, R be the radius of the base of any cone,
and let A be the altitude common to the cone and to a
pyramid having for base any regular polygon B circum-
seribed about the circular base of the cone.
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Now, the solidity of the pyramid is given by
$1B-A,

whatever be the number of the gides of the base. Baut,
by increasing the number of the sides of B beyond all
limits, B is changed into the circle, having R for radius;
and the pyramid into the cone; and, gince the area of
the circle whose radius is R is expressed byzR? thus
the solidity of any cone of circular base is given by

y R - A.
Somoru I. T.et QP be the radius R of v

Another useful

S the base of any right cone.

right cone. From m, the middle point of m,
the generating side VQ, draw mo perpen-
dicular to it, o being a point of the axis ©

VP produced. Join, also, Q with o, and

let Qo be the generating side of another

right cone: we will have, for the value of the solid 8
generated by VQo about Vo,

§ =3aR** PV + §aR?* Po
=}aR?** Vo
=3}xQP - QP+ Vo.
Now, from the similar triangles Vmo, VPQ we have
Vo : mo :: VQ : QP;
hence, QP Vo=mo"VQ,

and, consequently,
S=37 QP mo-VQ.

o

But (rH. 3, scH. 1) 7 QP-2Vm, or z:QP*VQ, is the
surface o of the cone generated by VQ;

hence, S =1e"mo.
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Bemovrou T1.
ot Let abDC be any truncated

truncatad ccne CONE, and V the vertex of the A
alid assiand OB finished ; let, also, r be /1R
the radius of the upper base, T\
and R the radius of the base CD: the
segment Ak of the altitude Vi affords the ¢ D
distance between the bases, which we
will call 4.
Now, the solidity of the truncated cone abDC is equal
to the solidity of the whole cone VCD minus that of

Vab. But the solidity of VCD, or

VOD =} =R? Vi,
and Vab =} Ar Vh;
hence, abDC =3} = (R*-Vk—r*-Vh)

Observe, that drawing the axis VoQ, and joining o, the
centre of ab, with &, and Q, the centre of OD, with k, we
have two similar triangles Voh, VQk; from which

Vk:Vh::VQ : Vo;
and, from the similar triangles vQD, Vob,
YQ:iVoz:: Bir;
hence, Vk:Vhk:: R:er;
and, consequently, Vh =LRVI:.
From Vk:Vh::R:vr
wehavealso VA—Vh: Vk:: R—r: R;

R (Vk—Vh) _ Rhk
and, therefore, Vi =  rorasd

and V}l:—%‘ g%.=rr_'; hk.
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The expression, therefore, of the solidity of the truncated
cone may be represented also as follows:

R r

abDC = [ R =tk — r'g— | =
prohe [ .

smoune 1. Liet Mg be the radius of
ﬁ%ﬁ?’% the lower base and Lp the
Y eneated adius of the upper base of
7 a right cone, and let pg be
the altitude of the truncated cone or
the distance between the two bases, and
LM the generating side. Bisect LM in
m, and let mN be drawn perpendicu-
larly to LM. Produce ML, gp till they
meet together in f, and join N with M
and with L: the solid generated by
the surface fMN about fN is equal ¥ =
to the solid generated by the surface

fLN plus that generated by LMN. Call 8 the solid
generated by fLN, 8" that generated by fMN, and S

the solid generated by LMN : we will have

Sir= 8’4+ 8",
and = g— 87,

But one of the manners in which the solidities 8’7 and &’
may be expressed is (scH. 1) by

§'=3xz Mg - IN, §'=3z+Lp fN;

hence, 8=} [7:)7[? + N —-n'ﬁ_i".g ' fN]-
18
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Now, from the similar triangles f Mg, fmN, we have
fM: Mg:: fN : mN;
hence, FM -mN=Mg * fN,
and, from the similar triangles fLp, fmN,
FL : Lp:z N : mN;
hence, fL-mN=Lp* fN;
and, consequently,
My - fN==Mg - fM - mX,
zlp * fN=zLp - fL - mN.

But (tu. 3) # Mg+ fM is the surface of the cone gene-
rated by fMg about fy, and zLp * fL is the surface of
the cone generated by fLp about fp. Calling o” the first
and o’ the last of these two surfaces, we will have

aMg * fN=0o" - mN,
aLp + fN=d -mN;
and, therefore, 8=} (¢""— o’) mN.

But the surface generated by LM alone is the difference
o — ¢’ ; hence, calling &' the surface generated by LM
about pg, we will have

S =3 o' - mN.
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THEOREM V.

The cylinder is the limit of an inseribed or circumseribed
prism having the sides of the bases, indefinitely increasing
in number.

Let abed be any regular poly-
gon circumscribed about the base
LG of tne cylinder LGHEK.
From the point of contact f of
any side ed, draw fg to the plane
of the upper base and parallel to
the axis of the ecylinder: it must
necessarily coincide with one of
the positions of the generating
line, and, consequently, with the
cylinder itself. Draw also from ¢ and d, em, dn parallel
to fg, and, consequently, also, to the axis. Join m with n:
we will have mn = ed, and parallel to it, and touching the
upper base in ¢; for the radii Qg, M f are also parallel to
each other; hence, the angle Qgn is equal to Mfd. But
M fd is a right angle; hence also Qqn; and, consequently,
mn is a tangent of the circle KH in g. In like manner,
if from e we draw er to the plane of the upper base and
parallel to the axis, and we join n with », ar will be
another tangent to the circle equal and parallel to de, &e.
That is, if from all the angles of the circumseribed poly-
gon ede . ... to the plane of the upper base we draw
straight lines parallel to the axis MQ and join their
extremities, the upper base, also, of the cylinder will be
circumscribed by a polygon equal to ede . .. ., and the
resulting prism will be circumseribed about the cylinder.
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Now, by increasing indefinitely the number of the
sides of the circumseribed polygons, they approach more
and more to the peripheries, and the edges of the prism
to the surface of the eylinder. Hence, the cylinder is the
limit of a circumscribed prism having the sides of the
base increasing indefinitely in number. The same should
be said with regard to the inscribed prism,—a prism,
namely, having for bases regular polygons inscribed in
the bases of the cylinder.

THEOREM VI.

The section of a eylinder made by a plane parallel to the base
is a circle equal to that of the base.

Let the cylinder AB be cut by the
plane P parallel to the base BQ, and
let ERL be the section. From any
point G of the base draw GIF parallel
to the axis MN, and let R be the point
in which GF meets the section ERL;
draw also the radinus NG, and join the
point O of the axis, met by P, with R:
we will have OR and NG parallel to
each other and between two other parallels ON, RG.
Hence, OR is equal to the radius of the base. But R is
any point of the section; hence, the distance of any
point of the section from O is equal to the radius
of the base; hence, the section itself is a circle equal
to that of the base, and having its centre in the point
O of the axis met by the intersecting plane.
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THEOREM VII.

The surface of a right cylinder, not including the parallel
bases, is given by the product of the periphery of the base
into the axis of the cylinder.

Let P represent the perimeter of a regular polygon
of any number of sides circumseribed about the base
of the eylinder, and let 8 be the surface of the corre-
sponding prism circumscribed about the cylinder; let
also ! represent the length of the axis of the cylinder,
and, consequently, also, of any of the edges of the prism:
we will have

8=P-L

But, increasing indefinitely and beyond all assignable
limits the number of the sides of the base, P becomes
the periphery of the base of the cylinder and 8 the sur-
face of the cilinder, excluding the bases ; hence, if r is the
radius of the base, and, consequently, 2rx the periphery,
calling o the surface of the cylinder, we will have

o=2rn- 1

THEOREM VIIL

The solidity of a cylinder having parallel bases i given by the
product of the base into the altitude.

The solidity of the prism having parallel bases is given
by the produet of the base into the altitude, (B. vI. TH. 9,
coR.;) hence, representing by s the golidity of the prism

circumseribed about the eylinder having parallel bases,
0 18%
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by a the value of the area of the regular base of the
prism, and by A the altitude common to the prism and
to the cylinder, we have

s=a-A,

whatever be the number of the sides of the base. Bat,
by increasing indefinitely the number of these sides, the
perimeter of the prismatic base becomes the circular base
of the cylinder, and the prism coincides with the cylinder
itself; that is, 7 being the radius of the circular base, a
will become 7%z, and, consequently, if S represents the
golidity of the cylinder,

S=rz'A.

From this and from the preceding theorems we infer the
following corollaries :—

R s The first of the two formulas,

The solidity of
the cone is one- 3=i,,r-1-!-_ﬁ_’ 31'___“.7-2.A,

third that of the
atinder having

the mme % pepresents (TH. 4) the solidity of the cone
S—— having r for the radius of the base and A for
the altitude. The second formula represents the solidity
of the cylinder having also r for the radius of the base
and A for altitude. But s=13s'; hence, the solidity of
the cone is one-third that of the cylinder having the
same base and the same altitude.
cmuuanrr. L€t A, A be the different altitudes of two
The cones and CONES OF of two cylinders having equal bases.
ttade are 85 For the solidities s, s’ of the two cones, we
s will have
‘bases are as the
altitudes. . s-=im'"A.,8’=-iﬁr"A',
and for the solidities 8, 8’ of the two cylinders,

S=m A, 8'=m"" A,
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and, consequently, in both cases,

Connubb v By ot &
¥=AP §F AT
that is, &'s.aNg v s v RS
Bis B s R VAL
Let, now, R, R’ be the different radii of the bases of
two cones or of two cylinders having the same altitude
A: we will have, for the solidities of the cones,
s=3}aR*- A, s'=31zR"%: A,
and, for those of the cylinders, m
S=aR*+ A, 8'=7R”+A;

hence, in both cases,

8 7zR* S xR2 ¥
rd 23 aR” & =zRA’
that is, g &' gRV xRS,

8B zhr : xR
or, representing simply by B, B’ the bases #R* nR”,

ge sl s By B,
B:8::8B: 8.

conay . Representing still by B and B’ the bases,

Con in-
ey o the formulas

lidities have thel

hmmi;;mll; 3=§B'A,Sr=‘§~B"A"
as their altitudes,
and vice versd.

represent the solidities of two cones having
different bases and different altitudes ; and the formulas

S=B-A,§=B'"A’
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represent the solidities of two eylinders having likewise
different bases and different altitudes. Let, now, s be
equal to &', and S to 8/, in both cases: we will have

B-A=DB"-A,
and, consequently,
B:B' : A’': A,

The bases, namely, are reciprocally as the altitudes.

Vice vers, if the bases of the two cones or eylinders
are reciprocally as the altitudes, gince then B:A=
B’ - A/, their solidities also must be equal.

comonanrTy,  Similar cones
STIE LR R
cubes of the di-
ameters of thelr which have the
axes equally in- “\“A’
clined to the bases and pro- 3 b,
portional to the diameters of

the same bases. Thus, for

example, let ab, AB be the diameters of two different
bases, and mn, MN the axes of two cones or cylinders.
Draw from n and from N the perpendiculars no, NO to
the planes of the bases: we will have

no=A, NO=A’.

Joining, then, m with o, and M with O, since the axes are
equally inclined to the bases,

nmo = NMO,
and the triangles nom, NOM are similar to each other;

hence, mn: MN :: A : A’
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But in similar cones or eylinders

mn : MN :: ab : AB,

or, mn : MN :: 2R : 2R/;

hence, Ad Afs: 2R 2R

or, A d A pe ol 2 B
A B

and =T

But from the equations
s=}nR?+ A, s/=1aR”- A/,

which give the solidities of any two cones, and from the
equations
S=7R*+ A, 8'=xR"”- A/,

which give the solidities of any two cylinders: we have
s Re-A R A

“RAATTRE AV
B Re- A By A
B=RE-AI"RE" A7}
hence, in the supposition of two similar cones or cylin-
ders, since ﬁ —%, we will have
s R? 8 R
=R® and ST RE
that is, TR R

S8:8:: R: RA
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THEOREM IX.

The sphere is the limit of a solid generated by the semi-perimeler
of a polygon either circumseribed or inseribed in the circle
and revolved about the diameter, and having the number of the
sides constantly increasing.

_In the same manner in which the periphery of a circle
is the limit of an inscribed or circumseribed regular poly-
gon the sides of which are constantly increasing in
number, thus the solid generated by the rotation of
the semi-periphery about the diameter is the limit of the
solid generated by the semi-perimeter of the same poly-
gon ; hence, the values of the golidity and surface of the
sphere will be easily obtained, provided we may deter-
mine the solidity and surface of the round body gene-
rated by the semi-perimeter of the inscribed or circum-
seribed polygon for any number of sides, as we will see
better in some of the remaining theorems.

TBEOBE-M X.
The section of the sphere made by a plane is cireular.

If the plane
cutting the sphere
passes through its
centre, our propo-
sition is evident,
becanse all the
points of the
sphere are equi-
distant from the
centre.
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But let the section mn made by the plane P pass out
of the centre: the perpendicular let fall from the centre
on P must fall somewhere in o within the section mn.
Else, let it fall out of the section; for instance, in o,
Draw, then, from o/ any straight line ¢/p through the sec-
tion mn: the plane determined by o’p, o’C passing
through the centre, forms with the sphere a circular sec-
tion fgp, of which C is the centre and fp the chord. But
a straight line drawn from the centre to the middle point
of the chord is perpendicular to it; hence, if Co’ is per-
pendicular to the plane P, and, consequently, to o’p, we
may draw two perpendiculars to the same straight line
from the same point C; which is impossible. Hence, the
perpendicular line drawn from the centre of the sphere
to the interseeting plane must necessarily fall within the
section.

Let now Co be the perpendicular, and draw from o, om,
op; join C with m and with p. The two right-angled tri-
angles Com, Cop, besides the ecommon side Co, have the
hypothenuse Cin of the one equal to the hypothenuse Cp
of the other, because m and p, two points of the spherical
surface, are equidistant from the centre. Hence, the
other two sides om, op of the triangles are also equal to
each other. Dut, in the same manner in which we find
om=o0p, we may have om equal to another line drawn
from o to any other point of the section mpnf; hence, all
the points of the section are equidistant from o; that is,
mpnf is a circle having its centre in o, the point of the
plane P met by the perpendicular drawn to it from the
centre of the sphere.
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THEOREM XI.

The greater the distance of the plane intersecting the sphere
from the centre the smaller is the diameler of the section
effected by it.

Let MN be the section
of the sphere made by a
plane passing through the
centre.

We may here remark
that, since the radius of this
circular section can only be
that of the sphere, all the
circles the planes of which
pass through the centre are
equal, and are called great
circles, because the radii of
all the other circles (small circles) made by the sections
of planes passing out of the centre are less than the
radins of the sphere, and the more the centre of the
small circle is distant from the centre of the sphere the
smaller is its diameter.

In faect, let mn be the section of the sphere made by a
plane parallel to MN. Draw in the circle mn any dia-
meter pg, and let Fpigll be a great circle of the sphere
having its plane in coincidence with pg, which is at once
the diameter of mn and the chord of the arc pilg, less
than FH, the diameter of F/H and MN. Now, by con-
ceiving the plane of ma approaching to the extremity ¢
of the radius of the sphere perpendicular to it, the sec-
tions or chords p’q’, &c. will be the diameters of the suc-
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cessive circles effected by the movable plane cutting the

sphere. But the greater the distance of the chord from

the centre of the circle the smaller is its length; hence,

the greater the distance of the planes of the small circles

from the centre of the sphere the smaller are their dia-
meters,

:g;:::m Hence, since pg is any diameter, and the

ing through the i i i
NS heoogh the diameter pg becomes one single point when

ndius of the the plane of the section perpendicular to Ct is

sphere, and per- A
adiwlar 016 hrought to the extremity ¢ of the radius,

a tangent
P, applying the same demonstration to any
other diameter, sr, for instance, we see that the movable
plane constantly perpendicular to the radius Cf becomes
a tangent plane when it is brought up to the extremity
of the radius; for any straight line on that plane pass-
ing through ¢ is a tangent to one of the great circles of
the sphere, and, consequently, any other point of it be-
sides  is at a greater distance from the centre of the
gphere than ¢ '
m&::’;ib ‘We may observe here, also, that the inter-
destutersectmo- gection of two planes passing through the
E;f'&_‘mf*db centre of the sphere, must necessarily have
one of its points in the same centre. But
any straight line passing through the centre of the sphere
must coincide with a diameter of the sphere; hence, the
intersection of the planes of any two great circles is a
diameter of the sphere, and a diameter also of the two
circles at the extremities, of which their peripheries
intersect each other; that is, two great circles have their
points of intersection 180° apart from each other.
Bouotiv 1L, Conceive the two parts into which the
(Siuetes Pikhe Wit B iGle antis S MO
rides th Fﬁ'.‘i’ﬂ placed on the same plane as the circle, and

e with both convexities on the same side: the

two surfaces, having all their points equidistant from the
19
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centre, must perfectly coincide with each other: hence,
the plane of any great circle bisects the sphere.

THEOREM XIL
The surface of the sphere is four times that of the greal circle.

Let AO=R be the radius of the
generating semicircle ADM of the
sphere, and, consequently, the radius
of the sphere itself. Draw from O,
OD perpendicular to the diameter
AM, and divide the quadrant AD
into three equal arcs AB, BC, CD:
their corresponding chords will be
three of the twelve sides of a regular
polygon inscribed in the circle.

Conceive now the three sides re-
volved about the radius AO, and
draw from B and C the perpendi-
culars Bb, Ce to AO, and from the
centre O the perpendiculars O/,
Om'?, Om"" to the three sides.

It is plain that the side BA describes a right cone
having Bb for the radius of the base and Ab for altitude.
Now, m’' is the middle point of BA ; hence, calling o’ the
surface generated by BA about AO, we will have (1m. 3,
scH. 1)

& =27 0m' " Ab.

The surface generated by BC is that of a truncated
cone having be for altitude; and, since m/’ is the middle
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point of BC, hence, calling a” the surface generated by
BC, we will have (tH. 3, soH. 3)

a’=2z:0m * be,
and, since Om!" =0m!,
=27 Om’ « be.

So, also, the surface generated by DC is that of a right
cone truncated having Oc¢ for altitude; and, since m™ is
the middle point of the generating side, calling &'/’ the
surface, we will have

a.’H — 2 T O.m!'" . CO-
But Om'’ = O0m'' = Om/;

hence, a'’ =2x-0m' - cO,

Hence, the surface generated by the three sides together,
ot +a’+a, is

27 Om’ (Ab+ be + cO);
or 27-0m’ - AO.

Dividing now each arc AB, BC, CD into two equal parts,
and duplicating the number of the sides of the inscribed
polygon, following the same process, we will find for
the surface of the cone generated by the first side Af
27+ 50+ Af; sO being the perpendicular drawn from the
centre to Af, and Af the altitude of the cone. So, also,
for the surface generated by the next side B, we will
have 27-s0 - fb, &e. The surface, therefore, generated
by the gix sides will be

2x-0s-AO0;

which does not differ from the preceding, except in the
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factor Os being nearer to the length of the radius than the
preceding factor Om’. It is now evident that, duplicating
constantly the number of the sides of the inseribed poly-
gon, the variable factor approaches continually to AO=
R, and becomes the radius itself when the number of
sides surpasses all limits. But, then, the perimeter of the
polygon coincides with the periphery of the circle;

hence, 2z+A0-AO,
or 2z R,

represents the surface generated by the quadrant ABCD
about AO;
hence, also, 4R

gives the value of the surface generated by the semi-
circle ADM. But the surface generated by the semi-
circle turned about the diameter is the surface of the
sphere; hence the surface of the sphere having R for
radius is four times zR%. . Now, zR* is the area or value
of the surface of the generating circle, or of any great
circle of the sphere. The surface, therefore, of the
sphere is four times that of the great circle.

THEOREM XIIL

The solidity of the sphere is given by the cube of its radius
into 4.

Supposing the same inscribed polygon as in the pre-
ceding theorem, and calling g the solid generated by the
triangle BAO revolved about AO, »”’ the solid generated
by BCO, and g’ the solid generated by CDO about the
same AO, we will have (TH. 4, sci. 1 and 3)
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Ff =3a - O'm',
p! = i a’ - Om’,

" — 1 g« ’
pl=3%a om!

and, consequently, the solid generated by the whole sur-
face embracing the three triangles, or g/ + p'/ + /', is
given by

Y(a+ o +a') On.
But, from the preceding theorem,
ad+a’ 4 =27-A0-Om';

hence, the value of the same solid may be expressed
also by

gx-AO-Om'.

Duplicating the number of the sides of the inscribed
polygon, and following the same process, we will obtain
for the value of the corresponding solid

37-A0-0s;

and, duplicating eonstantly the number of the sides of
the regular polygon, the last factor of the preceding ex-
pression approaches continually to the square of the
radius AO = R, and becomes R* when the inscribed poly-
gon coincides with the circle. Hence, the solid gene-
rated by the quadrant ABCD revolved about AO is
given by

gdr-AO-R?;

that is, 3= R
19%
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gl Let ', " be the radii of two spheres:
o nsens s o1 their corresponding surfaces ¢/, ¢” will be
the salldities 18 griven by 47, 4m'”, and the solidities 8/,
respective radil. /7 'by t,ﬂ-ﬂ’ i‘m"n;

" 4”” rl’i
hence, g . ¢
8  gmr'd p'3
& g
that is
o 2 ol

8 : 87 :: 9% : 08



Alane and Spherical Trigonometry,







Alane Trigonometry.

PRELIMINARIES.

L]
bk o plane § 1. Tm'n object ?f plane trigonometry is
the resolution of this general problem:—To
find the three unknown elements of a plane triangle
when the other three are given.

mements ot Sides and angles are the elements of any
i triangle.

N, § 2. T}.:le resolution of the problem is not
B W ks possible in all cases; but, with the exception
auined i all of the cases in which the given elements are

the three angles, or two sides and the angle
opposite to one of them, in all the other cases the pro-
blem is completely resolvable, as we will better see here-
after. In the first of the above-mentioned cases nothing
more may be found than the ratio between the sides,
and in the second the resolution is ambiguous.

tgonometse § 8- In the resolution of ‘the problem we
alfutions. 1 oke use of certain straight lines, called
trigonometrical functions, or also functions of the ares
and of the angles having the same arcs for their measure.

P 295
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 Thelr ymport: Hence the necessity for the student to be-
: come quite familiar with them before proceed-
ing to the resolution of the problem.

Divisiemorthe  § 4 For this reason, and also on aceount of
. the mutual dependence on one another of the
various functions giving birth to a number of formulas
of great use and utility in all the branches of applied
mathematics no less than in the object of trigonometry
itself, we will devote the first article of the present gub-
ject to the exposition and discussion of trigonometrical
fanctions and formulas, and the second to the resolution
of the problem and to some practical applications.

ARTICLE L
TRIGONOMETRICAL FUNCTIONS AND FORMULAS.

Definitions. § 5. Let the diame- E
ters EE’/, NN’ of the ¥ K

circle NEN’E’ be perpendicu-
lar to each other: we will have
the circumference divided by .
them into four ares, each of c
90°. Let K be any point be-
tween the extremities N and E
of one of these arcs: the two
arcs EK and KN are called e

Comploments  COMplements of each other; and generally any
sudsupplements. trwo arcs @ ‘and & whose sum gives 90° are
called complements of each other. But, from

a-+b=90°,
we infer b=90°—aqa:
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hence, the arcs ¢ and 90°—a are complements of each
other.

Now, the ares KN, KE measure the corresponding an-
gles KCN, KCE, which are, accordingly, called comple-
ments of each other; and generally the complement of an
arc signifies the same as the complement of the corre-
sponding angle.

Again: let F' be another point on the semi-periphery
N/EN: the two ares FN, FN’ taken from F to the ex-
tremities of the diameter NN’/ are called supplements of
each other; and more generally any of two ares m and n
whose sum is 180° is supplement of the other. And,
since from

m + n=180°,
we infg n=180° —m;
thus, m and 180°— m are supplements of each other.

Let us observe once more and forever that the same
appellation “of the arcs is applied to the corresponding
angles; and generally the arcs and the angles measured

by them are indiseriminately taken for one another.
§ 6. The ares and their functions are either

Funetions  of oy .

fhe s and positive or negative. Thus, for example, let
s o N be the beginning of computation for the
ares NK, NE, &c., which we will consider as
positive. If, instead of reckoning the ares from N
towards B, we take them from N towards E/, NL, NF/,
&e., these arcs are to be considered as negative with refer-
ence to the upper ares NK, NE, &e., or vice versd. With
regard to the functions, some, as we will presently see,
are referred to the centre of the cirele, and others to the
diameters NN/, EE/,—the first drawn from the point of
commencement of the ares, and the second vertical to the
first. It is enough to observe here that, taking as posi-
tive any segment of the radinus CN from C towards N,

E
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any segment of the radius CN’ from C towards N is
negative ; and, taking as positive the functions referred
to the diameter NN’ and above it, the same functions
below the caid diameter are negative ; and, finally, taking
as positive the functions referred to the diameter EE
and on the side N, the functions referred to the same
diameter and on the side N” are negative.

§7. Let now K be any point taken in the
first quadrant NE. Draw from K, Km per-
pendicular to NN’: this
perpendicular varies evi-
dently with the arc NK;
it is, consequently, a
funetion (see Treat. on
Alg., Introd. Art.,, §16)
of this are, and itis called *
the sine of the are KN.
Now, the perpendicular
Km, as well as any
other drawn from the T
different points of the ¥
gemicircle NEN/, is ne-

* cessarily above the diameter NN’. Hence, the sines of the
arcs from zero to 180° are all positive; but, if we take
the arcs greater than 180°, since all the points of NEN
from 180° to 860° are below the diameter NN’, the
perpendiculars also drawn from the different points of
N'E'N to the diameter NN’ are likewise below the same
diameter, and consequently all negative; that is, the
gines of the ares from 180° to 360° are all negative.
Vice versd, if we take the negative arcs from 0° to 180%
fhen all the sines will be negative, and from 180° to
360° all the sines will be positive. Observe here, also,
that the extremities of ares of an equal number of
degrees taken in the positive and negative direction

Sine and cosine.
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are equidistant from the extreme points N and N’ of the
diameter NN’. Hence, supposing K and L to be the
extremities of any two such ares, we know from geometry
(B. 1v. TH, 2) that the chord KL is bisected by the radias
CN and perpendicular to the same radius ;

hence, Km = Lm.

But Km is the sine of KN, and Lm is the sine of LN =
—KN: calling @ the are KN, the sine of this arc is indi-
cated by sin ; hence, the sine of LN by sin —a. Now,
from Km = Lin, we have that the length of sin a is equal
to that of sin—a. But the sign of sin —a is opposite to
that of sina; hence,

gin —a = — sin a.

If the extremities of the arcs fall in the second and
third quadrants, the chord which joins them will be per-
pendicular to the radius CN’ and bisected by it; and,
consequently, the sines of the two arcs will be equal to
each other in length, although affected with a different
sign. Hence, in all cases, we have the same equality
between sin—a and — sin @.

It is plain that the sine must increase in length from
0° to 90°, and #lecrease, in like manner, from 90° to 180° 3©
then, becoming negative, it increases again in length
from 180° to 270°, and, finally, decreases with inverted
order from 270° to 860°. But the sine of the arcs of 0°
and of 180° are equal to zero. For the point N or
arc 0° and the extreme point N’ of the arc of 180° fall
on the diameter NN’, and no perpendicular of any length
may be drawn from them to the same diameter. The
sine of the arc of 90° or of the arc NE coincides with
the radius EC, and the sine of the arc of 270° coin-
cides with the radius EC’. These are the qualities of

the sine with which the student must endeavor to
20
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become familiar. The rules we subjoin may help him for
this purpose.

Sinosquatties. Lh€ 8ine is positive from 0° lo 180°; negative

Jrom 180° to 860°.
Sin (0°) = sin (180°) = o.

The sine of the are of 90° and of the arc of 270° are
equal to each other in length and equal to the radius; and,
when the length of the radius is equal to 1 we have

Sin (90°) =1, sin (270°) = —1.

The sines of two equal ares, the one taken in the positive, the
other in the negative direction, are equal to each other in length,
but affected with a different sign.

The segment Cm of the radius CN, or distance from
the centre to the point in which the sine meets the radius,
is called the cosine of the arc KN or of its corresponding
angle KCN. Observe that, drawing from K, Km' per-
pendicular to CE, Kn/ is equal to the sine of the arc KE.
But Km’= Cm; hence, the cosine of the arc KN is equal
to the sine of its complement, and, for this reason, is
called cosine, which means sine of the complement, or
‘eomplement-sine, .

The cosine of any are a is expressed by cos a.

Observe now that, by increasing the arc NK, the
complement diminishes in the same manner, and, con-
sequently, its sine, until it becomes zero, when NK = 90°.
Hence, the cosine, which for the arc of 0° is evidently
equal to the radius CN, decreases continually by increas-
ing the arc from 0° to 90°. But for the arcs between
90° and 180°, since any perpendicular drawn from the
different points of the arc EN’ on the diameter NN’
necessarily falls on the radius CN’, and since we have
as positive the cosines taken from C to N, we must take
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as negative the cosines of the ares from 90° to 180°; and, ‘
in the same manner in which the positive cosines of the
first quadrant decrease from the arc of 0° to that of 90°,
those of the second quadrant increase in length from the
arc of 90° to that of 180°, when the cosine becomes
again equal to the radius. It is now plain that in the
third quadrant, or for the ares from 180° to 270°, the
cosines, remaining still negative, decrease in length con-
tinually, and in the same manner as those of the first
quadrant. In the fourth quadrant, or for the arcs between
270° and 860°, the cosines become positive again, and
increase from zero to the length of the radius.

We have seen already that the sines of any two arcs
which are equal, but one positive and the other negative, ‘
coincide with the chord which joins their extremities. |
Hence, the same arcs must have a common cosine. ‘
Thus, Cin is at once the cosine of the are NK and of the |
negative arc NL: and, generally representing by a any
arc, we will have

€08 @ = €08 —0h

Briefly, the qualities of the cosine may oe expressed as
follows :—

Quilitisorthe LN cosine s positive from 0° to 90°, negatives
g from 90° to 270°, and positive again from 270°
{0 360°.

cos (90°) =cos (270°) = 0;
and, supposing the length of the radius to be 1,
cos (0°)= cos (360°)=1, |
cos (180°) = —1.

The same cosine is common lo two arcs, the one positive and the
other negative.
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§ 8. Supposing the rest as before, draw

Tangent and
ozt from N the geometrical tangent TT’, and also
from E another tan- 4
gent . Draw to
the pOi.'Dt K of the 4, - -~

arc NK the radius 73" g
\:.\ \x ;/

CK, and produce it
to meet the tan-
gents in f and g: ;
the segment Nf of ¥ o B
NT is the trigono- ™,
metrical tangent of
the are NK or of
its  corresponding
angle KCN, and we
express it by tang
KN, or #an KN, or {g KN. The last expression seems to
be preferred because of its simplicity.

The segment Eg of Et is the cotangent of the are KN
and corresponding angle. Cotangent means the tangent
of the complement. It is expressed by cot KN. Sup-
posing, in fact, E to be the beginning of the arcs, Eg
would be the tangent of the arc EK, which is the comple-
“ment of KN. The tangents and cotangents are fanctions
of the arcs, because they vary with them. The manner in
which they vary may be easily understood by the simple
inspection of the figure. For, if we suppose the are NK
zero, then CK coincides with CN, and the length of the
tangent is manifestly zero. But CK, coinciding with CN,
is parallel to Ef, and, consequently, can never meet it;
hence, the cotangent of the arc zero is said to be infi-
nite. It is also plain that by increasing the arc NK the
tangent increases and the cotangent decreases till, when
CK coinciding with CE, or the arc NK becoming an arc
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of 90°, the tangent becomes infinite and the cotangent
zero.

The tangent is referred to the diameter NN’, and the
cotangent to the other diameter EE’. The directions N'T,
Bt ave considered as positive, and, consequently, the direc-
tions NT’, B’ as negative; hence, the tangents and co-
tangents of the arcs from 0° to 90° are all positive.

Let us now take the arc NL between 90° and 180°
Join C with L, and produce CL in hoth directions so as
to meet #/, TT/ in ¢’ and in f: N’ will be the tangent
and By’ the’ cotangent of the are NEL. Kg,” moreover,
which, when NL is equal to NE, is zero, increases con-
tinually and becomes infinite when the point L of the
are NEL falls in N’. But Nj’, which is infinite when
LI/ coincides with EE’, decreases continually by increas-
ing the arc NEL till it becomes zero, when LI/ coincides
with NN”. The tangents, namely, and cotangents of the
arcs taken from 90° to 180° are all negative, and the
tangents decrease from infinite to zero, and the co-
tangents increase from zero to infinite.

The tangents and cotangents of the arcs taken from
180° to 270° have the same sign and follow the same
order of increasing and decreasing as those of the ares
from 0° to 90°. Im fact, let NEK’ be any arc taken from
180° to 270°: join K’ with C and produce it to f and g,
Nf and Eg are the tangent and cotangens of the arc
NEK’; the same, namely, as those of the arc NK in the
fist quadrant. In like manner, the tangents and eo-
tangents of the arcs from 270° to 360° have the same
gign and follow the same order of diminution and -
croase as those of the second quadrant; those, namely,
of the ares from 90° to 180°.

We may observe here, also, that, taking the arcs nega-
tive, that is, from N to E’, &c., the tangents and cotan-

gents will keep the same order of increasing and decreas-
20%
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ing as those of the positive arcs, but their sign will be
opposite; so that, representing by ¢ any arc, we will
always have

tg—a=—tg a,

cot —a = —cot a.

Observe, also, that the infinite length of the tangent and
cotangent, and generally all that which is commonly
called infinite on account of being greater than all as-
signable limits, is frequently represented by the algo-
rithm oo, which is read infinite. Thus, we may briefly
sum up the qualities of the tangent and cotangent as
follows :—
Quitticortne  The tangent and cotangent are positive from 0°
tangent and of g5 90°, and from 180° to 270°, and negative from
90° f{o 180°, and from 270° to 360°, when the
ares are positive, and vice vers@ when the arcs are negative.

tg (0°) = tg (180°) = cot (90°) = cot (270°) = 0,
tg (90°) = cot, (0°) = o,
tg (270°) = cot (180°) = — co.

The tangent’s length increases in the first and third quadrani,
and the cotangent’s in the second and fourth. The length of
the tangents decreases in the second and fourth quadrant, and
the length of the cotangents decreases in the first and third
quadrant.

cocant and o § 9. The radius CK produced to the point f
e on the tangent is called the secant of the arc
NK, and produced to the point g on the cotangent is
called cosecant of the same are NK ; that is, secant of the
complement of NK. These two functions of the arc are
expressed by sec NK and cosec NK.

The secant is manifestly equal to the radius CN; for the
arc zero, and, since CN is parallel to Ef, the cosecant of
the same arc is infinite.  Vice versd, the secant of the arc
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NE of 90° is infinite, and the cosecant of the same arc is
equal to the radius, and from 0° to 90° both secant and
cosecant, like all the other funections, are considered as
positive. But when we enter in the second quadrant, the
gecant Cf’ must be taken in a direction opposite to that of
the radius CL, while the cosecant Cg’ is still taken in the
same direction with the radius CL produced to g'; hence,
the cosecant remains positive from 90° to 180°, at which
point it recomes again infinite, and the secant is changed
into negative from 90° to 180°, at which point it becomes
again equal to the radius in length. For the arcs, also,
from 180° to 270°, the secant is negative, because K’
being any point on the third quadrant, the radius CK’
cannot reach the tangent N'T unless produced in a direc-
tion opposite to CK’. The same should be said of the
cosecant with regard to Ef; hence, for the arcs taken
from 180° to 270°, both secant and cosecant are negative,
and the first increases till it becomes infinite, the second
decreases till it becomes equal to the radius. Lastly, for
the ares taken from 270° to 360°, the secant becomes again
positive and the cosecant remains negative, and the first
decreases until it becomes equal to the radius, and the
second increases until it becomes infinite.
e | Dhefys The secant is positive from 0° to 90°,
kil e and from 270° to 360°, and negative from 90° to
970°. The cosecant is positive from 0° to 180°,
and megative from 180° to 360°.

Supposing the length of the radius to be 1,
see (0°) = cosee (90°) =1,
sec (180°) = cosec (270°) = —1,
sec (90°) = cosec (0°)
sec (270°) = cosec (180°) }’ AR

The secant increases in the first and third quadrant, and de-
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ereases in the second and fourth. The cosecant inereases in
the second and fourth quadrant, and decreases in the first and
third.

e 150,/ The perpendicular Km drawn to the
veradeosine.  qiameter NN’ from any point K of the peri-
phery is, as we have re-
marked, the sine of the
are NK; and Om, or the
perpendicular Km' let fall
from K to the diameter
‘EE, is the cosine of the
game are. Now, in the
game manner in which the ¢
points m, m’ are unequally
distant from C for differ-
ent points of the peri-
phery, thus are they also
unequally distant from the
extremities of the diameters on which the perpendiculars
fall, and, consequently, Nm and Em' are functions of the
arc NK; and the first of these fanections 18 called versed-
sine, and the second versed-cosine, or coversed-sine, and are
expressed by v. sin NK, ». cos NK. The versed-sines,
namely, are taken on the diameter NN’ from N, the
beginning of arcs and tangents; and the versed cosines
on the diameter EE from E, the beginning of cotangents.

Hence, the versed-sine increases for the whole semi-
periphery NEN’, and decreases for the other N'E/N; is
equal to zero, for the arc zero is equal to the radius for
the are of 90°; is equal to the diameter for the arc of
180°, and equal again to the radius for the are of 270°%
and always positive. The versed-cosine increases for the
whole semi-periphery ENE’, and decreases for the semi-
periphery E'NE; is equal to the radius for the arc zero;
is equal to zero for the arc of 90°; is equal to the radius

3.
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agamn for the are of 180°, and equal to the diameter for
the arc of 270°, and it is always positive. Briefly:

S The versed-sines and versed-cosines are always
versed-sine and Posﬁi‘:ﬂe.

Supposing the length of the radius to be 1,

v. sin (90°) =v. sin (270°) =v. cos (0°) =v. cos (180°) =1,
v. sin (180°)=1v. cos (270°) =2,
v. gin (0°) =v. cos (90°) =0.

The versed-sine increases from 0° to 180°, and decreases from
180° {0 860°,  The versed-cosine inereases from 90° to 270°,
and decreases from 270° to 860°, and from 0° lo 90°.

e §11. Leta be any are, either positive or
sngie i equal to negative. If positive, we will have the arc
amplonent, snd_§(°— a, by taking from E towards N an are

equal to a; hence, the extremities of the two
dres a and 90° —a, the
one reckoned from N and
the other from I, are at
an equal distance from
those two points. And,
therefore, if the first arc
a terminates in the first y
quadrant, the other also
must terminate in the
same quadrant; and if the
first terminates in the se-
cond quadrant, the other
arc 90° — @ must termi-
nate in the fourth: finally, if the first arc terminates n
the third quadrant, the second also must terminate in the
same quadrant. Let the same be said when « is negative.
For a negative must be taken from N towards E/, and
with a negative, 90° —a becomes 90°+ a; hence, in this

ol
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case, also, the extremities of the two arcs @ and 90°—gq,
the one reckoned from N and the other from E, are
equally distant from the two points, and are either both
in the first or third quadrant, or the one in the second
and the other in the fourth.

Now, both the sine and cosine of all the ares terminat-
ing in the first quadrant are positive, and both the sine and
cosine of all the arcs terminating in the third quadrant
are negative. Again, the sine of any arc terminating in
the second quadrant is positive, and the cosine of any arc
terminating in the fourth quadrant is positive. But the
cosine of any arc terminating in the second quadrant is
negative, and the sine of any arc terminating ‘in the
fourth quadrant is negative. Hence, in all cases the two
functions sin a, cos (90°—a), or cos ¢ and sin (90°—a),
are affected with the same sign.

But they are, besides, equal to each other; for, let e
and ¢ be the extremities of the two arcs @ and 90° —a.
Join C with ¢ and with ¢’; draw also from e, em perpen-
dicular to NN/, and from ¢’ ¢’m’ perpendicular to EE/:
we have two triangles Cem, Ce/m’/ equal to each other;
for, besides the right angle m and the hypothenuse Ce
of the one equal to the right angle m’ and the hypothe-
nuse Ceé’ of the other, the angle e¢Cm of the first is equal
to the angle ¢’Cm’ of the second, because measured by
equal arcs; hence, em =e¢/m/;and Cm=Cw/. But em=
sina, and ¢'m’'= cos (90°—a), and Cim =cosa, and Cm’'=sgin
90°—a. Hence,

sin @ = cos (90°— a)
cosa = sin (90°—a).
The same demonstration is applicable to all the cases,

and a in the two equations represents any arc. Hence,
generally,
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e of any are or angle is equal to the cosine of its
il, and vice versd.,

§ 12. Since @ represents any arc in the two
o 35 last equations, we may take in them a — 90°
instead of @. Thus, we will have

sin (@ — 90°) = cos (90° — (a = 90°)),

cos (@ — 90°) = sin (90° — (a — 90°)).
90° — (0 — 90°) =180° —a;

~ sin (& — 90°) = cos (180° — a),

: cos (@ — 90°) =sin (180° — a).
» have seen (§ 7) that

' gin —a = —sina, and €os @ =cos— a.

. sin (a— 90°) = sin —(90° — )

cos (a— 90°) = cos —(90° — a);

sin (a— 90°) = —sin (90° — a),

 cos (a—90°) = cos (90° —a).

T thepreeedmg number,

}{bn '_(;9.0"’—'1;) = cos a, and cos (90° — @) =sina,

01 _I i sin (a = 90°) = —cosa,

cos (@ — 90°) =sina;

juently,
< sin @ =sin (180° —a),
— cosa =cos(180° —a),

cosa= — cos (180° —a).
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That is, the sine of any are is equal o the sine of ils supple-
ment, and the cosine of any arc is equal o the negative cosine
of its supplement.

mgonomeitent 5 18- Tiet NK be any are a of tt-w circle
fomalas, @ & having r for radins. Drawing the diameters

mutual reations NN/ FF/ perpendicular to each other, and

tions.
m
t n T+
'f ’
= K
"y
1
N d - N
B’ '
T

the tangentsTT”, #' as above; drawing also the radius
CK to the extremity K of the arc, and producing it to
f and g, and, finally, Km perpendicular to NN’: we will
have, with CK =1,

Km=sina, Nf=tga, Cf=seccaq,

Cm = cosa, Eg =cota, Cg= cosec a.

Now, from the right-angled triangles CKm, CfN, CEy,
we have

CK=0m+Xm, Of =ON + X7,

Cy'=TFg + CE;
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£ g — —_—2 —2 2 —2

that is, r =cos a +sin @,sec a =7+ tg * @

—_— —z —2 y
cosec a=cot a+r.

Remark here, and once for all, that the powers of the
fanctions of any arc are always expressed as in the pre-
ceding formulas, placing, namely, the exponent between
the index of the function and the arc. Thus, the mth
power of the tangent or of the sine of the arc & would
be represented by tg™ b, sin™ b.

Observe also that if the radius r of the circle is made
equal to 1, or if we consider the length of the radius as
unity of measure, as is commonly the case, the preceding
formuilas will be changed into

—— —
gin @+ cos a=1
—3 —2
sec a=1-+tg a,
—2 —
cos a=1+cot a.
The similar triangles CKm, CfN give
Nf: CN :: Em : Cm;

Nf _ Km
The tangent of that is,
are u md ;
i R
ﬁﬂu‘}“nﬁ the . tga _sina
bt r  cosa’
ging .
and a=r o ()
_ tg =)
and, when r =1,
sin a
22 = Gosa”

From the same triangles we have also

Cfr: UK :: ON: Om;
Q 21
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: Cf CN
- b o= T’
Bec a r
The secant of or. —
e r COS @
the radius di-
Eine of The same g1 g 7 ]
an sec = IR | o
e cos @ ()
But, when 7 =1,
sec @ = ;
COBR @

Draw now from K, Km' perpendicular to EE’: we will
have Km'= Cm = cos a, Om’=Km =sin a. Then, from
the similar triangles CKm’, CgE, we have

Eg : EC :: w'K : w/'C;

: Eg w'K
that is oK sl i
i EC = w/C’
The cotangent cot a cosa .
divided by the OF. — =, .. (V)3
mﬂlmuognalto ? ' i Bin & (’)'

wided by the si =
vided by the sine gnq, when r =1,

cosa

cota =—; :
sina

The same triangles give
Cg: CK :: CE : Cm’;

; Cg CE
that = 3
> OK = Cn’
: cosec a r
The eosecant
is equal to the O0? T TR
uare of the ra-
us divided by
the sine of the ,2
Eu are. -
and eca = Ny (|
oo S R
But, when r =1,

coBee @ == —r—.
i sin a
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With regard to the versed-sine and versed-cosine, we
have

Nim = CN — Cm,
Em’ = CE — O/,

in all cases; because, when Nm becomes greater than
the radius, then Cm is negative, and —Cm is changed into
+Cm; so also, when Em’ is greater than the radius, Cm/
becomes negative, and —Cm’ is changed into +Cwm/.

e versedeins TLONICE, generally,
is equal h;to t‘\i'_.l: .
radius minus —
eosing of the are. v.sin @ =7 COB &, "
The versed-cosing i )_

N e v. co8 @ =1 —sin a.
And, when r=1,
v.sina=1—cos a4,

v. cos a=1—sin a.
PR L T Substitute, in the first of the equa-

ay are ot ansle tions marked (¥), 90° — @ instead of a: we
e ent, | Will have

v gin (90°— @)
tg (90°—a) =T o (90°—a“;
that is, (§ 11,)
cos @
tg/(90° —a) = o

Bat, from the third equation marked (),

cosa colta

gin @ r?

therefore, tg (90° —a) =cota.
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e gaae i Substitute, in the second equation marke.

itx commproment” (i")y (90° — @) instead of @: we will have

rﬂ
= cos (90° — a)
Sk &
~ sin a.

But, from the fourth (7'),

sec (90° —a)

——==cosecda;
sin &

hence, sec (90° —a) =cos a.

We may, in like manner, obtain the same two formulas
with the arcs inverted, viz.: 90° —a changed into a, and
a into 90° —a, by substituting, in the third and fourth
formulas marked (), 90° — ¢ instead of @. From the
third we have

cot (90° —a) =tga,
and, from the last,
cosec (90°— a) =seca.

of amy % Substitute, néw, in the equations (i), 90° —

e e ™2 @ instead of a: we will have

v. gin (90° —a ) =r — cos (90° — a),
v. ¢08(90° —a ) =r —sin (90° — ),
and, consequently,
v. 8in (90° —a) =r —sin a,

v. co8 (90° — a) =r — cos a.
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But, from the same equations (i),

r—sina=v.cosa, I —COSA=V. gina;
hence, v. gin (90° — a) =v. cosa,

v.c0s(90° — @) = v.sina.

The tangenty Substitute, in the first, second, and third
Togent of any equations marked (i), (180° — ) instead of a:
Ar¢c Aare I 7.
fraly equal W Wo will have
ﬁ&‘am"&‘&‘; . (1300 )

gin —a
supplement. i =)y =" ———— =
L g @ ) cos (180° — @)
equal to that of
its supplement in

every respect. sec (180°— a) - ———————y

o8 (180“ —a)
- JE.

ot (180° —a) =r 200 =) ;

gin (180° — a)

and, consequently, (§ 12,)

AR Lo
tg (180° —a) e

T’

- W [ep—
gec (180° —a) e
180°—a hncod
cot ( ) Tsin a
Now, from the same equations (@),
gin @ ~ co8 @
=tga, =geca, r—,—— =cota;
cos @ cosa gin @

hence,
1o (180° = a) = = tg a,

gec (180° — @) = —sec d,

cot (180° — a) = — cot @

4 3
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But when the same substitution of 180° — « instead of @
is made in the last (¢/), we have
r!
sin (180° —aq)
r!

sin a

cosec (180° — a) =

and, consequently,

cosec (180° — a) = cosec a.

honerredsine Tt us now make the substitution of
o iat o 180° —a instead of & in the formulas (77/):
ﬂ::l% we will have
ersed-co-
syt 6 V. sin (180° — a) =7 — c0s (180° —a)
" V. cos (180° — @) =r — sin (180° —a);

and, consequently,
v. 8in (180° — a) =r 4 cosa,

v. cos (180° — a)=r—gin a.

Now, r+cosa=r—cosa+2cosa. But (i) r—cosa=
v. 8in @, and r —sina =v. cosa;

hence, V. 8in (180°— @) =v. sin a + 2 cosq,

v. cos (180°—a) =v. cos a.



PLANE TRIGONOMETRY.

247
mothe | Wigono- £15. Let A be the common centre of two cir-
tions or lines are

ropoctionnt. 1o cles, the one having AB, and the other AB/,
th ; ;

corremonaing " for radius. Draw the diameters D'B’/, M/N’
circle.

perpendicular to each other; draw, also, any

other radius AL/: we will have at the same time the
diameters DB, MN, and the radius AL of the internal
circle. Now, the perpendiculars L’R’, LR, drawn from
the extremities L/, T. of the ares B’L’/, BL on the dia-
meter D’B’/, are both sines of the same angle TAB’; but
one evidently differs from the other. Let the same be
said with regard to the tangents Bf, B/f”; with regard to
the secants Af, Af’; with regard to the cosines, cotan-
gents, &e. Hence, the trigonometrical functions depend
on the radius of the circle to which they are referred;

hence, the radins must necessarily be taken into account
with the function given or to be found.
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To see now how the functions taken in a circle hav-
ing r for radius are expressed, let us suppose the radius
AB of the internal circle to be equal to the unity of
measure for lengths, and the radius AB’ to be any ra-
dius 7: from the two similar triangles LRA, L/R’A
we have i

LR : T/R' :: 1 : r:

that is, the sines of the same angle A are proportional to
the radii of the corresponding circles; and since from
the proportion we have

L'R'=7r-LR;
hence, L/R’ =#sin A.
The sine, namely, I/R’ of any angle A, taken in the
circle having r for radius, is equal to the radius into the
sine of the same angle taken in the circle whose radius
is 1.
From the same similar triangles we have, also,

ARG AR -1 s
and from the triangles ABf, AB/f/,

Bf : B sz

Af s A an ks
From the triangles AMg, AM’ ",

Mo " WP ITTh T,

g A gl Sl
Joining then L with B and with M, and L’ with B’ and
M, from the similar triangles LRB’, L’R/B’ we have

RB 1 BIB e Bl Rl 2% disfay
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and, from the triangles LMs, L/M’s,
Ms s Mfg’ :: Ls : I/g’ ::1 s

From which proportions we see that all the trigono-
metrical fanctions are proportional to the radii of the
corresponding circles. Now from the same proportions
we have the equations,

AR/ =r-AR=r‘cos A,
B! =r-Bf =r-tg A,
Af =r-Af =r-gec A;
Mg =7+ Mg =r-cot A,
Ag' =r-Ag =7"cosec Aj
R/'B' = r-RB =r-v.sin A,
M/g! =7+ Ms =r-v.-cos A,

Hence, generally,

Any trigonometrical line or Sunction of any angle A taken in
the eirele having v for radius is equal to the radius into the
corresponding line of the same angle taken in the circle whose
vadius is 1.

L § 16. Let abc be
23;{ ?;%?:‘t’f .2’: any right-angled
e anded i triangle. Produce
angle is equ 4
Sither to the tan- the sides be, ac
gent or to the co-
Sisgent of Sheie about the right
opposite angles. =

angle, and, taking

the hypothenuse for radius,
and first ¢ and then b for cen-
tres, describe the circular arcs "
bM, aN. Call & the hypothe-
nuse, and s the side bc, and ¢ the side ac. Now, 8 is the
<ine and ¢ the cosine of the angle bac in the circle having
h for radius ; hence, ' s

B
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s=h-sin a, s'=Fh - cos g, (¢),

and, consequently,

8 sina

§7=cosa=tga’

the tangent being that which is taken in the circle
having 1 for radius. Now,

a+b=90°;
hence, a=90°—b,
and, consequently,

tg a=tg (90°—b) =cot b,

and, therefore,

;,—= cot b.

In like manner, we will find

-

=tg b=cot a, (¢”").

% | o

Belations be- § 17. Let the radius of the circle MNM’ be
gn::;tof“t;ndl: equal to 1, and take on the circle two arcs
the functions of M A, MB, Whlch we will call @ and b. Join
sy the extremities of the two arcs with the chord
AB, and draw the ra-
dius COD perpendicu-
lar to the chord, which,
consequently, together
with the arc AB, will
be bisected by it.
Draw, also, Al, Or, Bs
perpendicular to the
diameter M'M, and,
consequently, parallel
to one another. And,
gince AQ = 0B, we
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- have, also, (GEoM., B. IL. TH. 12,) Ir=7s. From this con-
struction we infer, first,

AB=MA—-MB=a—b;
hence, 3AB,

or, DB = —a;b.
Again, since MA +MB, or a+b=MB+BA+MB=
9 MB +2BD =2(MB + BD) =2+ MD, we have also

o b
5

In the same manner we have
%Jr 3 Cs -; CI_

']

" .
Now, the right-angled triangle OCr, according to the pre-
ceding number, gives

Cr=CO * cos OCM.
But CO is the cosine of the arec AD or DB; that is, the

cosine of b ; and the cosine of OCM; taken in the

circle h:wmg 1 for radius, is the same as the cosine of

the are MD; that is, a-}-b’

Cs+Cl ~ —-b _a+b
hence, Cr, or 5 cos < 75— 008 —5—

But Cs = cos MB = cos b, Cl=cos MA =cos a; hence,
cos @+ cos b=2 cos }(a+b) cos }a—10b).... (f)-

From this formula, substituting in it (180°—a) instead of
a, we have

cos (180° —a)+cos b=2 cos (90"-—”'_.,

LY cos (90°— ‘”‘”)
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‘Now, cos (180°— a) = —cos a, cos (90°-- g '2- b) = sin

X A _ b, and cos (90“— - '; b) =gin & T4 ; therefore

2
cos b —cos a=2 gin }(a¢ + b) sin a—"5)....(f).

Change, now, in (f) and (f"), @ into 90°—a, and b into
*90°—b: we will have
cos (90° — @) + cos (90° —b) =2 cos (90° — I(a + b)) cos
3(b—a),
cos (90°—b)—cos (90°—a)=2 sin (90° — }(a+ b)) sin
(b—a);
and, consequently, %
sin @ + sin b=2 sin (@ + &) cos 3(b—a),
sin b —sin @ =2 cos }(a +b) sin (b —a).

Observe, riow, that cos 3(b —a)==cos—}(a—10), and sm
}(b—a)=sin—}(a—1>b). Now, (§ 7) cos—}(a—b)=cos
3(@a—b); and sin —}(a—b)= —sin }(a— b); hence, the last
formulas are easily changed into the following :—

gin @+ sin b=2 sin }(a +b) cos }(a—"b). ... (),
sin a—sin b=2 cos }(a +b) sin }a—b) . . . . ().

e § 18. From the formulas of the preceding
gnes: .
metdeal forme- number (f), (), ('), (f’”’), we infer many
others equally useful; and first make in each
one of the said formulas b=o0: we will have, from the
first,
cosa+1=2cos’3a....(9);
from the second,
l—cosa=2sin’la....(4);
from the third and fourth,
sin a=2sin jacos }a....(9");
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and, taking the difference between (g) and (9'),
cos @ = cos® Ja—sin® 3a . . .. (9")

Dividing, now, (f") by (), and then (f") by (f”"), finally,
(¢) by (9), since the radius of the circle to which our
funetions are referred is 1, we will easily obtain (§ 13)

cos b—cos @

o8 b+ cos @ =tg a+0)tg He—b),
gin ¢ — s8in b
gin @ -+ sin b

=tg Ha—b) cot e+

i tﬁ(& —b)
~ tgietby
1—cos a-——-tg’ ia

1+ cos a

Since the arcs ¢ and b are any two arcs, change in (f),
(") (), and ('), @ into a+ b, and b into a —b: we will
obtain four more formulas, as follows :i—

cos (a+b) + cos (a—b)=2 cos & cos b,
co8 (a.--b)—cos (a+b)=2 gin @ sin b,
sin (@ + b) + sin (a—b) =2sin a cos b,
gin (¢ + b) — sin (a—b)=2cos @ sin b,

(#).

Adding, now, together the two first (2/), and then taking
their difference, and repeating the same operations on the
two remaining (), we have

cos (@ — b)=cos @ cos b +sin a sin b,
_cos (@ +b)=cos @ CO8 b —sin a sin b, %
gin (a4 b)=sin @ cos b + cos a sin b, ‘

sin (@ — b)=sin « cos b — cos a sin b,
22




i
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Divide the third of these equations by the second, and
the fourth by the first : we will have

sin @ cos b+ cos asin b
cos a ¢cos b — sin @ sin 6’

tg(a+b)=

sin a cos b — cos @ sin b
cosa cos b +sin @ sin 6

tg (ea—0)=

And dividing both numerator and denominator of the

second members by cos @ - cos b, we will have

tea+te b
e+ =Ty
8 (h”").
_ tga—tg b
Ble= =T tigatg v

Let us now change in the first equation ('), a into ¢ 4 ¢,
and then ¢ into a —¢: we will obtain

cos (@ +b+¢)4cos (a + ¢ —b)=2 cos (a+¢) cos b,
cos (@+b—c)+cos(a—b—c)=2cos (a—¢) cos b.
Observe that cos (¢ —b—¢)= cos —(a—b—c)=cos (b+¢

—a), and cos (@+ ¢)+ cos (a—¢) =2 cos a cos ¢; hence,
adding to eg.lc}rx other the two last equations, we have

1at
cos (a+b+ Qg-i— cos (@+¢c—b)+ cos (a+b=—c)+

cos (b+¢—a)=4 cos a cos b cos ¢,

} (}lﬂ'ﬂ}_

And, in the supposition that
a+b+4e¢=180°,
Ha+ b+ ¢)=90°,
Ha+b—c)=90°—e,
Ha+e—0)=90°—p,
¥b+c—a)=90°—aq,

since then
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changing, in (k''™"), a, b, ¢ into 1a, 3b, ¢, we will have,
from (A'"""),

gin b + sin ¢ + sin @ =4 cos }a Co8 1bcoste.... (W)

Change now, in the first formula ("), b into b +¢, and
let us suppose again a+b+c¢= 180°: we will have

e tga+tg(b+c)
tg (180%) =1 g atg (b +e)

Now, tg (180°)=0, and from the same, (K/'), we have

teb+tge
tg(b+c)—1Etgb_gtgc.

Hence, we have, first,
tga+tg (O +0)=0,
and, consequently,
tgb+tge _g.
tgati_tgb 'tgc'—o 2
from which

tga—-tga-tgb-tgc+tgb+tgc=.'o,
Hence, when a+b+c¢= 180°,
tga+tgb+tgc==tga-tgb tge.. .- (7).

ARTICLE TIL

RESOLUTION OF TRIANGLES, AND APPLICATIONS.

ol e §19. All trigonometrical functions are, a8
ue 0 - - - - -
g gfsg:; we have seen in the preceding article, recti-
o s linear, and, consequently, such as may be

compared with the radius of the circle. Now, taking the
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radius as the common measure or unity of measure for
trigonometrical functions, we may find them either less,
or equal to, or greater than the radius; and in every one of
these cases they may be expressed numerically,—that is,
by that number which expresses to what part of the
radius they are equal, or how many times they contain
the radius in their length. This number is called the
numerical value of the functions. We will presently see
how this numerical value may be obtained. But let it he
known, first, that not only the numerical values of the
functions have been determined for a large number of
arcs, but also the logarithms of the same value and
tables have been constructed thereof. These tables will
be better appreciated in the following pages. But
observe, now, that, supposing » to be the numerical value
of any function, its logarithm given by the tables is the
exponent to be given to a=10 to obtain n. (See Alg.,
§122.) And, since the tables do not give the numerical
value of the functions, but only the corresponding loga-
rithm, when, for example, we wish to know what is the
numerical value of sin 10° or tg 20°, &c., we will take
from the tables of trigonometrical logarithms the loga-
rithms of these values, and, finding then the correspond-
ing numbers of these logarithms in the common tables
having a=10 for base, these numbers are the numerical
values of the functions.

Let us now give an idea of the manner in which the
numerical values of the various functions can be obtained.
And, first, observe that it is enough for us to have the
numerical value of one of these functions, for example,
the sine of any arc a, because the other functions of the
same arc are then given by the formulas (i), (7), (i),
(§ 13,) Thus, for example, since from the first equation

(7) we have
cos a =1 — gin*a,
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or, taking the radius 1,
cos a = v'1—sin’ a,

when the numerical value of sin @ is known, that also
of cos @ is determined by the preceding formula. Seo
likewise from the first ('), taking in it » =1, we have

gin a
- H
COS &

tg a

Hence, when the numerical values of sin @ and cos a are
known, the numerical value of the tangent of the same
arc o is also known, &c. Hence, when the numerical
values of the sines of the ares a, o/, a”, &e. are known,
the numerical values of the other functions of the same
arcs are given by the said formulas.

Observe, secondly, that from the formula (¢”), (§ 18,)
we have

sin 2a =2 sin a * cos 4,

and, from the third ('), changing in it ¢ into 2a and
b into a,
sin 3a = 2 gin 2a * cosa—sin a;

and taking in the same formula, ('), 3a instead of a, and
@ instead of b, we have

sin 40 = 2 sin 3a cos a — sin 2a, &e.

Therefore, when the numerical value of sin ¢ is known,
and from this the numerical value of cos « is inferred, the
numerical value of sin 2a is immediately given by the
first of the last formulas, and then that of sin 3a by the
second, that of sin 4 by the next, &e. 1In the supposi-
tion, therefore, that we may find the numerical value
of the sine of the arc of 10” or of 1/, we will obtain,

by means of the same formulas, the numerical values
R 2%
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of the sines of the arcs of 207, of 307, &e. ..., or of
2, of 8, &ke. Now, we may obtain, with the greatest de-
sirable accuracy, the numerical value of the sine of 107
for instance, or 1’,
For, let gm be any
arc, and gr another
arc equal to gm;
join the centre of
the circle with m, g,
and 7, and draw the
chord mn, which is
bisected by the ra-
dius Cg, and per-
pendicular to it
Hence,

mf = sin mq,

or mn = sin mg.

Again: drawing the tangents ¢, mp, since from the equal
triangles #gC, pmC we have mp =tg, and fg is the trigono-
metrical tangent of mg, we will have

mp = tg mq,

and also the tangent np, which, on account of the equal
triangles Cpn, Cpm, necessarily meets Cp in the same
point p of mp, is the tangent of the arc ¢n; and, since
pm=pn, we have also

mp = ¥(pm + pn);
hence, 3(pm + pn) = tg mgq

_ sin mg
cos mq '
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Now, mfn < mgn,

pr -+ pm > mqn,
and, consequently,

Ymfn < ymgn,

or, fmfn <mg,
and ¥ pn+ pm) >my,
therefore, sin mg <mg,

sin 7mg

cos mg> e
and sin mg > Mg €os mq.

Multiplying both members of the last inequality by
2 cos mg, we have

2 sin mgq * cos mg > 2 mg cos® myq.

But, from (g""), (§ 18,) 2 sin mg  ¢os mg = sin 2mg; and, from
(i,) (§18,) when r =1, cos® mg =1— sin® mgq;

hence, sin 2mg> 2 mg (1 — sin® mq).

Now, 2 mgq represents any arc; therefore the same in-
equality is also applicable to the arc mg;

that is, sin mg > mq (1 —sin® $mg).

But we have seen that the sine of any arc mg is less than
the arc itself’;

hence, gin dmg < ¥mg,

and, also, sin? dmg < E
4



260 PLANE TRIGONOMETRY,

. —2
Call d the difference between sin® }mg and 79 . we will
have \ : 4

m—ﬂ
gin ? }mq - —49“' i 7¥ dr
and, consequently, ;
sin mg > mgq (1 -—%— +d);
that is,

il
sin mg > mgq (1-%) +mq-d,

and, consequently, much more t
sin mg > mg (1-20);

Hence, we have at once the sine of any arc mg less than

the arc itself, and greater than the same arc multiplied
——

mq

by 1— T
Now, we have from geometry the ratio between the
radius and the circumference numerically expressed; that
is, the radius being 1, the circumference is (B. IV. TH.
14) 6-28 . . . . ; and, dividing this number by 360,
we will have the linear value of one degree of the
circumference numerically expressed in a part of the
radius; and in a like manner we may obtain the
numerical value of the arc of one minute, ten or twenty
seconds, &c. Therefore, the arc myg, also, may be nu-
merically given in a part of the radius, and, conse-
quently, also, mg (1-—%). But if we take the arc mg
of one minute, the numerical values of mg, and of mg

(1 Fe Eg?') do not differ from each other for many decimal
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figures ; hence, the same number, as far as the figures of
the two numerical values are equal, expresses necessarily
the numerical value of the sine of the arc mq given in a
part of the radius, since the numerical value of the sine
is between the two numerical values of mg and mg

70,

Equstions o 3 20+ Liet MNO be
ontion of any triangle. Call
the side MN, A, and
its opposite angle a. Call the
gides MO, NO, B, C, and their
respectively opposite angles b, c.
Call, also, p, p’, p'’ the perpen-
diculars Or, N7/, Mr” drawn
from the vertices to the opposite sides. With each per-
pendicular we have two right-angled triangles: with p,
the right-angled triangles OrM, OrN; with p’, Nr'M,
N»'O; and with p”, MO, Mr""N. Hence, also, (§ 16,)
the equations,

p =Bsine,p =Csinb,
¢! = Asin ¢, p’ = O sinag,
p"'=Bsina, p’’ = Asin b,
and, consequently,
B:sine= Cgin b,
A sin ¢ = C +sin g,

B sina=A-ginb;

and B C A C
Sinb sin¢ sina sine
B A

- . ?
ginb gina
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which last equations may be more simply expressed in
one, as follows :—

A B (6 }(el).

ging sinb sin ¢

From the same equations we have also

B ginb A sina B ainé-
C sincC sinc A sina’

that is, :
B:C::s6nb:sinye !

A:C::sina:sineg
B:A::sinb:sina
Hence, in any rectilinear triangle the sides are as the sines
of their opposite angles.

It is well known from geometry that the sum of the
three angles of any triangle is equal to two right angles;

hence, a+b+c=180°.... (e). ‘

Now, from the last proportion, or from its equivalent,
A :B::sina:sin b, we have (see Treat. on Alg,,
§ 119)

A+B: A—B:: sina+sinbd : sin a—sin ', |
or A—B: A+B::sina—sind : sin a+sin b; !

and, consequently, (§ 18,) (%),

A—~B_ sin a—sin b_ tgi(a—8)
A+B sina+sinbd tgia+b)’
from which

—B
tg}{a—b]=-%_-’_—3tg}(a+b).
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But, from (e,), @ + b =180° —¢, and 3(a + b)=90°— §¢;
hence, tg }a + b) = tg (90° — Jo).

Now, (§ 14,) tg (90° — 3c) = cot §¢;

hence, tg H(a—b) =_i I;g cot 3¢ . . . (&)-

The angle opposite to the side A may be an acute
angle, like MOr”/, or an obtuse angle, like MO'N: in the
first case, we have from Geometry (8. IIL. TH. T, §C. 2)

A'=B 4 C'—2C-0r%
and, in the second, calling B, C the sides MO’, NO/,
Al=B4(C*+2C 07"
Now, (§ 16,) Or'" =B cos a,
| and O'r'" =B cos MO'r”

=B cos (180° — MO'N)

=B cos (180° — a) = —cos a.
Hence, from both the preceding equations, we infer
Ar=B!4+(C*—2B-Ccosa...(e);

that is, whether the angle @ be acute or obtuse, the square
of its opposite side is equal to the sum of the squares of
the other two sides minus the double product of the
same two sides into the cosine of the angle a.

Now, from the formulas (g), (). (§ 18,) we have
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cos a=2 cos’ a—1,

cos a = 1— 2 sin® 1a.

Substituting in succession these two values in (e,), we

will have
A’=B'4+(C*—2DB - C (2 cos’ }a—1)
=B4+C'+2B-C—4B - Ccos’ }a
=(B+C;P—4B: C cos® 14,
A'=B*+C—2B: C(1—2sin’ }a)
=B*+C*—2B-C+4B"Csin’ia
= (B—C)y'+ 4B - Csin? ja.
Hence,
: A’— (B—=C)?
8in® 3a = — N

(€s):

These are the equations with which we may resolve
the problem that (§ 1) forms the object of plane trigono-
metry. In fact, excluding the case of the given elements
being the three angles, in which case the length of the
sides cannot be determined, since any number of similar
triangles may have different sides, with the exception
of this case the given elements may be,

First—One angle and two sides ; .
Second—One side and two angles ;
Third—Three sides.

In the first of the three cases the given angle is either
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formed by the given sides or opposite to one of them.
If included, then by means of the formula () we may
obtain the third side, because the second member of this
equation contains two sides and the cosine of the in-
cluded angle. Hence, substituting instead of B and C
the values of the two given sides, and taking from the
tables the cosine of the given angle, and placing it
instead of cos @, the whole second member becomes
known, and, consequently also, the first, which is the.
square of the third side. Then, from the formulas (es)
and (e;) we may have the other two angles; because by
means of (e;), which contains, in the second member, two
sides and the included angle, we may have the difference
of the other two angles,—that is, knowing the tg }(a—b),
we may obtain from the tables §(a—b), and from (e;)
we easily have }(a+b)=90°—fc. Hence, half the sum
and half the difference of ¢ and &, which represent our
unknown angles, are thus known ; but, adding §(a — b) to
3(a+ b), we have @, and subtracting j(a— b) from #(a+0b),
we have b3 hence,  and b also become known. . . . We
may also commence by finding first the angles and then
the side by means of the equation (¢,). If the angle
is not included but opposite to one of the two given
sides, then from the equation (¢) we may have the sine
of the angle opposite to the other side, because from (e))
we infer, for example,

. B .
gin b= X sina,
and, consequently, substituting for A and B the values
of the two given sides, and for sin a the sine of the
angle opposite to A, we obtain evidently the sine of the
angle b opposite to the side B. From sin b, the tables
will give b. But (§ 12) sin b=sin (180° — b); hence, for
sin b the tables will give two angles b and (180°—8);
23
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therefore, in this resolution there is ambignity, which is
frequently taken away by some conditions of the problem
revealing which of the two angles is to be selected.
When the second angle is found, the third angle is
immediately given by (e,), and the third side is obtained
from the same (¢), since from

A C

. g, S i Bt
8ln @ sin ¢

. gin e
we have U= -+—A
sin a

In the second case,—namely, when the given elements
are two angles and one side,—the third angle is imme-
diately given by (e;), and the two unknown sides by (e,),
as above.

In the last case,—namely, when the given elements are
the three sides,—one of the angles is given by (€5); then,
knowing two sides and the included angle, we may find
the other angle, as in the first case, or else the three
angles may be all obtained from (e;), by changing the dis-
position of the sides in the second members.

Resaiution of 3 21. The preceding formulas afford a
peeeed - means to resolve any rectilinear triangle

whenever the resolution is possible, and, con-
sequently also, when the triangle to be resolved is a
right-angled triangle, we may use the same equations.
But, in this case, the equations (¢/), (¢"), (§16,) render
the resolution more speedy. For, when the two sides
8, " about the right angle are given, we may obtain the
other two angles from (¢/’), and the hypothenuse / from
(¢'); when the hypothenuse is given with another side,
we may find, first, one of the two acute angles, and then
the other side from (¢/), &c. But let us see some ex-
amples.
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§ 22. Let the side A of a triangle be equal
EXAMPLES. ;
et 10 2801,82 either feet or yards, and let the
ahen onoside angle b be equal to 26° 17" 59”4, and the
ki angle ¢ equal to 84° 56’ 24”,3. Find the
other elements.

From (e) we have, first,
a=180°— (¢ +b)
=180°—111° 14’ 28",T.
Hence, a=68° 45’ 36”,3.

With regard to the sides B and C, we have, from (&),

gin b gin ¢
- -’ C == -A- -
sin a gin a

.
2

B=A

hence,
sin (26° 17" 59”,4)
s (68° 45’ 367,9)’

sin (84° 56/ 24'".3)
C = 2301,82—, (68° 45 367,3)"

B = 2301,82

And, taking the logarithms, (see Treat. on Alg.,)
1. B =1.(2801,82) + L. sin (26° 17’ 59,4)
— 1. gin (68° 45’ 36",3),
1.C =1.(2301,82) + 1. sin (84° 56’ 24”,3),
— 1. sin (68° 45’ 86",3).
Now, from the common tables we have

1. 2301,82 = 3,362071,
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and from the tables of trigonometrical functions,

1. sin 26° 17/ 59,4 = 9,646471,
1. sin 68° 45/ 36,3 = 9,969449,
1. sin 84° 56/ 24/7,3 = 9,998304 ;*
hence, 1. B=38,362071 + 9,646471 — 9,969449,
1. C = 8,362071 + 9,998304 — 9,969449 ;
that is, 1. B=3,039098,
1. C = 3,390926.

Now, from the common tables we have

3,039093 =1. 1094,2,
3,390926 =1. 2460,0;

hence, L. B=1 1094,2,
L. C =1 2460,0;
that is, B =1094,2,
C =2460,2.

The student may immediately appreciate
the practical profit which can be derived from
the resolution of triangles by the following application.

Let T represent an inaccessible point, the distance of
which from the points P and Q on the opposite side of a
river or of a ravine is to be determined. Measure the
rectilinear distance of the two points P and Q, and sup-
pose it to be the length of our given side A; that is,

Application.

# The student will find at the end of the book some tables of logarithms.
But for exact and laborious ealeulations, tables much more voluminous are
unquestionably required. Those of Callet are excellent. The direction of
the teacher, however, and the use of the small tables here added, will render
easy the use of other tables more complete.



—

. PLANE TRIGONOMETRY. 269

2301,83 yards. Then,
by means of a gra-
duated instrument,
measure the angle
TQP which the vi-
sual rays directed to £
P and T form in Q,
and let the angle
formed by these rays
or lines be our given _
angle b; that is, 26° 17/ 59,4 measure in like manner
the angle TPQ formed in P by the visual rays directed
from P to Q and to T, and let this angle be the above-
given angle c¢=84° 50’ 24,8,

Now, the visual rays with the base form, evidently, a
triangle of which we know one side and the two adja-
cent angles, and which, resolved, gives for the length of
the side B or distance of P from the inaccessible point T,
1094,2, and for the length of C or distance of Q from the
game T, 2460,2 yards.

Let, now, the given elements be two sides

Exampiz 1.
Pio ugem and the included angle; that is, let
sides l:?:;li: in- -
A =4466,784,
B =4375,438, .

¢=46° 49’ 40" 4.
We will first find half the difference between the two
remaining angles @ and b, with the equation (es); for,

applying the logarithms to this equation, we have

1. tg Ja—b)=1 (A—B)+1 cot Jo—1. (A +B).

Now, from the given elements we easily infer

28%
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A_ B~ 91,346
A +B=8842,222,
Je=23° 24’ 50”,2;
and from the table we have
L. (A—B)=1,9606895,
L. (A + B) = 3,9465614,
l. cot 1e=0,3634844 ;
hence, L. tg 3(a—b)=8,8776125.
And, again, from the tables,
Ha—b)=1° 21/ 59,9,
Now, from the equation () we have, in our case,
a+ b=180°—46° 49’ 40" 4,
=138° 10’ 1978,

and, consequently,
1(a+b) =66° 85’ 9.9;
hence, adding first and then subtracting from the value
of 3(a + &) the preceding one of 4(a—?), we will have
a=67° 577 9.8, :
b=65° 187 10",0.
Thus we have obtained the two unknown angles. To
obtain the unknown side C, the equation (¢,) gives us

sin ¢

O SB.C 5

sin a

and, consequently,
LC=lsine+1. A—1 sin a.
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Now, from the tables, ¢

1. gin ¢ = 9,8629065,

1. A = 3,6499950,

1. sin @ = 9,9670211;

hence, 1. C=38,5458804,

and, from the tables,
O =38514,6.

Apulication. This, CHRG, &130, may be EPP'ﬁBd to some

geodetical purposes. Thus, for example, let
ma be the unknown '
rectilinear distance.
of the summit of
the mountain m
from that of the
mountain n to be
determined. In the
‘supposition that the
summits of the two
mountains are visi-
ble from P and from
P/, and the rectilinear distance of P from P’ is known,
we may, drawing the visual rays Pn, P'n, Pm, P’'m, re-
colve the two triangles nPP’, mPP’, as in the application
to the first example. Knowing, then, the sides mP, nP
of the triangle mnP, and measuring the angle mPn, we
have the case of the given elements of the triangle, being
two sides and the included angle. Applying, therefore, to,
this case the preceding resolution, we may know what is
the distance mn.
The method of resolving the trianﬁea is '
Other examples. : :

the same in all cases; and the two preceding

examples, fully developed, give a sufficient direction to
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resolve others, which we subjoin here, with the values of
the unknown elements to be found, for the exercise of the

student.
exorw L Given elements:

A=2301,82,
Sides, ( B=>5174,93,
C =4842,28.
Elements to be found:
a=26° 17" 59",
Angles, | b=84° 56/ 407",
¢=068° 45" 217,

Exaez1V.  @iven elements:

) A = 540,
Sides,
B =450,
and included angle e = 80°.

Elements to be found :

a = 38° 84/ 89",
Angles,
b =18° 21’ 217,

Side © = 2400.

_ Exuenv.  Given elements:

A = 390,
n. Sides,

B = 651,
Angle b= &56°41’587",
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Elements to be found:

a = 29° 89’ 46/,
e = 94° 88" 17/,
Side C = T00.

Angles, {

4

‘With the same elements of the preceding examples other
examples may be formed. Thus, for instance, in the last,
we may suppose the side A to be known, and two angles,
or the three sides, or the two sides with the included
angle, &c., and find the other elements; so that, without
adding more examples, the preceding can be multiplied
at pleasure. We will, however, add the case of the right-
aungled triangle.

Bampleotthe W have remarked already that right-
sightangled &+ angled triangles can be more easily resolved

bypethenwie = by the equations (¢/), (¢”), (§ 16.) Thus, for

of the acute - oxample, let the given elements be the hypo-
thenuse .
h = 876,
and the angle a= 57°:

we will immediately have tne other acute angle &;

because a—+b=90°,

and, consequently, b =90° — a = 90° — 57° = 33°.

With regard to the sides s, 8/, they are easily obtained
from the equations (e’),

or s=hsina, s’ =h cosa;
for, applying the logarithms, we have

lLs=Lh+lsing =LA+ cosa. .
) '
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Now, 1. h=1. 875 = 2,9420081,
1. sina = 1. sin 57° = 9,9285914,
1. cosa=1. cos 57° = 9,7361088;
hence, 1. s = 2,8655995,
1. 8 = 2,6781169;

and, finding the corresponding numbers,

s = 633,83,
§' = 476,56,

Application. If, for exam-
ple, the height of a tower
TS is to be determined:
measure on the plane on
which the tower is built a =
base or straight line MN;
then, drawing the wvisual
rays MS, NS to the top of
the tower, we will have a
triangle SMN resolvable, as
we have seen in the preceding examples. Thus the side
MS becomes known.

Imagine now a vertical or plumb-line ST from the top
to the foot of the tower,—a vertical, namely, to the plane
NMT. Drawing, then, a visual ray from M to the foot of
the tower, and measuring the angle SMT, we will have in
the right-angled triangle STM, besides the hypothenuse
* 8M, the acute angle SMT also known. The triangle,
therefore, can be resolved as above; and we may thus
know the height of the tower.




Syberical Trigonometry.

PRELIMINARIES.

et ot Spbert- §23. THE object of Spherical Trigonometry
is the resolution of spherical triangles; that
is, to find the unknown elements of a spherical triangle
when three of them are given.
gaphericaltrian- - A spherical triangle is any triangle traced
on the surface of a sphere. But not all the
triangles which can be described on a spherical surface
are considered in trigonometry, but those only which are
formed by ares of great circles; that is, by the ares of
those circles the planes of which pass through the centre
of the sphere.
Theirelements.  The elements of a spherical triangle are the
same as those of a rectilinear triangle,—three sides and
three angles.
e of the et SPL be any spherical triangle, formed,
Soriniet: as it is understood, by arcs of great circles.
Draw from the vertices the radii PC, LC, SC to the
centre of the sphere, which is the common centre to the
arcs or sides of the triangle: the three radii, with the
276
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planes  determined by
them, form a solid angle
in C. Now, the measure
of the angles of the
spherical triangle is the
same as that of the an-
gles formed by their re- J
spective planes. For in-
stance, the measure of the
angle P or SPL is the
same as that of the planes
PCL, PCS on which lie - e
the ares PL, PS. But

the measure of the angle formed by two planes 18 given
(GuoM., B. v.) by the angle formed by two perpendi-
culars drawn to the common intersection of the two
planes,—the one lying on one plane, the second on the
other. Drawing, therefore, from C, Of, Cg both perpen-
dicular to CP, and the first on the plane of the circle PL,
the second on that of the circle PS, the angle ¢gCf is the
measure of the angle P. Now, the angle gCf is mea-
sured by the arc gf of the great circle whose plane is
perpendicular to PC; and, since f is on the plane of
PL, and ¢ on the plane of PS8, the arc gf is the arc con-
tained between the sides of the same angle. Hence, the
measure of the angle P is the arc of the great circle,
the plane of which is perpendicular to the diameter pass-
ing through the vertex of the angle and determined by
the sides of the same angle, produced if necessary; or,
more briefly, since the extremities of the diameters per-
pendicular to great circles are called poles of the same
circles, the measure of the angle P, and generally of
any spherical angle, is the arc of the great circle (of
which P is the pole) contained within the sides of the
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same angle. The angles are always taken less than
180°.

The measure or value of the sides is taken or estimated
in the same manner as the measure of any other arc.
We may still remark that, since the are, for instance, P
and the angle PCL, are mutually a measure of each
other, so the measure of any side of the spherical tri-
angle is the same as that of the angle formed by the
radii drawn from its extremities to the centre of the
sphere, and these sides or arcs are always taken less than
180°.

et § 24, Hence, it follows, first, that the sum
wl trangle the of any two sides is greater than the third

sum of two sides

1) e 3 -
e always groater gide ; for we know, from geometry, (B. V.

side, and  the g, 16,) that the sum of any two angles PCL,
ther = amnot for instance, and LOS, of the solid angle C, is

always greater than the third angle SCP.
Secondly, the sum of the three sides of any spherical
triangle can never reach 360°; for we know also, from
geometry, (8. v. TH. 17,) that the sum of the plane angles
forming a solid angle is always less than 360°.

Observe here, also, that the diameter perpendicular to
the plane of a great circle is called the axis of the same
circle. Hence, the poles of any circle or part of circle
considered in spherical trigonometry are the extremities
of its axis. '
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ARTICLE L
FORMULAS AND EQUATIONS FOR THE RESOLUTION OF
TRIANGLES.
‘When the ver- § 25. Let the

tices of tri- 2
nnglaclren;:lmor vertices M, N, O

f an- .
other “irangte. Of amy spherical

the vertices of .
the secomd tri- triangle be re-
angle are recipro-

eally poles of the spectivel oles
goc-hnirsgeer 01;' the gide:) 70,
om, mn of another triangle.
C being the centre of the
sphere, MC will be perpendi-
cular to the plane of the cir-
cle no, and, consequently,
to the radius Cn on that plane. Also, OC must be per-
pendicular to the plane of the circle mn, and, conse-
quently, to Cn, which is on the plane of the same circle,
Hence, Cn, being at once perpendicular to CM and to CO,
is perpendicular to the plane determined by them. But
the plane of the radii CM, CO is the plane of the circle
MO; hence, Cn coincides with the axis of the same
circle, and 7 is the pole of MO. In like manner we
prove that o is the pole of MN, and m the pole of NO.
i Hence, it follows that, producing the arcs
The sides of or sides of the triangle MNO till they meet

one triangle are

&?‘L}mﬁﬂ 2 the sides of the other triangle in r, s, &c.,
o

the other o will have

le, or wice
ns = 90°, or =90°,

vered,
Ng=90°, Op= 90°,
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and, consequently,

ns + or = 180°,
Ng + Op =180°.
Now, ns + or = nr + rs + 08 + sr =no + sr,

and Ng+ Op =NO + Og + pN + NO =pg+ NO;

hence, no + rs = 180°

NO + pg=180°;

that is, no and rs are supplements of each other, and alss
NO and pg. Now, rs is the measure of the angle M;
hence, the side ng of the external triangle is supplement
of the opposite angle of the internal triangle, and wvice
versd. Again, pg is the measure of the angle m; hence,
the side NO of the internal triangle is supplement of the
opposite angle of the external triangle, and vice versd.
The same demonstration is applicable to the remaining
sides and angles of the two triangles: hence, calling, for
the sake of brevity, A, B, C the sides NO, MO, MN
of the triangle MON, and a, b, ¢ the respective opposite
angles of the same triangle, and calling A/, B/, C,
a', b’, ¢ the corresponding sides and angles of the other
triangles, we will have

Al+a=180°, B'+ b=180°, '+ c=180°,
A + a/=180°, B + b'=180°, C+ ¢'=180°;

or, a=180°—A’, b=180°—B/, ¢=180°—C, }
I -
A=180°—a’, B=180°—b/, C=180°—¢. )
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Now, the first three equations (1) give
fes ofany whe g 4 § 4 o § + 180°— (A’+ B/+ 0)
amount, o less = 180°+ 860°— (A’+ B+ CY).

than six, and
more than two,
right angles.

But we have seen above (§ 24) that A’ 4+ B’ +
(' < 860°; hence, 360°—(A’+ B’+C’) give a positive
result, and, consequently,

a+ b+ ec>180°.

That is, The sum of the three angles of any spherical tri-
angle is greater than two right angles.

Again, since @+ b + ¢ is less than 3 - 180°, as the pre-
ceding equation evidently shows, and 3 - 180° amounts to
six right angles, hence, The sum of the angles of any sphe-
rical triangle cannol amount to siz right angles.

§ 26. Let MBAC be any spherical triangle;
join the vertices with Q, the centre of the
sphere; draw also the tan-
gents MN, MO, the first to
the arc or side C, the second
to the arc B, and produce
the radii Qe, Qb to O and N;
the planes of the triangles
MOQ, MNQ coincide with
those of the great circles to
which the sides B and C
belong; join, lastly, O with
N. From the triangle ONM __
we have (§ 20) (e,)

ON =OM + MN" —2 MO - MN cos NMO
and from the triangle NOQ
ON =0Q +NQ —20Q - NQ cos OQN.

Useful formulas.
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Now, supposing the value of the radius of the sphere to
be », we will have (§ 18)

OM=r-tg B, MN=r-tgC,
0Q=1r+sec B, NQ=r"sec C.
Observe that the tangents MO, MN are both perpendi-
cular to the radius MQ, which is the common intersection
of the two planes on which are the arcs B and C; hence,
the angle NMO is the measure of the angle a of the
spherical triangle : the angle OQN is the measure of the
arc or side A. Hence,
cos NMO = cos a,
cos OQN = cos A.

Making now the substitution of these and of the other
values in the preceding equations, we will have

(ﬁﬂ=r2tgsB+rstggC—2rzth-tgGcosa,
ON'=r eu-:ecgl3+nr'gs;ecs‘C-—21r'2 gec B sec C cos A;
from which
2, 2 2 2 2
rtg B4r tg C—2r tg B tg C-cosa=
r sech+rgsecgc—2rgsecBsecC'cosA,
and, consequently,
ﬂrzBeCB'BBGCCOSA==?’= gec B+ secgc—rstgnB-
r’tg!(}—i-%rnth-thcoaas
r (mac"B—tgﬂ]3)+rgl (aec’ G—tg2 (3‘)-4—2?-2 tg B-tg C
cos d.

Now, when r =1, as is the case for the gimple functions
of our arcs and angle, (§ 15,) from the second (i) (§ 13)
we have
sec’ B=1+t.g2 B, and sec C=1 +tg= C;
24%
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therefore, g {
sec’ ZB-—-tg2 B=1+tg B—tg B=1,

sec’ 04.—tgSe C=1 -1—!:git C—tg2 C=1;
hence, the last equation can be simplified as follows:—
sz(SEC B sec C cos A)=2 r2r tg B tg C cos a;
and, dividing both members by the common factor 2r2, \

sec B sec € cos A=1+4tg B tg C cos a.

; 1 IR R
But (§ 18) () gec B= O gec (= =0 |

AATAT S Lt
cos B cos O

hence, sec B gec C=

Substituting this value in the last equation, and multiply-
ing then both members by cos B cos C, and observing

gin B sin C b :
that (§18) tg B tg C=_—3 * -1y We will finallv obtain

cos A =cos B cos C+sin B gin O cos a. (11).

Drawing from the vertices ¢ and & tangents to the sides
B, A, C of the triangle like MO, MN, with the same
process we have

cos B=cos A cos O +sin A sin C cos b,}( )
II).

cos C=cos A cos B +sin A sin B cos ¢,

Substituting in these formulas the values given by the
equations (1), we will have (§ 12, 14) — cos a’= cos b’ cos ¢/
—sgin b’ sin ¢’ cos A/, —cos b’'=cos a’ cos ¢’—sin a’ sin ¢/
cos B/, —cos ¢/=rcos a’ cos b’—sin a’ sin b cos C'. Ob-
serve that the accents used in the formulas marked (1) are
introduced to distinguish the angles and sides of one
triangle from the angles and sides of the other; but,
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gince each of the two triangles represents any spherical
triangle, and here we fnake no comparison, we may use
the angles and sides without accents as usually, and thus,
from the equations last obtained, we have

cos a=sin b sin ¢ cos A —cos b cos ¢,
cos b =sin a sin ¢ cos B—cos a cos ¢, ) (1),
cos ¢=sin @ sin b cos C —cos a cos b.
§ 27. Observe that (§ 13) 8in* e =1—cos* q,
and, since a is any angle, sin® b=1— cos*

b, and sin? ¢=1—cos® ¢. Now, from the formulas (1r) we
have

Other formulas.

cos? a=—m1—s.m(coa’ A —2cos A cos B cos C+

cos® B cos? C),

. 1 .
cos? b-m(cos’ B-—2cos A cos B cos C+

cos? A cos? C),

cos’ e =

m(coa’ C—2cos A cos B cos O+
cos® A cos® B);

hence,

sin? a=m(sin’ B sin? C —cos® A 4 2 cos A cos
B cos C —cos® B cos? C),

gin® b =ﬁm(ain’ A sin® C—cos® B+ 2 cos A cos
B cos C—cos® A cos® ),

sin’ c—mlm (sin? A sin® B—cos® C+ 2 cos A cos

B cos C— cos® A cos® B).

But sin® B sin® C = (1—cos® B) (1—cos? C) =1—cos* B —
cos® C + cos? B cos® O,
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and sin® A sin? C= * + + =1—cos®* A—cos® C+cos® A
cos® C, *

gin® A sin? B= ... =1—cos* A—cos* B + cos® A cos* B;

hence, substituting these values in the numerators of the

last equations, we have

1

2 e ] 2 I il 9
sin? @ = =B C( .cos A —cos? B—cos® C+2 cos ‘
A cos B cos C),
3 S 1 : 2 2 ik 2
8in? b =——fy s (1—cos A —cos® B—cos* C+2cos

A cos B cos C),

. 1
sin? c=m(1—cos’ A —cos® B—cos® C+2cos \

A cos B cos C).

Now, the last factor is the samé in each equation., Call-
ing, for the sake of brevity, F' this factor, we will have

foo F F sin® A
M = B O s Asin® Bain? O

s b F A F sin* B
gin? A sin® O sin® A sin® B gin®* G’

il F F sin? C

sin® A sin? B sin® A sin? B sin®* C’
sinfa  sin®b sin’e
- = - = -
sin* A sin? B sin® O
sin? A sin?B  sin? C
0 . 0 = Ll
sina sin*b sinc

hence,

or,

and, consequently,
sin A sinB sinC
nb~sme
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P o e Now, from this equation are easily inferred

of the sides 1
oy et 4 the proportions

opposite angles.
gin A : sin B :: sina : sinj,
gin A : sin C :: sina : sing¢,
gin B:ginC ::sinb:sine;
that is, In any spherical triangle the sines of the sides are to
one another as the sines of their opposile angles.
The first equation marked (11) gives

_cos A_—_-cos B cos C__
R e sin B sin C ’
and from the equation (1v) we have
e gin A sin b !
i sin B '’
i cos @ _ €08 A—cos Beos C
: sna_ snAsnCsind ’

that is,

cot a= !
= sin A sin C sin

7 (cos A —cos B cos C),

and, substituting instead of cos B its value given by the
second (11),
1
gin A sin C sin b
gin C cos O cos b),

(cos A—cos A cos® C —gin A

cot a=

(cos A sin? C—sin A gin C cos

C cos b),

=Tin A sin C sin 6

1
--éﬁ—n—g(cotAmn C—cos C cos b);
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hence,
cot @ sin b = cot A sin C—cos C cos b. (v),

We would have obtained, in like manner, from the
second (11),

cot b sin @ =cot B sin C—cos C cos a. (V).
From (g), (¢'), (§ 18,) we have

2 gin? }a =1—co8 4,
2 cos? a =1+ cos a.

Now, from the first (1), as we have already seen,

cos A—cos B cos C_
gin B gin C 2

COB a=

cos A —cos B cos C
sin B sin C

hence, 2 sin® ja =1—

=ain B sin C +cos B cos € —cos A
sin B sin C i

cos A —cos B cos C

2 ==
Looge Lt sin B sin C

sm B sin C—cos B cos C + cos A
gin B gin C

But from (k) (§ 18)
sin B sin C 4+ cos B cos C =cos (B—C),
sin B sin C—cos B cos C=—cos (B + C);

cos (B—C)—cos A
sin B gin C

cos A—cos (B+ Q)
sin Bsin C  °

hence, 2sin? o=

?

2 cos® Ja =
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Now, from (f7) (§ 17) we have

cos (B—C)—cos A =2sin (A + B — C) sin #A+C—B),
cos A — cos (B + C)=2sin }(A+B+C) sin }(B+C —A);
hence,

sin (A +B—0)sin §(A+C—B)

sin? ta = : .
ia sin B sin C

! ; (v1)-
sin (A+B+0)sin }B+C—A)

ot o = sin B sin C :

From the formulas marked (1) we have
gin? Ja =sin?® (90°—}A’) =cos’ }A/,
cos? }a = cos® (90°—}A’) =sin® A/,
sin (A +B—C)=sin (90°—3(@' + ¥'—¢’))=cos Ha' +

b}'_ c!)’

gin 3(A +C —B) =sin (90°— (@’ + ¢/ —b’)) = cos o' +
e/—1b"),

sin (A + B + C) =sin (270°—3(a/+ b/ + ¢/) = — cos §(a’+
b."+ C"),

cin (270°—d)=sin (180°—(d—90°)) =sin (d—90%) =—
sin (90°— d) = — cos d,
sin 3(B + C—A) =sin (90° — (¥’ + ¢/ —a’))=cos '+
¢'—a’),
sin B =sin (180°—¥)=sin ¥’ sin C=sin (180°—¢')=
sin ¢/, '

Making, now, the substitution in the preceding formulas
(v1), commencing with the second and writing the arcs
and angles without accents, as in a similar case of the
preceding number, we will have
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cos (a+b+c)cos }(b+e —a)
gin b sin ¢

gin’ JA =
(vi).
cos Ha+b—¢c)cos §(a+e ——b)

sin b sin ¢

cos® A =

‘We have seen already (§ 24) that the sum of the three
sides of any spherical triangle is always less than 360°;

hence, A + B + C) < 180°.

Again, (§ 25,) @+ b+ ¢ << 540° and >180°;

hence, Ha+ b + ¢) < 270° and > 90°,

Also, since (1 '
C'=180°— ¢, B’=180°— b, A/=180°—aq,

and (§ 24) < A4+ B,

we will have 180°— ¢ < 360°— (a + b),
and, consequently, a+b—c <<180°,
and Ha+ b—c) < 90°

We infer from these remarks that the second members
of the equations (vi) and (vir) must be positive in
all cases.

Fomules  of  § 28. Changing in the formulas (v1) @ into
Gauss and No- § and b into @, and, consequently also, A into

pier's Analogies.
B, and vice versd, we will have
e smg-(B-l—-A—C)am&(B—i-C A}
win’ §f = gin A sin C
T sin §(B+ A + C) sin (A 4+ C— B)
sin A sin C
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and, from these and the same equations (vI),

sin (A +B—CO)sin }(A+C—B)
gin B sin C

gin }a coaib—J

Jam IA+B+C)sin j(A+C—=B) _
sin A sin C

sini{A-{-C—B)Jsm}{A-!-B C)sm‘}(A+B+C)
sin C sin A sin B

sin J(A+B+C) sin }(B+C—4)
gin B sin C

cos a sin }bJ

Jsm«}(B +A—C) sin }(B+C—4) _

sin A sin C

sin i(B+C—A)JEiﬂ HA+B+C) sin 3B+ A-0)
gin C sin A sin B

Hence, also,
sin Ja cos 3= cos §a sin §b = X
[sin (A + C — B) —sin }(B + C—A)]

Jsini(A+B+ C) sin (A +B—C)
sin A sin B >

Now, from the fourth (#”), (§ 18,) we have
sin a eos 3b— cos 4a sin }b = sin }(z—b),
and from (), (§ 17,)

289

* gin 3(A+ C—B)—sin (B + O—A) = 2cos C sin }(A—B),

and, consequently,
T
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L [sin (A +C—B)—sin §(B +C—A)]=

2 -
;01? % gin 3(A — B).
Now, (¢, (§18,)
e

1 _[sin 3(A + O —B)—sin §(B + O—A)]=

s1n
sin 3(A—B)
~§n 30)

hence,

Finally, from the second (vI),

sin 3(A + B + C) sin 3(A+B—0) _ :
sin A sin B cos” §c;

[Fm3A+B+0) sin 3A+B—0) _
hence, J R ) = cos 4¢.

Substituting, now, all these values in the preceding
equation, we will have

sin 3(A—B)

sin §e—b)= "4, 3C

cos %e. (k).

In like manner, from the formulas (v1) and the values of
gin® 3b, cos® 30 inferred from them, we have

Z ¥ 1
cos }a cos }b+ sin ja sin 3b = =5 X

[sin 3(A + B + ©) +sin }(A + B—C)]

Jain IB+C—A) sin }(A+C—B),
gin A sin B ¢
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E
gm0
[sin 3(A + C — B) +sin 3(B + C — A)]

Jsln {A+B+ C) sin (A + B — C)
sin A sin B

gin 3o cos 3b + cos }a sin $b=

1
sin O
[sin 3(A +B + C) —sin }(A + B - C)]

Jmn}(B+C A) sin (A + C— B)
sin A sin B

cos 3a cos b —sin }a sin 3b =

Now, from (&'"), (§ 18,)

cos 3a cos 3b+ sin 3a sin 3b= cos }(a —b),

sin 3a cos }b + cos }a sin }b =sin § (2 + b),

cos }a cos }b —sin }a sin 3b = cos }(a + b),
and, from (), (), (§17,)
sin 3(A+ B + C)+ sin 3(A+B— C)=2sin }(A+ B)cos 1C,
sin }(A+ C—B)+sin }(B+ C—A)=2sin }C cos HA—B),
sin }(A+B+ C)—sin }(A+ B—C)=2cos }(A+ B) sin §C.

Again, besides the value of

Jalng(A+B+C) sin (A + B — C)
sin A gin B

already found from the first (vI), we have

= gin 4c.

Jsm IB+C—A)sin (A +C—B)
sin A sin B
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Observe also, that, from the same (g""), (§ 18,) besides

sin C
2 cos §C= W;

we have also 2 sin 3C =§;:_}% 3

therefore, making the substitutions, we will have

cos 3(a —b)= m—%%—@ sin e,
cos 3(A —B)

sin }(a + b) = — = 10

cOo8 40,
cos 3(A + B)

cos (e + b)) =—_ 10

gin de.

Now, from the preceding analogous formula (k), and
from the last, we easily obtain

sin }(@—b) sin }C= sin (A —B) cos i¢,

cos }(a —Db) sin $}C=sin 1(A + B) sin }¢, )
III).
sin §(a + b) cos }C=cos (A —B) cos ¢,

cos 3(a+b) cos 3C=cos }(A + B) sin je.

These equations are called the' formulas of Gauss,—the
name of their illustrious inventor. We may infer from
them, immediately, other formulas, first detected , by
Napier, and commonly known under the name of
Napier's analogies. Dividing, in fact, the first by the
second, and the third by the fourth, and then the first
by the third, and the second by the fourth, we have
immediately (§ 18) (),
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in (A —B
tg #(a—b) =2;2—%EE—+—B; cot ¢,

s $(A— B
tg a+ ) =i‘;—‘=§4&—-{:§% cot }e, L
in 3(a—b ;
wHA—B)= Sl 1510
cos }a—b)

tg 3G,

Observe, now, that from the equations marked (), we
have
a+b=2860°— (A’+ BY);

hence, 3(a+b)=180°—}(A’+ B)
and sin 3(a+b) = sin }(A'+ B).

Now, since }(A’+ B’+ C’) cannot amount to 180°, sin
3(A’+ BY) is certainly positive, and consequently also
the denominater of the third (1x) is always positive.
But tg 3C, also, is always positive; for, since C (§ 23)
cannot reach 180°, 1C is always less than 90°; hence,
tg 1C
&5 3@ + b)
the equivalent ratio inferred from the third (rx), that is,
g 3(A—B)
sin #(a—b)
#; (JA—B) and sin }(¢—¥b) to have the same sign ; and,
since 3(A — B), 3(a—b), either positive or negative, are
both less than 90°, tg 3(A — B) cannot have the same
sign as sin }(a — b), unless with A > B, also a> b; and
with A < B also a<b. Hence, in any spherical triangle,
The greater side is opposite to the greater angle, and the less side
to the less angle.

is essentially positive, and, for this reason,

, is always positive, which necessarily supposes

26%
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vormuiss . The resolution of spherical triangles is, in
jaiing ge **F some cases, rendered easier by using some
angles, called auxiliary angles, introduced in

some of the preceding formulas as follows :—

From the first formula marked (11) we have

cos A = cos B cos € +sin B cos C tg C cos a;

for cos C tg C =sin C.
Take now an angle ¢, such that we may have
tgCcosa=tg¢:

the preceding equation is then easily changed into

cos A =cos B cos C +sin B cos ki &
cosg
cos C
= cos B ¢ 1 i ;
e [cos B cos ¢ + sin B sin ¢]

Now (§ 18) (1”’), cos B cos ¢ +sin B sin ¢ = cos (B —¢);

L |
hence, cos A= zgcos (B—¢),
; (x).
and cos (B —¢) = ? cos A,
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From the first formula marked (1i1) we infer
cos a=sin b cos ctg ¢ cos A —cos b cos ¢

Make in it tgccos A=cotg;
we will have

cos @

cosa=gin b cos ¢ — —cos b cos ¢
Bln

COo8 ¢

(sin b cos ¢ —cos b sin ¢);

hence, (§ 18) ("),

cosa=: gin (b — ¢),
o (x1).
gin(b—¢)= m cosa,

We have from the first formula marked (v)

mtamM—msCmtb

gin b

=cot b [M-g—cos 0].

cos b

Make in it =cot ¢;
| we will have

cota=cotb [ain C c—?ﬂ — cos (J]
1 ¢

cot [sm C cos g—cos C sin tp]
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hence, (§ 18) (&),

! et sin
and gin (C—g) —
‘We obtain, also, from the same formula (v),

cotA=w +cot C cos b
sin C

o e [cota sin b +00 b];

cot a
cos O

and, making = tg ¢,

sin b gin ¢

eotA==cotC[ +coab]

cot C

sin b sin g + cos b cos ¢ |,
=il

and, consequently,

ot &= Coon b — ),
cos @
(x1II).

CO8
¥ cot A,

d & AN =
an cos (| )] 50

gomulss fr  § 30. The preceding formulas are ﬁpt to
&m"’g_‘}“”uﬂ‘;{‘_ resolve all sorts of spherical triangles. Some

: of them, however, may be considerably sim-
plified for right-angled triangles. Let, in fact, the
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angle a be equal to 90°: the first formula marked (i)
becomes

cos A =cos B cos C, } (x1v).

Hence, 1:co8B ::cosC: cosA;

that is, in the right-angled spherical triangle The radius
1 is to the cosine of one of the sides about the right angle as the
cosine of the other side is to the cosine of the hypothenuse.

With the same a=90°, the first formula marked (1IT)
becomes
cos b cose=sinbsinec cos A;

from which cotb=tgc'cosA,}(xv);
that is, 1:tge::cos A : cotb

Hence, The radius is to the tangent of one of the angles as
the cosine of the hypothenuse is to the cotangent of the other

angle.

In the same supposition we have, from the second (111),

¢os b =sin c cos B, }(xvx);
from the equation (1v),

¢in B=sin b sinA,}(xm);
from the first (v),

cot A sin C=cos C cos b;
or the equivalent,

tg C=1tg A cos b, } (xvIn);
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and from the second (V),

cot b = cot B sin O,
or the equivalent,

tg B=tgbsinC, }(xrx).

Hence, :sine :: cos B : cos b,

1

1:sinb :: sin A : sin B,
1:tgA ::co8 b: tg G,
1

: tg b::6in C: tg B

Observe that from the last equation (X1x) we infer

P, i
gin C= tg 5

and, since C, as well as any side of the spherical triangle,
is taken less than 180°, sin C, and, consequently, the

B
ratio %, is always positive, which necessarily supposes

the tangent of any one of the sides about the right angle
to be affected with the same sign as the tangent of its
opposite angle. In other words, when the side B is
< 90° the angle b also is <<90°; and when B is >90°b
also is > 90°,

The angles and arcs which, like the preceding, termi-
nate in the same quadrant,—either first or second,—are
said to be of the same kind; else, of a different kind.
Hence, since cos A is positive when in (X1v) we suppose
both B and C of the same kind; and cos A is negative
when B and C are of different kind; and cos A is posi-
tive when A is between 0° and 90°, negative when A is
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between 90° and 180°; it follows that the hypothenuse
of a spherical right-angled triangle is greater than a
quadrant only when the sides about the right angle are
of a different kind.

But from the equation (Xv) we have

_uotb
_tgc'

And here, also, cos A will be either positive or negative
according as b and ¢ are of the same or of a different
kind ; hence, the hypothenuse A cannot be greater than
90°, unless the angles b and ¢ adjacent to it are of a dif-
ferent kind.

Finally, from the equation (xviir) we have

cos

tg C
from which it follows that tg A will be positive when C
and b are of the same kind, and negative when C and b
are of a different kind ; which is the same as to say, the
hypothenuse is greater than 90° only when one of the
adjacent angles and the corresponding side are of a dif-
ferent kind.
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ARTICLE IL

RESOLUTION OF THE SPHERICAL TRIANGLES.

it § 81, The formulas of the preceding article
resolve the spherico-trigonometrical problem
in all cases, whenever the resolution is possible; and the
practical utility of this resolution belongs chiefly to
astronomy. We need not to say that the material work
of the resolution, when three of the elements are given
to find out the other three, does not differ from that of
plane triangles: it consists, namely, in applying the loga-
rithms to the formulas adapted for the various cases, and
finding then the corresponding arcs or angles.

The cases are six in number for common triangles, and
six also for right-angled triangles. We will here point
out the different cases, and what formulas are to be used
in every one of them to resolve the problem.

Different cases 3 52- For common spherical triangles the

Heal triamnar® given elements may be

(1.) The three sides.

(2.) The three angles.

(3.) Two sides and included angle.

(4.) One side and its adjacent angles.

(5.) Two sides and the angle opposite to one of them.
(6.) Two angles and the side opposite to one of them.

The first case (1) is resolved by the equations marked
(vi); for, although the angle @ only is expressed in the
first member, it may be changed into & and ¢ by a simple
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change of the disposition of the sides in the second
members.

The second case (2) is resolved by the equations (vir),
in like manner as the first.

The third (3) is resolved either by the formulas (1%)
and (x), or (x11) and (¥); for, from the first and second,
(1x), we have the sum and difference of the two unknown
angles, and consequently the angles themselyes; from (X)'
we obtain the unknown side when the two remaining
sides and the angles are given. The two angles may be
obtained also from (x11).

The fourth case (4) is resolved by the last two formulas
marked (15), and by (x1), in like manner as the pre-
ceding; the two sides, however, may be obtained also
from (x111).

In the fifth case (5), we find the angle included by the
given sides by means of the second equation (xttr), the
third side by the second (x), and the third angle by the
equation (1v): the last element, however, being given by
means of the sine, is ambiguous.

In the last case (6), we have a resolution analogous
to that of the preceding; by the gecond (x1r), which
gives the included side; by the second (x1), which gives
the third angle; and by the same equation (1v), which
ambiguously gives the last side.

Dt i), 308 The given elements for right-angled
;f%:;?ﬁmtg‘ﬂﬁ spherical triangles may be as follows :—

(1.) The hypothenuse and another side.
(2.) The hypothenuse and one of its adjacent angles.
(8.) The sides about the right angle.
(4.) The angles adjacent to the hypothenuse.
(5.) One of the sides about the right angle, and the
angle opposite to the other.
26



302 SPHERICAL TRIGONOMETRY.

(6.) One of the sides about the right angle, and its
opposite angle.

In the first of these cases (1), we find the third side by
means of the equation (XIv), the two remaining angles
by (xvir) and (xvirx).

In the second case (2), we find the third angle by (xv),
the two remaining sides by (xvir) and (xv1II).

Tn the third (8), we find the hypothenuse by (x1v), the
angles by (xI1x).

In the fourth (4), we find the hypothenuse by (xv), the
gides by (xvI).

In the fifth (5), we find the hypothenuse by (xvim),
the remaining side by (x1x), and the remaining angle
by (xvI).

In the last case (6), we find ambiguously the hypothe-
nuse by means of (xvir), the third side by (xIx), and the
third angle by (xvI).

it § 34, We subjoin here the elements of

some triangles, angles, and sides, so that,
taking three of the elements as given, and the other three
to be found in the different manners above mentioned,
each triangle will afford six examples. The angles will
be expressed by the small letters a, b, ¢, and their re-
spectively opposite sides by the capital letters A, B, C.

a = 62° 89 42/,
Angles. (b =124° 50’ 507,
¢ = 50° 81’ 42",

1st Triangle.
A= 81° 17,
Sides. (B =114° 3,
C = 59° 12/,
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a = 44° 18/,
Angles. (b =136° 40/,
e = 48° 48",
2d Triangle.
A= 62° 42,
Sides. (B =119° &/,
C= T38° 18
a = T1° 4%,
Angles. (b =125° 37/,
¢ = 49° 82,
8d Triangle.

A= 95° 56’ 10",
Sides. (B =121° 36’ 31",
C = 52° 50" 44".

e =121° 21,
Angles. (b = 34° 33,
c = 42° 57"

4th Triangle.
A= TT° 89 81",

Sides. (B = 40° 26’ 45",
0= 51° 12/ 21"

g







A TABLE

oF

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

g En gt

Remarg I.—The points or dots s are introduced instead of (s, to indicate
ot a first glance that from thence the two figures of the second column stand
in the line below. For example, let 1014, 1024 be two numbers the logarithms
of which are to be found. The first part of the number until the last figure
4 is to be looked for in the column marked N, and the last figure 4 in the
first line at the top or in the last at the bottom of the page. Now, the logarithm,
or rather the decimal part of the logarithm, of the number 1014 is given by
the figures in which the line opposite to 101 and the column below or above
4 intersect each other; but not the whole of it, for the first two ciphers are
to be taken from the column below or above 0, and are the first two ciphers
of the same column. Now, the first two ciphers of the colamn 0 in our
examples ave 00 and 01,—that is, 00 for the number 1014, and 01 for the num-
ber 1024, and the 01 instead of 00 is indicated by the dot e,

Remarg IL—In the trigonometrical tables the first and the last column
are the columns of minutes; the first belonging to the degrees at the top
and the last to the degrees below. The voice of the teacher, and practice,
will facilitate the use of the tables,

N. Log. N. Log. N. Log. N. Log.
1 O-000000 26 1414073 51 17075670 76 1880814
2 0301080 o 1481064 52 1716008 ik 1686401
8 0477121 28 1471568 53 1724276 78 1592005
4 0-BO20ED 20 1462505 54 1782304 T 1-807627
b 0-698GT0 80 1477121 55 1740503 80 1
[ 0778151 a1 1401362 73] 1748188 61 1008485
4 0-845008 a2 1-5051 50 &7 1755875 82 1015814
& O-BOEGA0 33 1-5185614 58 1762428 83 1019078
9 0964243 8L 1:581479 &0 1770852 84 1°924279

10 1000000 85 (1] 1778151 Eb 1920419

11 1041303 a6 1-550808 61 1-785530 &8 1-834408

12 1070181 a7 1-588202 a2 1-792302 L 1630619

14 1118048 38 1-670784 63 17690341 88 1044483

14 1-1468124 a0 1-501085 64 1-806181 &0 140300

15 1176061 40 1602060 [ 1612013 o0 1054248

16 1-2041 80 41 1-612784 06 1810544 51 1050041

17 1-2804400 42 1023240 67 1620075 2 1083788

18 14265273 43 1-633468 a8 1632509 a3 1008488

19 1278754 44 1-643453 60 1-835840 04 1673128

20 1301080 45 1653213 0 1845008 95 1877724

1 44 1662758 i ! 1851258 96 1982271
2 i 47 1+672008 72 1867343 a7 1086772

23 1 TR 48 1-651241 73 1804523 a8 1961228

24 1 ih 40 1600196 T4 1-860232 1) 105685

25 1367040 &0 1 8GEAT0 76 1875081 100 2000000

u 26% 1
F v




2 A TABLE OF LOGARITHMS FROM 1 TO 10,000.
N. 0 1 2 3 4 5 6 T B 91D
100 | 000000 | 0434 | 0868 | 1301 | 1734 | 2166 | 2508 | 8020 | 3461 | 8801 | 42
101 4321 | 4761 | 5181 | 5600 | 6038 | Bd66 | 6804 | VAL | TT4E | BIT4 | 4
102 8600 | 0026 | 9451 | OST6 | 300 | 724 | 1147 | 1570 | 1008 | W15 | 44
108 | 012837 | 8250 | 2680 | 4100 | 4521 | 4940 | 5380 | BYTO | 6107 | 6616 | 40
104 7023 | 7451 | 7808 | 8284 | BTOO0 | 0116 | 9552 | O0D4T | 381 | 775 | 416
105 | 021180 | 1603 | 2016 | 2428 | 2R41 | A252 | 8664 | 4075 | 4486 | 4806 | 412
106 6304 | 6715 | 6125 | 6533 | 6042 | 7850 | 7757 | 8164 | SBGTL | BOVR | 408
107 G884 | O78D | o105 | 600 | 1004 | 1408 | 1513 | 2218 | 2610 | 501 | 404
108 | 033424 | 8520 | 4227 | 4628 | 5020 | 5430 | 5830 | 8240 | 06620 | 7028 | 400
108 7426 | 7825 | 8223 | S020 | W17 | 0414 | DSI1 | 207 | 802 | o008 | 206
110 | 041803 | 1787 | 2182 | 2576 | 2000 | 3362 | 3765 | 4148 | 4540 | 4032 | 808
111 5333 | 6714 | 0105 | 6495 | 6886 | 7275 | TO64 | 80563 | B442 | 8830 | 380
112 218 | 0606 | 0005 | 380 | #760 | 1153 | 1588 | 1024 | 2309 | 9604 | 2S¢
113 | 083078 | B463 | 3846 | 4230 | 4013 | 4006 | 5378 | 5T00 | 6142 | pg2d | a2
114 6005 | 7280 | 7066 | S046 | 8426 | 8805 | 9185 | 0563 | 942 579
115 | 060098 | 1075 | 1452 | 1820 | 2206 | 2682 | 2058 | B384 | 8700 | 4083 | 876
116 4458 | 4832 | 5206 | 5580 | GOGA | 6526 | o009 | TOTL [ T44D | 7815 | a2
117 8186 | Bo5T | 8028 | 9208 | 0068 | eeds | 407 | 776 | 11456 | 1514 | 360
118 | 071882 | 2250 | 2617 | 2085 | 3352 | B718 | 4085 | 4451 | 4816 | 5182 | S66
118 sp12 | e27e 7004 | 7368 | Y781 | Bopd | 8457 19 | 208
120 | 070181 | 9543 #2006 «O87 | 1847 | ITOT | 2067 | 2426 | 560
121 | 082785 | 214 | 2503 4219 76 | 4034 | 5201 | D64T | G004 | 8T
122 6360 | 6716 | TO71 | 7426 | §US1 | 8136 8845 | 0108 | @552 | 45
123 0905 | #2068 | o011 | ep63 | 1315 | 1667 | 2018 | 2870 | 2721 | 4071 | 851
124 22 | 8772 | 4122 | 4471 | 4820 | 5109 | 5518 | GRes | 6216 | 6562 | ode
125 6010 | 7257 | Tood | 7951 | B208 | sSeld | 5000 | 0335 | 96R1 | w28 | 346
126 | 100871 | 0715 | 1050 | 1408 | 1747 | 2001 o577 | 8119 | S | M3
127 8804 | 4148 | 4487 | 4825 | 56160 | 5510 | 6851 | @101 | 6531 | 6871 | 240
128 7210 | 7540 | 788 | 8227 | 8505 | 85004 | 9241 | 957D | 9014 | e B
120 | 110500 | 0926 | 1263 | 1500 | 1084 | 29270 | 2605 | 2040 | 3275 | 5009 | 336
150 | 113043 | 4277 | 4011 | dodd | 5278 | 5011 | 5948 | 6276 | 6608 | eodo | 393
1351 T 7603 | Te34 | 8266 | 8505 | BO26 | 9250 | 04686 | 9915 | «245 | 450 |
132 | 120574 | 0003 | 1251 | 1560 | 1888 | 2216 | 2544 | 2671 | 8198 | 552 | @28
133 8852 | 4178 | 4504 | 4830 | 6160 | G481 | GR0G | 6181 | 456 | 6781 | 826
134 TI106 | T429 | 7753 | BOTO | S300 | B722 | 0045 | 568 | 9690 | eel2 | 023
185 | 180534 | 0066 | 00TT | 1208 | 1410 | 1080 | 2260 | 2580 | 2000 | 8219 | #21
136 3639 | 4858 | 4177 | 4496 | 4814 | 5183 | H4a6l | 6760 | OOSG | G403 | 918
137 6721 | TO4T | Tao4 | TETL | TOST | 83083 | 8618 9240 | 9oe4 | 216
138 0879 | #1904 | 508 | o822 | 1186 | 1450 | 1763 | 2076 | 2980 | 2702 | 414
180 | 148015 | 2327 | 2030 | 8051 | 4268 | 4474 6106 | H50T | 5818 | 811
140 | 146128 | 6438 | 6748 | 7068 | 7367 | 7076 | 7985 | 8 8011 | 300
141 9219 | 9527 | 9835 | 142 | o440 | o756 | 1063 | 1370 | 1676 | 1082 | 207
142 | 152288 | 2504 | 2000 | 3205 | S870 | 8815 | 4120 | 4424 | 4728 | 5082 | 805
143 5330 | 6640 | 5943 | @246 | 6540 | 6862 | 7164 | 7457 | 7769 | soml | 803
144 8302 | BOGL | SO6D | 0206 | 9567 | 9S65 | #1068 | 4090 | 700 | 1068 | 201
145 | 161368 | 1067 | 1967 | 2200 | 2604 | 2863 | 8161 | 8460 | 87568 | 4085 | 209
146 453 4947 | 5244 | 5641 | DSGS | 6134 | 6480 | 6736 | Fo22 | 2w
147 T8IT | TOI3 | TO0B | 8205 | £407 | 8702 | 0086 | 9380 | 9674 | poeR | 205
148 | 170262 | 06565 | OS458 | 1141 | 1434 | 1726 | 2019 | 2311 | 2603 | 2805 | 208
149 186 | S478 | 3760 | 4060 | 4361 | 4641 | 4982 | 5222 | 0b1Z | ps02 | 281
150 76081 6381 | 6670 | €050 | T248 | 7596 | TH26 | 8113 | B401 | BORD | 280
151 BOTT | 9204 | 0552 | 0830 | #1920 | o413 | o000 | oURS | 1272 | 1558 | 287
152 | 181844 | 2120 | 2415 | 2700 | 2085 | 8270 | 8555 | 2880 | 4123 | 407 | o286
158 4001 | 4075 | 52560 | 5542 | 5825 | 6108 | 6391 | 6674 7290 | 268
154 TH21 | THOZ | SOSA | 8306 | S64T7 | 8028 | 0200 | 0490 | U771 | es51 | 281
155 | 100332 | 0612 | 0892 | 1171 | 1451 | 1780 | 2010 | 2089 2546 | 270
153 3125 49681 | 8050 | 4237 | 4514 | 4702 | 5069 | 63468 | Hoos | o8
157 6176 | 6453 | 6720 | YOO5 | 7281 | 7ha6 | 7R82 | B10T | sam2 | 276
158 8057 | 8032 | 0200 | 0481 | 0765 | es20 | 308 | 57T | 850 | 1124 | 294
159 | 201307 | 1670 | 1043 | 2216 | 2488 | 27e1 | 2038 | 8805 | 3697 | 2848 | o272
N. 0 1 2 3 4 b 6 7 8 gD




A TABLE OF LOGARITHMS FROM 1 TO 10,000. 3
!

N. i i - 2 3 4 5 6 7 8 9 |D

160 | 204120 | 4801 | 4663 | 4934 | 5204 | 5475 | 5746 | 6018 | 6286 | 6556 | oy1

| 161 6826 | 7006 | 7365 | T34 | 7004 | 8173 | 8441 | 8710 | s079 | 0247 | 2ep
| 162 0515 | 9753 | eeSl | «310 | o588 | 1121 | 1388 | 1854 | 1041 | 267
163 | 712188 2720 | 2088 | 3252 | 4518 | 8783 | 4040 | 4314 | 4570 | 268

164 4844 | 5100 | 5378 | 5638 | 5002 | 6166 | 6130 | @sod | 6057 | 7221 | o84

165 T484 | 7747 | 8010 | 8273 | 8538 9060 | 0323 | 0585 | 0846 | 262

166 | 220108 | 0370 | 0631 | 0592 | 1153 | 1414 | 1675 | 1938 | 2108 | 2456 | 261

167 2716 | 2076 | 8236 | 3496 | 3755 | 4015 | 4274 4702 | 5061 | 250

{ 168 5300 | 5508 | 5520 | POS4 6600 | 6858 | 7115 | 7872 | 7630 | 258
168 7887 | 8144 | B400 | 8857 | 8913 | 9170 | 426 | 9682 | 9038 | 103 | 256

170 | 280440 | o704 | 0060 | 1215 | 1470 | 1724 | 1070 2488 | 2742 | 254

m 2008 | 2250 | 8504 | 2757 | 4011 | 4264 | 4517 | 4770 | 5023 | 5216 | 253

172 55628 | 5781 | 6033 | 6285 | 6537 | €780 | §0A1 | 7202 | 7544 | 7795 | 252

178 8046 | 82 8548 | 870 | 9040 | 9200 | 0550 P 250

174 | 240549 | 0790 | 1048 | 1297 | 1546 | 1795 | 2044 | 2203 | 2541 | 2700 | 249

176 2088 | 8280 | 4584 | 2782 | 4080 | 4277 | 4525°| 4772 | 5010 | 5286 | 2us

178 5513 | 5750 | 6006 | @252 | 6400 | 6745 | 6901 | 7237 | 7482 | 7128 | 24a

17 7973 | 82190 | 8461 | 8700 | 8054 | 0108 | O443 | 0687 | 0032 | 176 | 245

178 | 250420 | oBs4 | 0908 | 1151 | 1205 | 1638 | 1881 | 2125 | 2368 | 2610 | 243

~ | 179 2853 | 8006 | B398 | 8580 | 8822 | 4064 | 4906 | 4548 | 4700 | 5081 | 242

180 | 256273 | 6514 | 6755 | 5006 | e237 | 6477 | €718 | @058 | 7ies | T4S0 | 241

181 Te79 | 7918 | 8168 | 298 | 8687 | 887 | 9116 9504 | 9838 | 239

182 | 2680071 | 0810 | Ob4S | 0787 | 1025 1501 | 1780 | 1976 | 2314 | 288

! 185 2151 | 2088 | 2025 | 8162 | 3300 | 8636 | 8873 | 4100 | 4846 | 4582 | oay
184 4818 | 5054 | 5900 | 5525 | A761 | 5006 | 6232 | @487 | ovo2 | 687 | 2a5

185 7172 | 7406 | 7641 | 7875 | S110 | 8344 | 8578 | 8812 | 0046 | 0270 | 234

186 0513 | 9746 | 0080 | o213 | 448 | 670 | #4012 | 1144 | 1377 | 1600 | 238

187 | 271842 | 2074 | 2306 | 2588 | 2770 | 001 | 3233 | 8484 | ge0e | 8927 | 232

188 4158 | 4380 | 4820 | 4850 | 5081 | 8311 | 6642 | 5772 | 6002 | 6232 | 230

| 189 6692 | 6021 | 7151 | 7SRO | YE00 | 7888 | 8067 | 8208 | 8525 | 220
! 190 | 278754 | ses2 | o1 0007 | 0505 | o123 | o851 | o578 | #8508 | 228
101 | 251083 | 1261 | 1488 | 1715 | 1942 | 2160 | 2306 2840 | 8076 | 227

192 8301 | 8527 | 8753 | 8070 | 4206 | 4481 | 4656 | 4882 | 5107 298

198 8557 | 5782 | 600T 6456 | 6681 | €006 | 7180 | 7354 | 7578 | 225

194 7802 80248 R240 8473 RO94 8920 0143 W580 0512 223

105 0257 | 0480 | 0702 | 0025 | 1147 | 1360 | 1591 | 1813 | 2034 | 202

106 2056 | 2478 | 2600 | 2020 | 3141 8584 | 8804 | 4025 | 4246 | 231

197 4406 | 4687 | 4007 | 6127 | 5347 | 0507 | 67HT | €007 | 6226 | 6446 | 220

198 6665 | 0884 | 7104 | 7323 | 7542 | 7761 | 7070 | 8108 | 8416 | 8635 | Z10

199 8853 | 9071 0507 | 9725 | 0943 | o161 | 378 | #5095 | 518 | 2i8

200 | s01030 | 1247 | 1464 | 1681 | 1808 | 2114 | 2331 | 2547 | 2764 | 2080 | 7

201 3196 | 9412 | 9828 | 8844 | 4059 | 4275 | 4401 | 4706 | 4921 | 5136 | Zie

202 5351 | 6666 | 6781 | 5996 | 6211 | 6425 7008 | 7282 | 215

203 7406 | 7710 | 7924 | 8137 | $351 | 8504 75 | 8991 | 9204 | o417 | 218

204 0843 | weif | 268 | o481 | «093 | #9006 | 1118 | 1330 | 1542 | 212

205 | 811764 | 1968 | 2177 | 2380 | 2600 | 2812 | 8023 3445 | 3650 | 211

206 3867 | 4078 | 4250 | 4400 | 4710 | 4920 | 5130 | 5340 | 5551 | bYe0 | 210

207 5070 | €180 | 6390 | 6699 | 6800 | 7ou8 | 7227 | 7486 | Tese | 7854 | 200

208 8063 | 8272 | S481 | 8689 | 8808 | 9106 | 9814 | 9522 | o7a0 | pass | 208

20p | 320146 | 0854 | 0562 | 0760 | 0077 | 1184 | 1801 | 1508 | 1805 | 2012 | 207

210 | 322710 | 2426 | 2033 | 2880 3871 208

211 4982 | 4488 | 4004 | 4800 | 5105 | 5810 | 6616 | 6721 | 5026 | 6131 | 208

a2 6336 | 6541 | 0745 | 6950 | 71656 | 7330 | 7508 7972 | 8176 | 204

213 | 8380 | 8583 | 877 | 8091 | 9104 | 9395 | 9001 | 0505 | eeeS | o211 | 208

214 | ssod14 | oe17 { 0810 | 1022 | 1225 | 1427 | 1630 | 1sa2 2206 | 202

216 2408 | 2040 | 2842 | 044 | 8246 | 3447 | 3640 4051 | 4253 | 202

216 | 4454 | 4655 | 4550 | 5087 | 5257 | 5408 | 5058 | 5859 | 059 | 6280 | 201

217 8460 | 6060 | 6860 | TOBO | 7200 | 7450 | 7659 | 7858 | 8058 | 8257 | 200

218 8450 | 8636 | B855 | G054 | 9258 | 9451 | D650 wed] | o240 | 199

219 0642 | 0841 | 1089 | 1237 | 1485 | 1682 | 1830 | 2028 | 2225 | 108

gl 8 sl Bl sl ad s e lw ] 8] 9]




4 A TABLE OF LOGARITHMS FROM 1 TO 10,000.
o v e
900 | 842423 | 2620 | 2817 | 3014 | 3212 8400 | 8606 | 3802 | 8999 | 4106 | 107
221 4392 | 4589 | 47s5 | 49081 | 5178 | 5374 | BOTO | 5764 | 5962 | 6157 | 106
222 6353 | 6549 | 6744 | 6039 | T185 | 7830 | 7525 7720 | 7915 | 8110 | 195
223 8305 | 8500 | 8604 | 8880 | Q083 | 9278 | 8473 D66 wedd | 104
224 | -850248 | 0442 | 0636 | 0820 | 1025 | 1218 1410 | 1603 | 1708 | 1680 | 163
225 2183 | 2376 | 2508 | 2761 | 2054 | 8147 | 8430 | 8532 | ST | 3016 | 163
226 4108 | 4301 | 4493 | 46585 | 4876 5200 | 5452 | 643 102
27 g026 | 6217 | 6408 | 6599 | 6700 | G881 7172 | 7863 | 7664 | TT4 | 10
228 7945 | B125 | 8316 | Sp0o | 869G | BESE 76 | 02064 | 04568 | D6 | 190
200 D835 | ee25 | 215 | ed0d | #5603 | €753 «072 | 1161 | 1850 | 1820 | 180
230 | 861728 | 1017 | 2104 2482 | 2071 | 2850 | 3048 424 | 188
251 3612 4176 | 4363 | 4351 | 4730 | 4020 | 5113 | 5301 | 188
232 5458 | GGTH | 5802 | 6040 | 0236 | 6423 | 6610 6706 | 6083 | T160 | 187
33 7366 | 7642 | 772 | 7015 | 8101 | B287 | 8473 B66O | 8845 | G000 | 186
25 | 0216 | 041 | 9887 | 0772 | 9955 | #143 | €828 | o513 | €008 | #583 | 185
o35 | s7i0e8 | 1258 | 1437 | 1622 | 1806 | 1091 | 2175 | 2360 | 2644 | 2008 18
256 2012 | 2006 | 3280 | G404 | B047 | 2831 | 4015 410 4382 | 4606 | 184
gar 2748 | 4032 | 5115 | 5208 | 5481 | Hese | 5846 | 6020 | €212 | 6304 | 183
238 BT | Groe | 6942 | TI24 | 7806 | T488 | 7670 | 7T8BD | B034 | K216 | 182
230 8398 | S5S0 | STl | 5043 | 0124 | 080G | G4BT | 0068 OR40 | esdd | 151
240 | 880211 | 08302 | 0573 | 0754 0934 | 1115 | 1206 | 1496 | 1660 | 1837 | 181
24 oo17 | 2107 | 2377 | 2067 | 2767 | 20177 | S0 | 8T 4466 | 2636 | 180
243 8815 | 2005 | 4174 | 4353 | 4503 | 4712 | 4801 | G070 g | 428 | 179
243 5606 | 5785 | oG4 | @142 | 0321 | 6400 | A6TT | GBGG | TOO4 | T2 | 178
244 wao0 | 7868 | 7746 | 7923 | 8101 | 8279 | 8456 | B63L | 6811 | 8089 | 178
245 | 0166 | © 9520 | 0098 | 9575 | eal | «228 | o406 | «5B2 | o750 | 177
046 | 800035 | 1112 | 1288 | 1464 | 1641 | 1817 1093 | 2169 | 2345 | 2621 | 176
247 ogaT | 2878 | 8048 | 8224 | 3400 | d5T5 | STl | 026 4101 | 47 | 176
248 1452 | 4627 | 4802 | 4977 | 6152 | 6826 | HGO1 | 5OT6 | GBSO | 6025 | 176
249 6100 | 6374 0722 7071 | 7245 | 7419 | TE2 | TVEB | 174
a5 | 807040 | 8114 | B28T 8634 | BROS | 8981 | 9154 | 9328 | 9401 | 173
251 o674 7 | ee20 | o102 | #3865 | eB38 | oT11 | 883 | 1066 | 1228 | 173
242 | 401401 | 1573 | 1745 | 1017 | 2080 | 2261 2005 | 2177 | 2040 | 172
253 8131 | 8202 #6356 | 8807 | 8078 | 4140 | 4820 | 402 | 4663 | 171
254 4834 | 5005 | 6176 | 5346 | 5517 | HOSB | 58S | 6020 | 6199 6370 | 171
256 8540 | @710 | 6881 | FO51 | 7221 | 70l TBE% 7181 | 701 | BOT0 | 170
250 8240 | 8410 | ®570 | 8740 | 8018 | 08T | 0267 | 0426.| 8685 | 0764 | 160
as57 0099 | o102 | 271 | o440 | o009 | o777 | 846 [ 1114 | 1283 | 1451 | 100
958 | 411620 | 1788 | 1056 | 2124 | 2203 | 2401 | 2029 | 2796 2004 | 4132 | 168
259 8800 | B467 5 | 3803 | 8970 | 4187 | 4805 | 4472 | 4680 | 4806 | 167
o0 | 414ors | 5140 | B30T | 5474 | 5641 | BROS | 5074 | 6141 | G308 | 6474 | 167
261 G641, 8807 | 0073 | 7130 | 7306 | 7472 | TeBR | 7804 | 7970 | 8135 | 168
262 &301'| 8447 | K034 | BTOR | BOGL | 0120 | 0205 06256 | 0791 | 165
263 0058 | o121 | 286 | o451 | o618 | o781 | o045 | 1110 | 1275 | 1439 | 165
oat | 421604 | 1788 | 1083 | 2007 | 2261 | 2426 | 2600 | 2754 | 2018 8082 | 1M
265 a4 | 8410 | 8574 | 8797 | 8001 | 40856 | 4298 | 4302 | 4555 | 4718 | 184
266 4882 | 5045 | 5208 | 5871 | 6584 | HEOT | 58OO | 0023 | 6188 g | 163
67 6511 | 0674 | 6830 7161 | 7324 | 74868 | 7648 | THI1 | 7973 | 162
208 §135 | 8207 | Re50 | ®621 | 8783 | S04d4 | 0106 | 9208 | 0420 | 0661 | 102
260 0752 | 0014 | ee75 | #2306 | o308 | o550 | #720 | 881 | 1042 | 1208 | 161
200 | 431864 | 1525 | 1685 | 1846 | 2007 | 2167 0308 | 2488 | 2040 | 2808 | 161
271 2960 | 8180 | 2200 | 3450 | 8610 | B770 | 3030 | 4000 | 4240 | 400 | 160
72 1560 | 4729 | 4888 | 5048 | 5207 | 6367 | 5526 | 5685 | 5844 | 0004 | 160
23 6163 | 6322 | 6481 | 6640 | 6798 | @057 | 7116 | 7275 | 7483 | TAGD | 150
04 weal | 7000 | soo7 | 8226% sa3s4 | 8542 | BTO1 | €850 | 9017 | 90175 | 158
275 gans | 0491 | opds | 9806 | 9084 | 122 | #2790 | 487 | #5604 | o752 | 158
276 | 440909 | lo66 | 1224 | 1881 | 1538 | 1005 1852 | 2008 | 2166 | 2333 | 167
71 o480 | 237 | 2793 | 2050 | 8106 | 8203 | 8410 | 8576 | 8732 | 9880 | 167
278 1045 | 2201 | 4357 | 4513 | 4060 | 4825 | 4081 | 5187 | 5203 | 540 | 1566
e s604 | 6760 | sw15 | o071 | 6226 | @ss2 | 6537 | 6002 | 6848 | T008 | 155
N. 0 1 2 3 -+ b ] T 8 TR ¢




A TABLE OF LOGARITHMS FROM 1 TO 10,000.

Ry B IPTIE V8|l tel|*sl > LB 19
280 | 447158 | 7813 | 7468 | 7623 | 7778 | 7033 | Ross | 8242 | 8307 | 8652
281 8708 | 8861 | 0015 | 9170 | 9324 | 9478 | 9633 | OTST | 0941 | eedd
252 | 450240 | 0403 | 0557 | 0311 | 0865 | 1018 | 1152 | 1326 | 1479 | 1633
283 1788 | 1040 | 2083 | 2247 | 2400 | 2553 | 2706 | 9850 | 8012 | 8166
284 8318 | 3471 | 8624 | 8777 | 9930 | 4052 | 4235 | 4357 | 4540 | 4692
285 4845 | 4907 | 5150 | 5302 | 5454 | 5000 | 6768 | 5010 | 6062 | 6214
286 6366 | 6518 | eg70 | eszl | ewid | 7125 | 7376 | 1428 | AV | TTal
287 7882 | 8033 | B1s4 | 8380 | 8487 | 8038 | 87RO | 040 | G091 | 0242
288 0302 | 0543 | 9604 | 9845 oldts | #2096 7 | o507 | o748
280 | 460898 | 1048 | 1108 | 1348 | 1499 | 1640 | 1700 | 1948 | 2008
200 | 462308 | 2548 | 2807 | 2847 | 2907 | S48 8504 | 8744
291 8803 | 4042 | 4101 4400 | 4029 | 4788 | 4008 | 5085
202 5383 | 55632 5520 | 5077 | 6126 | 6274 | 423 | 6571 | 6719
203 6868 | 7018 | 7164 | 7312 | 7460 | 7608 | 7756 | 7004 | 8052 | 8200
204 8347 | 8405 | 8643 | 8700 | 8038 | 0085 0527 | 9675
205 0060 | 116 | #2863 | o410 | o557 | «704 | 851 | #00S | 1145
206 | 471202 | 1438 | 1585 | 1732 1878 | Q025 | 2171 | 2318 | 2404 | 2610
207 56 8040 | 3105 | 3341 | 9487 8779 | 8025 | 4071
208 4216 | 4882 | 4508 | 4853 | 4700 | 4044 | 5000 | 5235 | 6881 | 5526
290 5671 | 5816 | 5962 | 6107 | 6252 | 6307 | 6542 | 60ST | 6832 | 6070
800 | 477121 | 7206 | 7411 | 7655 7844 | o0 | 8133 | 8278 | 8422
301 RO0G 1 9143 | p2s7 | o481 | 0475 0 | paen
802 | 480007 | 0151 0582 | 0725 | O%ep | 1012 | 1156 | 1
303 1443 | 1586 | 1720 | 1872 | 2016 | 2150 | 2302 2588 | 21m
804 2874 | 8016 | 8150 8445 | 3587 | 8730 | 8872 | 4015 | 4157
805 4443 | 4585 | 4727 | 4%¢0 | 5011 | 5153 | 5205 | 5487 | 55T
808 5721 | 5463 | 06005 | 6147 | 6280 | 6430 | 6572 | 6714 | @RG5
807 7138 | 7280 | 7421 | 7503 | 7704 | 78456 | TES6 | 8127 | 8280 | 8410
208 8551 8823 | 8ov4 | o114 03068 7 | 0818
200 GO58 | e | o230 | 350 | #520 | efifl | 801 | 041 | 1081 | 1222
910 | 401262 | 1502 | 1642 | 1782 | 1022 | 2062 | 2201 | o341 | 2481 | 2e:
311 2760 | 2900 | 8040 | 3170 | 8319 | 3458 | 8507 | sTaT | B8VE | 4015
4156 | 4204 | 4498 | 4572 | 4711 | 4850 | 4089 | 5128 | G267
313 5544 | 5683 | 5822 | 5960 | 6099 6376 | 8615 | 6053 | 6791
814 7068 | 7208 | 7844 | 7453 | 7021 | 7759 | 7807 | 8085 | 8173
815 £311 | 8448 | 8550 | 8724 | 8862 | 8000 | 0187 | 9275 | 0412
316 DOST | 0924 | 0062 | DO | o236 | 074 | o511 | o048 | 755 | #022
817 | 501050 | 1196 | 1333 | 1470 | 1607 | 1744 | 1880 | 201" 2154 | 201
818 o427 | 2504 | 2700 | 9837 | 2073 | 810 | 8246 8518 | 8855
819 arol | @027 | 4063 | 4100 | 4335 | 4471 | 4007 | 4743 | 4878 | S04
820 | 505150 | 5286 | D421 | 6557 | 6603 | 5828 | pO64 | 600D | 6234 | 6370
821 6640 | 6776 | 6911 | 7048 | 7181 | 7416 | 7451 | 7586 | 7791
822 Y866 | Tl | 8120 | s260 | 8395 | 8 8004 | 8700 | 8034
23 G857 | 471 | 0000 | 0740 | D574 | eeef) | o143 | 277 | ed11
824 | 510645 | 0679 | 0813 | op47 | 1081 | 1215 | 1840 | 1482 | 1616 | 1760
525 1 2017 | 2181 2418 | 2661 | 2084 | 2818 | 2051 | 3084
526 3218 | 2351 | a484 | 3617 | 8750 | 8883 | 4016 | 4140 | 4282 | 4414
327 4548 | 4681 | 4813 | 4046 | 5079 | 5211 | So4d | 5476 | 6609 | 5741
328 5874 | 6006 | 6130 | 6271 | 6403 | €435 | 6608 | 6800 | 6002 | TOG4
420 7106 | 7828 | 7460 | 7602 | 7724 | 7835 | Tes7 | 119 | 8251 | R882
830 | 518514 | S48 | BYTT | &909 | 9040 | 9171 044
331 : 9959 | weB0 | o221 | 353 of1d | o745 | #8576 | 1007
332 | p2nas | 1zen | 1400 | 1580 | 1661 | 1702 | 1v22 | 2063 | 2183 | 2814
a4d o575 | 2705 | 2835 | 2006 | 8005 | 5226 | 305¢ | 8488 | 3616
a4 o740 | 8876 | 4006 | 4136 | 4206 | 4896 | 4520 | 4050 | 4785 | 4015
B35 045 | B1T4 5o63 | 6693 | 5822 | 5051 | G081 | @210
436 6539 | o400 | @508 | e7e7 | 68a6 | €085 | 7114 | 7243 | 7272 | 7501
847 7630 | 7750 | TSSS | 8076 | S145 | B274 | R402 | £53] | eRe0 | BYS8
338 8017 | 9045 | otd | go2 | o400 | 9859 | 0687 | o815 | 94 | w2
356 | 510200 | 0828 | 0456 | 0554 | 0712 | 0840 | 0068 | 1096 | 1228 | 1851
N. 0 1 2 3 4 5 6 7 8 9




4

A TABLE OF LOGARITHMS FROM 1 TO 10,000.

PEREEBEEEE BUREIERREE

531470 | 1607 | 1734 | 1862 | 1000 | 2117 2245 | 23872 | 2500 | 2827
9754 | 2882 | 8000 | 8136 | 8264 | Su91 | 8618 | 3640 8772 | 3500

I 5547 | B6T4 | 5800 | 5927 | 0053 | 6180 | 6306 | 6452
@568 | 6685 | 6811 | 6987 | 7083 | 7189 | 7515 | Tddl THET | Thu3
7819 | 7045 | BOT1 | 8197 B574 | 8600 | S8I5 | 8BSl
9076 | 9202 0452 | OB7S | 9705 | 0820 | 0054 | ee7D | e204

4192 | 4318 4564 | 4688 | 4812 | 4038 | 5000 | 5183
5307 | 5481 | 5566 | BGTS 5926 | D040 | 6172 | 6206 | 6410
0543 6780 | 6913 | 7036 | 7168 | 7282 | 7406 | 7620 | 762
7775 | 7808 | 8021 | B144 | 8267 | 8380 | 8512 | 5635 B748 | 8881
9003 | 0126 | 9240 | 0371 gala | 9789 | 8501 o106

2668 | 2790 | 201 8155 | 8276 | B398 | 3519 | BG40 | 4762
2383 196 | 4247 | 4868 | 4450 | 4610 | 4781 | 4352 | 4073
604 | BB 5167 | 5578 | 5690 | 5820 | BO40 | GOGL | 6152
550303 cood | 6785 7028 | 7146 | 7207 | T3AT
7507 | T 7748 | 7869 | 7988 | 8108 | B228 | 8340 8680
s700 | 8520 | 8048 | Q068 | D188 | 0308 | 0428 9607 | 0787
on07 | ee20 | o140 | 205 | 355 o624 | o743 | o863 | 052
seiiol | 1221 | 1340 | 1450 | 1678 | 1608 | 1817 | 1086 | 2065 | 2174
2412 | 2531 2769 | 2887 | 3006 | 8125 | A2 | 3362

8481 | 8600 | 8718 | 8837 | 3055 | 4074 | 4192 1| 4420 | 4548
4666 784 | 4003 | 5021 | 513w | 52567, | 5376 | B404 | HOI2 | 6730
5966 | 0084 | 6202 6487 | €665 | 6673 | €791 | 000D

9374 | 94901 0725 | D842 | 9050 | ee70 | 103 o420
570543 | 0660 | 0776 | 0503 | 1010 | 1126 | 1243 | 1340 1476 [ 1502
1700 | 1825 | 1042 | 2058 | 2174 | 2201 | 2407 | 2523 2755
2872 | 2088 | 3104 | 8220 8568 | 9684 | 3800 | 8015

6341 | 0457 | 6872 8502 | 6017 | 7032 | TI47 | 7262 | 7817

7492 | 7607 | 7722 | 7836 | 7051 | BOGG | 8181 8410 | 85626

B639 | 8754 | 8568 0212 | 0320 | 0441 | 9656
670784 eel2 | #1206 | o241 i00 | e400 | 083 811

7711 | 7823 | 7935 | S047 | 8160 | 8272 | B3sd 8608 | 8720
8044 | poaa | w167 | 9270 | 9301 | 8503 | 0615 | 0726 | 9RIS
9050 | ee0l | #173 | 284 | «306 | 60T | ef10 | 730 =003

501085 | 1176 | 1257 | 1309 | 1510 | 1621 | 1732 | 1843 | 1055
2177 8 | 2399 | 2510 | 2021 | 2732 | 2843 | 2054 | B0G4 | 817H
8286 | 3807 8 | 3720 | 8540 | 8950 | 4061 | 4171 | 4282
4393 4614 | 4724 | 4584 | 4045 | B0SS | 5165 | 5276 | D4SH
m 6608 | 5717 | BSZT | GBGT | 67T | 6147 T | 8877 | 64T
G707 | G817 | BO27 | TOS7 | Tl46 | 7. qang | 7476 | TH86

TEO5 | THOD | TO14 | BO24 | 8134 8353 | 8462 | BOTZ
s791 | 8000 | 9000 | 9110 | 9228 | 9337 | D446 | 94E6 | 9665 | OTTL
9883 | €902 | 101 | #210 | 319 | =428 | 53T o705 | oS04
600973 | 1082 | 1101 1408 | 1617 | 1625 | 1734 | 1843 | 1851

2
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A TABLE OF LOGARITHMS FROM 1 TO 10,000.
. A 1 2 3 | 4 5 .8 7 « 9 | i
400 | 602080 | 2180 | 2077 | 2886 | 2404 | 2608 | 2711 | 2810 | 2008 108
401 144 | 3253 | asel | sieo | 5577 | BeRe | S7e4 | 3002 | 4010 | 4118 | 108
402 4236 | 4854 | 4442 | 4650 | 4858 | 4766 | 4874 | 4083 | s0Sp | 5107 | 108
403 5305 | 5418 | 552N | 5a28 | 6730 | 5844 | 5051 160 | 6274 | 108
4ok 6381 | 6480 | 0508 | o7od | S11 | 6010 | To20 | 7188 | 7241 | 7848 | 107
405 7465 | 7662 | Teem | 7777 | 7884 | 7001 8205 | &m2 | 8410 | 107
408 8528 | 8633 | 8740 7 | Buad | ool | o1e7 | 9274 | @381 | o488 | 107
407 0504 | 9701 0014 | ee21 | o128 w34l | odd7 | o554 | 10T
408 0660 | 0767 | 0873 | 0979 | 1086 | 1162 | 1208 | 14056 | 1511 | 1617 | 108
400 1723 | 1820 | 1636 | 2042 | 2148 2300 | 2466 | 2572 | 2678 | 106
410 | 612784 | 2800 | 2006 02 | 3207 | 3313 | 8419 | 38525 | 3630 | 3736 | 106
an 8842 | 8947 | 4053 | 4150 | 4264 | 4370 | 4475 | 4581 | 4686 | 4702 | 108
412 4807 | 5003 | 5108 | 5218 | 5310 | 5424 | 56620 | 5634 | 5740 105
413 5050 | 6056 | 6160 | 6285 | G370 | G476 | 6581 | 6086 | 6790 | o885 | 105
414 7000 | 7105 | 72t0 | 7815 | 7420 | 7525 | 7620 | ¥is4 | 7589 | T4 | 106
415 8048 | 8158 | 8257 | 8u62 8571 | 8076 | B7ED | 88s4 | soso | 105
416 0003 | 9108 | 8302 | o408 | 0511 | 9615 | o710 | 9824 | 0028 | een2 | 104
417 | 620136 | 0240 | o844 | o448 | 0352 | ovon | o7oo | Os64 | ooes | 1072 | 104
418 1176 | 1280 | 1354 | 1488 | 1503 | 1606 | 17ew | 1soa | 2007 | 2110 | 104
419 2014 | 2318 | 2491 | 9525 | 2628 | 2732 | 2835 | 2080 | 3042 | 3146 | 104
420 | 6209240 | 3353 | 9456 | 8560 | 2663 | a7e6 | 3869 4076 | 4179 | 108
421 4282 | 4385 | 4488 | 4501 | 4005 | 4708 | 4001 6107 | 5210 | 103
422 5312 | G416 | 55618 | G021 | BT24 | 6827 | G020 | 60O (258 | 108
423 6340 | o443 | o640 | o048 | ool | ossa [ eeso | 7058 | T1e1 | 7203 | 108
424 7366 | 7468 | 7o71 | Teva | 7775 | 7878 | 7880 | 8082 | 8185 | 8247 | 102
425 8280 | 8401 | 8503 | SBoo | 8797 | 8000 | 9002 | 9104 | 0206 | oS08 | 102
426 0410 | 9512 | 9618 | 9715 | 9817 | 9919 | ee2l | o123 | e224 | a2 | 102
47 0590 | 0031 | 0733 | 0835 | 0080 | 1038 | 1139 | 1241 | 142 | 102
428 1444 | 1545 | 1647 | 1748 | 184D | 1051 | 2052 | 2153 | 2256 | 2450 | 101
420 2457 | 2550 | 2660 | 2761 | 2862 | 2063 | 064 | 8166 | 5206 | ager | 101
430 | 633468 | 3560 | 3670 | 8771 | 88T | B0TS | 4074 | 4176 | 4276 | 4376 | 100
431 4477 | 4578 | 4679 | 4779 | 4880 | 4981 | 5081 | 5182 | 528§ | sass | 100
482 B4 | BHS4 | 5685 | 5TSH 5986 | eos7 | 6187 | €287 | Gass | 100
431 6488 | 6688 | 6688 | 67se | 0S80 | 6089 | 7080 | TISO | T280 | Taeo | 100
434 7490 | 7500 | 7000 | 7700 | ¥s00 | Teeo | 80p0 | Sieo | 8200 | S350 [ 90
435 Bis) | 8580 | 8680 | 8789 | S889 | 8088 | 0088 | 6188 | @287 | @asy [ 99
436 | . 0430 | 0580 | 9086 | 0785 | 9555 | 9984 | eesd | o183 | o283 | e3s2 | 99
437 1| o681 | 0680 | oF7e | 0870 | 0878 | 1077 | 1177 | 1276 | 1a7s | 9
435 1474 | 1678 | 1672 | 1771 | 1571 | 1670 | 2009 | Z168 | 2267 | 2366 | 09
430 2508 | 2662 | 2701 | 2860 | 2050 | 9058 | 3166 | 82565 | 3354 | 90
440 3551 | 3050 | 8740 | 3547 | 3046 | d0dd 43 | 4242 | 4340 | 98
41 4490 | 4537 | 4626 | 4734 | 4882 | 4931 | 6029 | 5197 | 6226 | Hua4 | €8
2 Bio2 | s521 | 619 | A7T17 | 58156 | 5013 | po11 | 6110 | 6208 | 6306 | 98
4“3 6404 | 6502 | 6000 | BE08 | 670G | 6804 | 0992 | 7088 | TI8T | 7285 | U8
444 7388 | 7481 | 76719 | 7e76 | 7I74 | TBT2 | Toon | 8067 | Bl6b | s262 | 98
445 8300 | 8463 | 8566 | 8653 | 8750 | 8848 | sp4a | 0043 | 9140 | g3y | 67
448 0335 | 9432 | 0580 | 9627 | 0724 | 9821 | 0010 | eel0 | #113 | eZ10 | 97
447 | 650808 | 0405 | 0502 | 0599 | 0696 | 0708 | 0$00 | 0057 | 1084 | 1181 | oF
“s 1278 | 1876 | 1472 | 1669 | 1006 | 1762 | 1850 | 1956 | 2043 | 2160 | O7
440 226 | 20543 2033 | 2780 | 2826 | 2023 | 8019 | 3116 | 97
450 | 658213 | 2300 | 405 | 8502 | 8508 | 3605 | 8701 | 3888 | 13084 | 40RO | 90
451 4177 | 4278 | 4300 | 4460 | 4662 4754 | 4850 | 4048 | 5042 | 86
452 s1a8 | 5oas | 5931 | 5427 | 5623 | 5610 | A714 | 6810 | 5006 | G002 | 96
458 5008 | 6104 | 6200 | 6886 | 6482 | @577 | 6673 | 6760 | 0864 | 6600 | 9O
154 vose | 7152 | T247 | 7843 | 7438 | Y634 | 7o [ Y9 [ TS0 | TONG | WO
455 8011 | &107 | £202 | 8208 | R203 | B4SS | 8584 | ROTO0 | B7T4 | B&TO | 9O
450 soen | 0060 | 0155 | o250 | o3i6 | 0441 | 0530 | 0631 | BT | 821 | 98
447 0010 | esll | o106 | o201 | #2086 | o301 | o488 | o651 | 670 | o771 | 03
458 | ©00sen | 0060 | 1063 | 1750 | 1245 | 1339 | 1434 | 1520 | I623.| 1718 | 95
459 1813 | 1907 | 2002 2191 | 2286 | 2380 | 2476 | 2660 ns | 96
N. 0 1 2 a3 i b1 6 T 8 9 D.
-




sERR HS2SBEELER | Pi
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8 A TABLE OF LOGARITHMS FROM 1 TO 10,000.
T R T T I BB B %,
400 | oe27ss | 2852 | 2047 | 8041 | 3135 3324 | 3418 | 3512 | 4607
L 8701 | a705 | 8880 | 8083 | 4078 4172 | 4266 | 4360 | 4354 | 4545
402 4842 | 4730 | 4830 | 4024 | G018 5112 | 5206 | 5200 | 5383 | 68T
At 5581 | 6675 | 6709 | 6862 | 095G | 0020 6143 | 6237 | 6331 | M
L0 B518 | 6612 | €705 | 6700 | 6802 | 6056 7079 | 7173 | T84 | TIHO
463 7453 | 7o46 | 7640 | 7733 | 7826 | 7920 | SO013 8108 | 5190 | BuG3
4066 8386 | B47H | 8572 | BeGs | S7T5p | 8852 | BOE5 | 0038 | olal | g
467 9317 | o410 | 9503 | 0506 | 00SB | 9782 Q8TH | 96T | eefl) | o103 |.
468 | 670246 | 0339 | 0431 | 0524 | 0617 | 0710 0802 | 0895 | 0985 | 1080
469 1173 | 1265 | 1358 | 1451 | 18543 | 1636 1725 | 1821 | 1913 | 2005
470 | ey200s | 2100 | 2283 | 2375 | 2467 | 2500 2652 | 2744 | 2836 | 20¥0
471 2001 | 3113 | 3205 | 3207 | 8300 | 3452 | 8474 | SGE6 JT08 | 3800
472 3042 | 4084 | 4126 | 4218 | 4010 | 402 | HO4 4586 | 4677 | 4760
473 4861 | 4053 | 6045 | 6187 | 6228 | 6820 | 5413 5003 | HaRS | SURT
474 5778 | 5870 | 5062 | G053 | 614G 6236 | 6928 [ 6419 [ 6511 | 0602
475 604 | OTS5 | 68T6 | 0088 | 7050 7151 | T242 | TH83 | T4 | TAEIG
476 wgo7 | TEOS | TYRO | 7RS1 | 772 | G063 Bib4 | 8245 | 8336 | BT
71 gs1s | 8600 | sto0 | sjon | B8sd | 8973 | G064 | 9165 | 0240 | G
478 0428 | 0519 | 9610 | 9700 | 8701 | 0882 | 9073 esfid | o104 | w215
470 | sspsug | o426 | o517 | OGOT | 0GOS | ©78@ | 0879 0970 | 106w | 1151
480 | 681241 %t 1423 | 1513 | 1608 | 1683 | 1784 | 1874 | 1964 | 2046
481 2146 o306 | 2414 | 2504 | 2506 | 2686 | 2077 2R6T | 2057
482 aog7 | 3137 | 8227 | @817 | &do7 | 8407 | 3587 | BETT 3707 | 38aT
433 3047 | 4037 | 4127 | 4217 | 4307 | 4300 | 448G | 4476 A66 | 4740
484 4845 | 4085 | 5025 | 6114 | 6204 | 5294 | 5383 5473 | HOOI | D2
485 8742 | 5831 | 5021 | 6010 | 6100 | 6150 | 6278 | GIGS 0458 | 6347
456 6728 | 6515 6094 | 7083 | TIT2 | 7261 | T3HL | T4
487 7520 | 7618 | TT07 | 77oe | 788¢ | 7975 | S0e4 | B153 | §242 | BA31
488 8420 | B30Q | 8508 | 8087 776 | 886G | 8053 | 0042 | 0141 | 9220
480 0300 | 0408 | o486 | 9573 | DOGL | 0763 | 9841 | 0930 el | oI0T
400 | 680196 0373 | o042 | 0550 | 0630 | 0728 | 0816 | 0005 | 0003
401 1081 | 1170 | 1258 | 1347 | 1485 | 1524 | 16012 1700 | 1788 | 1877
492 1965 | 2058 | 2142 | 2230 | 2318 | 2408 | 2404 | 2683 | 2671 | 2750
493 os47 | 2035 | 3023 | s111 | 8160 | 8287 | 8476 | 3463 | 3551
404 aroy | as15 | 8003 | @ool | 4078 | 4166 | 4264 | 4342 4430 | 4517
485 4805 | 4603 | 4781 | 4868 4056 | 5044 5131 | 5219 | 5307 | BSM4
- 406 5482 | 5560 | BOGT | 5744 | 6832 | M9 6182 | 6260
407 #3560 | 6444 | 0581 | BO18 | 6706 | 6703 BOGS | TOoh | 7143
408 wasg | 7817 | 7404 | T401 | 778 | 766 | 7762 | TRSG 7026 | 8014
499 8101 | 8Y 8275 | 8962 | 8440 | 8435 §700 | 8706 | BHS3
500 | ©98g70 | 9057 | 9144 | 0231 | o817 0404 | 0401 | 0578 | 0064 | OTHY
801 0838 | 0024 | eell | w0 | el84 | 271 | #368 ohld | #8531 | o017
502 | ToO7O4 | O7DO | OSTT | o063 | 1050 1136 | 1222 | 1304 | 1305 | 1482
503 1568 | 1654 | 1741 | 1827 | 1913 | 10ep | 208 | 2172 | 2958 | 25344
504 251 | 2517 | 2008 | 2680 | 2776 | 2861 | 2047 | B0s3 | 8119 | 3205
805 8201 | as77 | s40a | 3540 | Scan | 472l | B80T | 4RD3 8070 | d085
08 4151 | 4936 | 48992 | 4408 | 44od4 | 4679 | 4665 | 4THL 4887 | 4622
§07 004 | 5170 | s2en | B350 | K436 | 55622 | 5607 | G6G3 | 6778
] 5864 | 5040 | 6085 | w120 | 6206 | 6201 | 6476 6462 | 6347 | 6632
i) 6718 | 6803 | 6888 | an74 | Tos6 | 7144 | T220 | 7316 TA0 | 7485
510 | 707870 | 7ess | 7740 | 7826 | 7011 | 7086 | S0SL | £166 | £201 | 8336
11 8471 | S506 | 8591 | 867G | BTGL | 88468 | SOE1 | 9016 | 9100 | O185
612 9270 | 0355 | 0440 | 0524 | €600 | 9604 | 7O | 9863 el
515 | 710117 | 0202 | 0287 | 0371 | 0466 | 0540 | 0635 | 0710 0Téd | 0879
514 0p63 | 1048 | 1132 | 1217 | 1301 | 1385 | 1470 | 1654 | 1830 | 1723
8156 1807 | 1802 | 1976 | 2060 | 2144 | 2229 | 2318 | 2307 | 2481 | 2566
516 apsg | 2734 | 2918 | 2002 | 2086 | 8070 | 8164 | A288 | 3323 | 3407
al17 3491 | 8676 | 3650 | 8742 | 5526 | 3010 | 3004 | 4078 | 4162 ) 4248
G518 4330 | 4414 | 44907 | 4581 | 4065 | 4749 | 4833 | 4016 | 5000 | 5084
519 5167 | 6261 | 5335 | 5418 | 5502 | 5586 | H6G | 5T53 | 689G | 8020
N. 0 1 2 3 4 5 ] 7 8 9

=




A TABLE OF LOGARITHMS FROM 1 TO 10,000, 9
Mt ocilai] @ | @i v |6 | e 5|8t | B
50 | TiGoo3 | 6087 | 6170 | @254 | 6337 | 6421 | 6504 | 6588 | 6671 | 0704 | 83
a2 6838 | en21 | 7004 | 7088 | TI71 | 7254 | T T491 | THO4 | TAHY | 8B
622 Terl | 7954 | 7837 | 7920 | 8003 | SOS6 | B160 | 8253 | K336 | 8410 | 83
493 8502 8668 | 8751 | 8834 | BO17 | w000 | 9083 | 9164 | U2 B3
524 9331 | o414 | 9407 | 9580 | 0663 | 0745 | 9825 | G011 | 0004 | eeld 83
595 | 790150 | 0242 | 0325 | 0407 | 0480 | O573 | 0654 | 0748 | 0821 | 0003 | 83
326 00sE | 1068 832
7 1811 | 1803 52
A28 2634 | 2716 2
520 3456 82
530 | 724276 82
B3l 5095 | 6170 82
52 BO12 | 5003 82
533 0727 | 6800 81
534 541 | TH23 §1
535 54 | 8435 81
536 D165 | 0248 81
537 D074 | eebb &1
538 | TAOTRZ | 0863 81
530 1580 | loeo 81
540 | 782304 | 2474 80
541 a7 | s278 B0
B2 2000 | 4079 80
B4 4800 | 4880 BO
s 5599 | 5079 50
545 6307 | 6470 80
548 7103 | 7972 79
b7 7987 | BOGT 8403 79
548 8781 | 8B6O 9256 U
549 o572 | 9651 | ©751 | OB10 | 9680 ood] | o126 | #2056 | o254 | 79
550 | 740803 | o442 | 0521 | ovoo | 0678 | orsT | 0836 | 0015 | 0004 | 1073 kil
a1 1152 | 1290 | 1809 | 1388 | 1467 | 1546 | 2624 | 1703 | 1783 | 1860 | 70
562 130 | 2018 | 2096 | 2175 | 2254 | 2332 | 2411 | 2480 | 2568 | 247 | 70
5563 2126 2882 3030 | 8118 | 5196 | 4275 | 8358 | 2431 | T8
o 3510 | 8588 | 3667 | 3746 | 8823 | @902 | 8080 | 4058 | 4186 | 4215 | T8
85 203 | 4871 | 4449 | 4528 | 406 | e84 | 4762 | 4840 | 4010 | 4007 | 78
560 s07h | B1s3 | 523l | 5309 | 6287 | 5465 | H643 | K621 | GE60 | HTTT | 18
067 H8GH | ODGS | 0011 | 608D | e167 6323 | @401 | 647D | 6G60 | TS
558 6034 | 6712 | 6700 | 6868 7o2s | 7101 | 7170 | 7258 | 74%L | TS
569 7412 | 7489 | 7667 | 7645 | 7722 | 7B0O | 7ST8 | TEAS | 8033 | 8110 | 78
580 | 748188 | 8266 ! 8421 | 8408 | 8570 | 8653 | &7E1 ( 8885 7
ABL %063 | 9040 | 9118 | 8185 | 9272 | 9350 | D427 | 9604 | W68 | 0650 | 77
b2 0736 | 9814 | 9891 | 0068 | eedd | 123 | 200 | o277 864 | o481 w
863 | 750508 | 0596 | 0663 | 0740 | 0817 | oS94 | 0BT1 | 1048 | 1125 | 1202 | ¥
564 170 | 1356 | 1483 | 1510 | 1887 | 1664 | 1741 | 1818 | 1865 | 1972 | 17
565 2048 | 2125 | 2202 | 2279 | 2808 | 2433 | 2600 | 2586 | 2663 | 2040 | 1T
506 2516 | 2503 | 2070 | 3047 | 3123 | 8200 | 8277 | 3353 | B4B0 | 3606 | 77
58T 3583 | 5060 | 8786 | 8813 | 3s89 | 9906 | 4042 | 4119 | 4105 | 4272 | 97
68 4348 | 4425 | 4601 | 4678 | 4654 | 4730 | 4807 | 4883 | 4900 | bos | 7O
oo 5112 | 6180 | 5265 kg 6570 | GO46 | BTZZ | 6700 76
B70 | THASTH | SW51 6108 | 6180 | 6256 | 6352 | o408 | G484 | 6560 | 76
571 wean | 6712 | evss | o864 | 6940 | Tol6 | 7002 | 7168 | T244 | T3 | 76
572 7306 | 7472 | 7548 | 7624 | T700 | 7776 | 7SHR 7927 | 8003 | 8070 76
578 8155 | 8290 | 8306 | 8382 | 8458 | 3533 | H60D | 568G 8701 | 8836 | 76
574 g012 [ 8988 | 0063 | 9139 | 9214 | 9200 | 0366 9441 | 9517 | 0502 70
575 o745 | o810 | 9504 | 9970 | ewdd | €121 | #1906 | «272 | 347 | 7B
576 | Teod2z | 0408 | 0573 | 0040 | O724 | 0709 | 0876 | 0950 | 1025 101 | 76
57T 1176 | 1251 | 1826 | 1402 | 1477 | 1562 | 1627 | 1702 | 1778 | 1853 Th
578 1928 | 2003 | 2078 | 2158 | 2228 | 2308 | 278 | 2463 | 2020 2604 | 76
570 om0 | 2754 | 2520 | 2004 | 2078 | 8053 | 8128 | 3203 | IS | WWSL )
N. 0 1 2 3 4 B 6 T g L& | B
27




10 A TABLE OF LOGARITHMS FROM 1 TO 10,000.

P AT 12 1 2 3 4 5 6 7 8

530 | 763425 | 3503 | 8678 | 3664 | 8727 | 4802 | SETT | 8952 | 4027
681 4176 | 4251 | 4820 | 4400°'| 4475 | 4560 | 4624 | 4600 | 474
a8 4023 | 4098 | 6072 | S147 | 5221 | 5296 | 6370 | HMS | 5520
Ho] 5600 | 5745 | 6518 | 6892 | 5966 | 604l | 6115 | 6100 | 6264
584 6413 | o487 | 6862 | 6036 | 6710 | 6785 | 6850 | 6933 | TOOT
585 7156 | 7290 | 7S04 | 7879 | 7468 | ¥627 | 7EOL | T6I5 | TT49
65t 7808 | 7972 | 8046 | 8120 | Sib4 | 8268 | 8342 | B41O | 8400
h&T 8638 | 8712 | S7TBG | 8860 | K034 | 0008 | GOSZ | 156 | 9230
588 0377 | 9451 | 9525 | 0599 | 0673 | 0740 | 0820 | O304 | 0068
580 | TTO1LG | 0189 | 0263 | 0336 | O4LD | 0484 | 05GT | OGSL o705

go0 | 770852 | ooze | 0900 | 1073 | 1146 | 1220 | 1203 | 1867 | 1440
ail 1587 | 1661 | 1734 | 1808 | 1881 [ 1965 | 2028 | 2102 | 2170
02 23992 | 9306 | 2468 | 2542 | 2015 | 2088 | 2762 | 28485 | 2008

599 7487 | 7 7572 | 7644 | TTLT | TT89 | 7862 T9aL | 80UG

778161 | 84| so05 | s@es | S441 | 8513 | 8685 | 8658 | 870
801 BS74 | s047 | o019 | GOl | 9163 | 9236 | 0308 | 9380 52
302 6 | o660 | 0741 | 0813 | 9885 | 0057 | ee28 | w101 | 173
@03 | 780317 | 0380 | 0461 | 0533 | 0605 | OG7 | 0740 | 0821 | 0893
804 1 1100 | 1181 | 1258 | 1824 | 1306 | 1468 | 1040 | 1612

' ZZIERZ2EE8 SSBES

T | Too285 | 0856 | 0426 | 0496 | 0567 | 0637 | 0707 | O7IR
a1 0088 | 1050 | 1120 | 1190 | 1260 | 1340 | 1410 | 1450 | 1560
619 1601 | 1761 | 1831 | 1901 | 1971 | 2041 | 2111 | 2181 | 2252
20 | Toomez | 2462 | 2532 | 2602 | 2872 | 2r42 | 2812 | 2882 | 2062
821 8002 | 8162 | 8281 | #3001 | 3371 | 8441 | 8511 | 3581 | 8651
[ 3700 | 3860 | 8930 | 4000 | 407D | 4130 | 4200 | 4279 | 4340
623 4488 | 4558 | 4627 4747 4008 | 4070 3
624 5185 | 56254 | H324 | G303 5582 | BOO2 | HOT2 | BT41
625 0 | 5040 | 6019 | 6088 | 6158 | 6227 6306
626 6574 | 6644 | ©713 | éys2 | 6852 | @021 | 6000 | TOAO | 7129
a7 7208 | 7837 | 7406 | 7475 | THd5 | Teld | 7083 | TTL2 | 7H21
628 7000 | 8020 | so9s |. 8167 | 8286 | BB0p | 8474 | B4R | 8613
629 se51 | 8720 | 878D | 8858 | 8827 | 8008 | 0065 | 0134 | 0203
630 | 70341 | 9409 | ©478 | 0547 | 9616 | 0685 | OTH4 | 0623 | 002
631 0098 | 0167 | 0236 | 0305 | 0873 | 0442 | 0511 | OG80
632 0717 | 0786 | 0854 | 0923 | 0902 | 1061 | 1120 | 1108 | 1266
633 1404 | 1472 | 1541 | 1608 | 1678 | 1747 | 1815 | 1884 | 1062
B34 2080 | 2158 | 2226 | 2205 | 2363 | 2432 | 2500 | 2688 | 2687
i) 2774 | 2842 | 2010 | 2070 | 8047 [.8116 | 3154 | 8262 | 5321
636 2457 | 8525 | @604 | @es2 | 730 | 8768 | 2867 | 2035 | 4003
637 4130 | 4208 | 4276 | 4244 | 4412 | 4480 | 4548 | 4616 | 4685
638 4821 | 4880 | 4057 | 5025 | 5093 | 5161 | 5220 | 5297 | B36H
639 56601 | 5660 | 6637 | ST06 | 6778 | 5841 | BUOS | BTG | G0
N. 0 1 2 3 4 5 6 7 8

=




A TABLE OF LOGARITHMS FROM 1 TO 10,000. 11
N. 0 1 2 3 4 5 i3 7 8 v | D
p40 | 806180 | 6245 | 6316 | esss | o451 | es10 | essr | eess | 72 | eTeo | 68
641 | 6868 | @026 | Gevs | Toel | 7120 | 7ier | 7oms | 7Tss2 | 7400 | THOT | 68
642 | 7535 | 7eos | 7evo | 7738 | 7s08 | 7878 | 7041 | Boos | sore | s143 | 68
043 [ 8211 | 8270 | 8348 | 8414 | 8451 | 8540 | Bol6 | Sose | &1 | 8818 | o7
2% §886 | 8063 | 9031 Q156 | 0223 | 9200 | 8358 | 9425 | M02 a7
645 | o560 | 9627 | 0694 | 9702 | 9520 | 0596 | 9064 | eeSl | eets | o163 | 67
046 | 610233 | 0300 | oder | o434 | 0501 | 066 | 0036 | 0703 | 0770 | OSuT | 67
o7 | ooot | 0071 | 1039 | 1108 | 1178 | 1240 | 1807 | 174 | 1441 | 1608 | o7
018 | 1576 | 1042 | Y709 | 1776 | 1848 | 3ed0 | Je77 | 2oas | 211 | 218 | ef
610 | 2245 | 232 | 2879 | 2445 | 2612 [ 2670 2013 | 280 | 247 | 67
ds0 | 8120913 | 2080 | 8047 | 8114 | 3181 | s24r | 3814 | 3981 | 84S | 8514 | 67
6ol | 2581 | G648 | 8714 | 8781 | 9548 | 8014 | 3081 | 4048 | 4114 | 4181 | o7
052 | 4248 | 4314 | 4351 | 4447 | 4514 | 4081 | 4647 | 4714 | 4780 | 4847 | 67
453 | 4T3 | 4080 | 5046 | 6118 | 5179 | 6246 | 6312 | 6378 | 645 | 5511 | 66
654 | G578 | O64E | G711 | B7TT | 0843 | 5010 | 5076 | G042 | 6100 | 6175 | 65
665 | 6241 | 6308 | 6374 0506 | 0573 | 6639 | 6705 | 6771 [ es38 | 6o
656 | 6604 | eayo | 7038 | 7102 | 7160 | 7235 | 70l | Ts6T | 7433 | Tde0 | o6
667 | 7665 | 7631 | 7008 | 770 | 7830 | 78w | 7062 | S0z8 | B0od | S100 | 66
658 8226 | 8202 | 8358 | 8424 | '8400 | 85HBG | BGIZ | BOSS | BTHA | BE2 66
069 | 6585 | 8961 | @017 | 9083 | 0149 | o216 | 9281 | sas | a2 | o418 | 66
960 | =10544 | o610 | 0676 | 741 | 8807 | 9873 | 9039 | eesd | we70 | 4130 | 60
ol | 820201 | 0267 | 0333 0464 | 0530 | 0695 o7z | 0792 | 0B
52 024 | o080 | 1085 | 1120 | 1186 | 1251 | 1817 | 1582 | 148 | 60
663 | 1514 | 1579 | 1045 | 1710 | 1775 | 1841 | 1006 | 1972 | 2037 | 2108 | 66
664 | 9168 | 2233 | 2200 2430 | 2405 | 2360 | 2620 | 201 | 2756 | 65
665 | 2sg2 | 2887 | 2052 | B018 | 3083 | 3148 | 3215 | 8270 | S34d | D00 | 65
6 | 3474 | 3539 | 3eos | 8670 | 3735 | 3s00 | 3865 | 2980 | Boos | 4061 | 65
g67 | 4120 | 4101 | 4256 | 4321 | 4386 | 4451 | 4616 | 451 | 4646 | 4711 | 60
g63 | 4776 | 4841 | 4006 | 4971 | 5036 | 6101 | 5166 | 5231 | 5206 | 5I6L | €5
669 5401 | 5666 | 6621 | 5686 | 6751 | 6815 | 0880 | G045 | €010 | €5
670 | 826075 | 6140 | 6204 6334 | 6300 | 0464 | 6528 | £503 | 6658 | 65
o7l | 6723 | 6787 | 652 | 69T | eosl | Tod6 | TIN1 | 717G | T2O | 7305 | 65
g2 | 7800 | 7434 | 7400 | 7563 | 7628 | 7602 | TI6T | TSZL | 880 | TUSL | 05
@73 | o1 | 8080 | s144 | 8200 | 8273 | Buss | £402 | 8467 | 8531 | BG06 | 64
74 | soay | 8724 | s7so | 8853 | s018 | ses2 | gods | 111 | 9175 | 0230 | 64
75 | o304 | 0368 | 0432 | odor | o561 | 0625 | oevo | 0754 | 9818 | 9S82 | 64
16 | 0047 | eell | ee75 | 139 | o204 | 268 | 332 | #306 | «460 | 525 | Ok
617 | 830689 | 0653 | o717 | 0781 | 0845 | Oooo | 0973 | 1037 | 1102 | 1166 | ok
878 | 1290 | 1204 | 1958 | 1422 | 1486 | 1550 | 1614 | 1678 | 1742 | 1806 | Ok
oo | 1570 | 1934 | 1998 | 2062 | 2126 | 2180 | 2253 | 217 | WEL | 5 | Ok
680 | sazson | 2573 | 2897 | 2700 | 2res | 2828 | 2802 | 2066 | 8020 o
881 | @147 | azil | s275 | 5338 | 3402 | 3466, 3508 | Bes7 | 8721 | Bk
g5z | @7t | 3848 | 3oz | G075 | 4030 | 4103°| 4166 | 4230 | 4204 | 4857 | 6L
653 | 44m | 4484 | 4548 | 4611 | doys | 4780 | 4802 | 4866 | 4020 | dosd | 6L
654 | 5056 | 5120 | 5183 | 6247 | 5310 | B3T3 | 5437 | 5500 | 564 | 667 | 63
685 |  5ee1 | 5754 | G817 | 6881 | 5044 | Goor [ €071 | 6134 | 6107 | €261 | 63
686 | a2 | 6987 | 6451 | 6514 | e57TT | 641 [ 6704 | 6767 | 0830 | 894 | 63
657 | ®o57 | 7020 | Tosa | 7146 | 7210 | 7273|7886 | T30 | 7462 | 7625 | 63
688 | 7588 | 7652 | 7716 | 7778 | 7841 | 7904 | 7967 | 8030 | 8003 | 81560 | 63
680 | 8210 | 8282 8471 | 8534 | 8507 | 8660 | 8723 | 8780 | 63
a0 | ssssdo | so1a | sors | voss | o101 | e1es | o227 | 6380 | 6362 | o415 | 63
“o1 9478 | opdl | peod | 9867 | 9720 | 9702 | B8GH | 9IS G051 | eedd [
oe2 | s40106 | 0160 | 0232 | 0204 | 0357 | 0420 | 0482 0608 | 0671 | 83
998 | 0733 | 0706 | 0850 | 0921 | ouss | 1046 | 11oe | 1172 | 1234 | 1207 | 68
ot | 1849 | 1422 | 1485 | 1547 | 1610 | 1672 | 1735 | 1707 | 1860 | 1022 | @3
095 | 1985 | 2047 | 2100 | 2172 | 2205 | 2207 2422 | 2488 | 2647 | 62
008 | 2600 | 2672 | 2734 | 2706 | 2850 | 2021 | 2083 | So46 | 8108 | 8170 | 62
697 | 233 | 8205 | 3357 | 3420 | 3483 | 3544 | Beos | 3660 | 3751 | 703
68 | 9855 | 3918 | 080 | 4012 | 4104 | 4166 | 4220 | 4201 | 4853 | 441D
090 | 4477 | 4520 | 4601 | 4664 | 4720 | 4788 | 4850 | 4012 | 4074 62
N. 4 40 L 152 |08 jc4 |40 (o T S O I
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12 A TABLE OF LOGARITHMS FROM 1 TO 10,000.
N. 0 1 2 3 4 b 6 7 8 9| N
700 5160 | 65222 | 5284 | 5346 | H408 | B470 | 5532 | 5504 | 6066 | 62
701 5718 | 5780 | 5942 | 5O04 | #9006 | 6028 | 6000 | €151 | 6218 | 6275 | @2
702 347 6461 | 66523 | 6585 | 6640 | O70B | €770 | 6832 | 6804 | G2
708 6955 | 7017 | TOTB | 7141 | T202 | 7264 | 7826 | 7888 | 440 | TAIL | @2
704 7578 | 7684 | 7686 | 7758 | 7810 | TASL | 7048 | SO0O4 | 8OGG | E128 | 62
705 8180 | 8251 | 8312 | 8574 | 8485 | B407 | 8540 | 8620 | BORI | §143 | 62
706 8506 | 8s66 | 8025 | BuSO | G051 [ 9112 | 9174 | 0285 | 0207 | 0958 | 61
o7 9410 | o451 | 9542 | 0004 | 0665 | 9726 | 97ES | OB40 | 0011 | 0472 6]
708 | 850033 | o085 | 0156 | 0217 | 0279 | 0340 | 0401 | 0462 | 0524 | 0385 | 61
TOg 0646 | 0707 | 0760 | 0830 | 0891 | 0952 | 1014 | 10T | 1186 | 1197 | 61
w10 | 851258 | 1820 | 1881 | 1442 | 1508 | 1A64 | 1625 | 1686 | 1747 | 1800 | @l
711 1870 | 1981 | 1992 | 2053 | 2114 | 2176 | 2296 | 2207 | 2858 | 10 | 6l
712 0490 | 2541 | 2602 | 2068 | 2724 | 2785 | 2840 | 2007 | 2965 | d029 | 6l
713 8000 | 8150 | 8211 | 3272 | 9833 | 3304 | B45b | BE16 | 8477 | 2647 | 61
714 2608 | 8750 | 8520 | 3881 | S04l | 4002 | 4063 | 4128 | 4185 | 4265 | 6
715 4808 | 4567 | 4498 | 4488 | 4540 | 4610 | 4670 | 4781 | 4792 | 4862 | 01
718 4018 | 4074 | 5034 | 6005 | H156 | 5218 | HATT | BIST | 6308 | M50 | 6l
7 5510 | 5580 | B640 | 6701 | 5761 | 5822 | OHBBZ | GB48 | COUS | 0064 | 01
718 8124 | @185 | 6245 | 6906 | 6o06 | 6427 | O4ET | GG4Y | 0008 | GGGS | 60
710 8720 | 6780 | 6850 | 6010 | 6870 | TOSL | TOML | §i16Y | TEIZ | TETZ | 00
720 | ssrsse | 7se3 | 7453 | 7518 | YATL | 7e34 | 7604 | VUGG | 7815 | TATA | 60
721 7oa5 | 7005 | S056 | 8116 | S176 | 8296 | B2OT | K3GT | B4IT | 8477 | @
722 8547 | ®s07 | Seby | 8718 | ST78 | 8838 | BSWS | BOGE | D018 | WOTE | @0
723 o138 | 0108 | 0258 | G818 | 0870 | 0430 | 9400 | USB0 | DUID | 9GTH | 60
24 9730 | 0790 | 0850 | BO18 | 0O7S | ee38 «el8 | o108 | #2158 | o278 i
725 f 0308 | 0458 | 0518 | 0378 | o637 | OBOT | 0757 | ON1T | OBTT | &
726 opar | 0pos | 1056 | 1116 | 1176 | 1235 | 12056 | 1355 | 1416 [ 1476 | @
T 1534 | 1504 | 1854 | 1714 | 1773 | 1838 | 1893 | 1052 | 2012 272 | @
728 o131 | 2101 | 2251 | 2810 | 2370 | 2480 | 2450 | 2540 | 2608 | 2668 | 6
720 arag | orsT | 2847 | 2006 | 2006 | 8025 | B08H | 8144 | 5204 | 3203 | @
720 | seaszs | sssz | s442 | B#501 | 2561 | 3620 | 8680 | 780 | BT00 | 8858 | 60
731 a017 | a7t | 4036 | 4008 | 4156 | 4214 | 4274 | dusd | 4302 | 4452 | B0
782 4511 | 4570 | 4630 | 4650 | 4748 | 4808 | 4BGT | 4026 | 4085 | BIMG | 60
783 5104 | s1es | s2ez | 6282 | o341 | sdon | 6450 | BO1D | 55T | BGIT | 40
T84 peos | 5756 | 6814 | 6874 | oS3 | s002 | 6051 | €110 | 616m | 6328 | 50
745 gosT | 6346 | o405 | 6465 | 6524 | 6585 | 6642 | €701 | 6700 | 6810 | B9
736 8878 | éas7 | 6006 | 7085 | 7114 | vi7Ta | 7282 | 7201 | 7850 | 7400 | 60
787 7467 | 7528 | 7osp | ¥o4d | TI03 | 7762 | TSZA | TBRO | Y030 | THOS | 60
788 BoaB | 8115 | 174 | 8233 | 8202 | 8850 | 8400 | BA0B | BoUT | BGSG | o0
730 8044 | 8703 | BTG2 | BB2L | S8TO | HOSE | BOUT | G056 | B114 | 9173 | &0
740 | 860232 | 9200 | 0340 | 9408 | 0466 0684 | 0642 | 0701 | 9760 | 50
741 9818 | 9877 | 0935 | 9004 | eeb3 | €111 | o170 | «228 | o287 | o345 | 50
742 | 870404 | 0462 | 0521 70 | 0638 | ovee | 0766 | 0813 | OBT2 | 0030 | 68
743 0989 | 1047 | 1106 | 1164 | 1228 | 1281 | 18490 | 1398 | 1466 | 1516 | b8
T4 1573 | 1631 | 1600 | 1748 | 1808 | 18656 | 1023 | 1981 | 2040 | 2008 | 68
746 2156 | 2215 | 2273 | 2331 | 2899 | 2448 | 2506 | 2564 | 2622 | 2681 | B
T4 2739 | 2797 | 2855 | 2913 | 2072 | 5080 | B0BS | 8148 | 5204 | 8262 | B8
47 a32] | 3370 | 8437 | o405 | 85568 | 8611 | J66P | 3797 | 9785 | A8 | 68
748 2002 | 8060 | 4018 | 4076 | 4134 | 4192 | 4250 | 4808 | 4306 | 4424 | 68
T49 4452 | 4540 | 4598 | 4666 | 4714 | 4772 | 4830 | 4888 | 4045 | 5003 | &8
750 | 875061 | 5110 | 6177 | 5235 | 5208 | 5851 | 5400 | 5466 | HGZ4 | 6582 88
751 5640 | 5698 | 5756 | 5413 | H8TL | 5920 | B9ST | G045 | 6102 | 6160 | 66
752 6218 | 6276 6301 | 6440 | 6507 | 6504 | 0622 | GBEO | 6737 | &8
753 6705 | 6858 | 6010 | 6068 | TO26 | 7083 | T141 [ TIO0 | 7200 | Tol4 | 68
T4 7871 | 7420 | T4ST | 7644 | TOOZ | Te5 | TILT | TIT4 | 7832 | 7SSO | &8
700 7047 | 8004 | B0OGZ | 8119 | 8177 | BIn4 8340 | B407 | Bd64 &
756 8522 | 8579 | 8037 | Sod4 | 762 | SS00 | SBEG | Sp24 | &OS1 | 0039 | 57
o7 0008 | 9153 | 0211 | 9208 | 9835 | 9883 | 0440 | 9497 | 8865 | 9E12 | 67
758 660 | 0726 | T84 | O841 | OSOB | ODGO | eeld | ee70 | 127 | o185 | 6T
750 | 880242 | 0200 | 0856 | 0413 | O4T1 | 0628 | 0555 | 0642 | 0609 | 0756 | 6T
N. 0 1 2 3 4 5 6 i 8 9 | D




A TABLE OF LOGARITHMS FROM 1 TO 10,000. 18
N. 0 1 2 3 4 5 6 T 8 9 b,
760 | s=0814 | 0871 | 0928 | 0985 | 1042 | 1090 | 1156 | 1213 | 1271 | 1
il 1585 | 1442 | 1490 | 1558 | 1613 | 1670 | 1727 [ 1T 131 1?.22 E?;
762 1956 | 2012 | 2060 | 2126 | 2183 | 2240 | 2207 zagt 2411 | 2468 | BT
763 2525 | 2581 2e05 | 272 | 2800 | 28Go | 2923 | 280 | a0ay | 6T
o4 3150 q | s2s4 | 3321 | ssyy | s434 | 2491 | 8548 | 8605 | BT
765 3061 | 4718 | 8776 2 | 3888 | 8045 | 4002 | 4059 | 4115 | 4172 | 67
766 42329 4242 | 4990 | 4455 | 4512 | 4560 | 4625 | 4682 | 4730 | 67
767 4705 | 4852 | 4000 | 4085 | s022 | 5078 | 5135 | ble2 | 5248 | 5805 | BT
TH8 saul | 5418 | 5474 | 5631 | 5687 | 6644 | 5700 | BTET | 6813 | BBTO | 6T
769 5026 | 6983 | 6098 | 6096 | G152 | G200 | 6205 | 6321 | 6378 | 6434 [ OO
770 | 886491 | 6547 6716 | €775 | 6820 | 6885 | 6042 | 6008 | 66
ik 7054 | TIIL | 7167 | 7223 | 7% 78 7492 | 7449 | To05 | Te61 [ 6B
T2 r617 | 7674 | 7780 | 7786 | 7842 | 7808 | 70556 | 8011 | BO6T | §123 | A4
e §179 | 8236 | 8202 | 8348 | 8404 | 8460 | 8516 | 8573 | 8620 | BGSH | 6O
kil a741 | 8707 | B8p3 | 8900 | 8965 | 9021 | 9077 | 9134 | 6160 | V246 | BB
Tih 2 | o358 | o414 | ouo | 520 | @582 | 0038 | 9604 | 9760 | @s06 | 5O
T8 o862 | 0018 | 0074 | e30 | esS6:| o141 | 107 | o263 | e300 | eds | OO
890421 | 0477 0680 | OB45 | 0700 | 0756 | o812 | 0ses | oe2d | 66
T8 o980 | 1035 | 1001 | 1147 | 1208 | 1260 | 1814 | 1370 | 1426 | 1482 | 56
70 1587 | 1593 | M 1705 | 1760 | 1816 | 1872 | 1928 | 19s3 | 2039 | &6
780 | 892005 | 2160 2 | 2317 | 2973 | 2420 | 2484 | 2640 | Z506 o6
781 o651 | 2707 | 2762 | 2818 | 2573 | 2020 | 20M5 | 8040 | 8096 | S16L | OO
3202 | 3318 | @373 | 8420 | 8484 | 3640 | BOWG | 8651 | 3106 | OB
783 aren | eB817 | 8879 | S098 | 8984 | 4080 | dopd | 4160 | 4205 6
ki da16 | dom1 | 4397 P 4482 | 4538 | 4503 | 4648 | 4704 | 4709 | 4814 | 0D
T 4870 4080 | sos6 | 5091 | 5146 | 5201 | 5267 | 6312 | 5367 | 0
746 5423 | 5478 | 5683 | g588 | 5G4 | 5609 | 6754 | DEO9 | bSG4 | B920 | OO
i kil B0TH 6085 | 6140 | 6195 | 6251 6361 | 6416 | 6471 | 6O
788 526 | @581 | 6636 | oeoa | 6747 | 6802 | 6e57 | 6913 | ooy | j022 | 0D
780 rorr | 7is2 | 7TisT | 7243 | 7207 | 7862 | V407 | 7462 | 7IT | 7672 &b
soreny | Tesz | 77av | 7ves | 7eit | to02 | 7057 | 8012 | BOST | 123 56
, 701 £176 | 8231 | 8280 | 5341 | Bave | 8451 | B506 | 8561 | 8GLb | KG6TO 55
§725 | 8780 | 5835 | 8800 | Sodd | BOGO | 0064 | B10G | 0164 9218 | &b
763 o2is | a8 | easa | odsr | os02 | 6547 | 9602 | BOGG | 0711 | 9766 8
0591 | 0875 | 9930 | 0985 | ee30 | eeid | 140 | o203 | o268 | edl2 b
705 | 00086T | 0422 | 0476 | 0531 | 0586 | 0640 | 0655 0749 | 0804 | 0850 | 86
706 oala | oses | 1022 | 1ov7 | 1131 | 1186 | 1240 | 1205 | 1349 | 1404 B
797 1458 | 1518 | 1567 | 1622 | 1e76 | 1731 | 1785 | 1840 | 1801 1048 | 04
A 708 on03 | 2067 | 2112 | 2166 | 2221 | 2275 | 2090 | 2884 | 2438 2402 | b4
709 o547 | 2801 | 2665 | 2710 | 27ed | 2818 | 2878 | 2027 | 2081 3036 | 04
g0 | oosopo | 8144 | mipe | s268 | 3807 | 3361 | 3416 | B4TO 3524 | 3578 | B4
801 bgad | B6sT | 8741 | 8795 | 384D | 8004 | 3058 | 4012 | 4066 420 | M
A2 4174 2983 | 4837 | 4801 | 4446 | 4400 | 4858 | dooT | 4Gl | B4
A $716 | 4770 | 4824 | 4578 | 4082 | 4086 | 5040 | 5004 | 6148 5202 | B4
804 5956 | 5310 | Hupd | b418 | 5472 | HA26 | 5GSO | HG3L | DGSS Bi42 | B4
806 5706 | 5860 | 5o04 | 5958 | G012 | 6OGG | 6110 | 6175 6227 | 6281 | B4
806 935 | 6390 | 6443 | 6407 | 661 | 6604 | 6658 | 6712 o766 | 6820 | bd
807 8874 | coz7 | 6081 | 70856 | 7080 | 7143 | 7106 | 7260 7a04 | 7958 | B4
B0 w411 | 7465 | 7610 | 7573 | 7626 | 7680 | 7734 | TIST 7R41 | THOS | 54
200 To40 | 8002 | 056 | S110 | 8163 | 81T | 8270 sazd | Ba78 | 8481 | B4
810 | 908485 8502 8600 | 8753 | 807 | 8800 | Sp14 | see7 | 64
811 a021 | G074 | 9128 | 9181 o280 | 9342 | 0306 | 9440 | 9503 | 54
812 o556 | o610 | o6ea | €716 | 0770 [ 9823 | 98I7 | 9030 | R084 | esdi 53
813 | 010061 | 0144 | 0107 | 0251 0358 | 0411 | 0464 | o0s18 | 0571 | 03
814 osod | 0678 | 0781 | o7S4 | 0838 | 0SO1 | 0044 | 0008 1051 | 1104 | 83
815 1158 | 1211 | 1264 | 1817 | 1871 | 1424 | 1T | 1080 1584 | 1637 | &3
816 1800 | 1743 | 1707 | 1850 | 1903 | 1966 | 2008 | 2063 | 2116 | 2100 5
817 ae00 | aorp | 9308 | 2881 | 2435 | 2488 | 2641 | 2604 | 2647 | 2700 63
&18 a7 | 20 | 2850 | 2013 | 2066 | 8019 | 3072 | 8125 | 8178 8231 | 68
| 819 3584 | ase7 | 0300 | 3443 | Bde6 | 8549 | 3002 | 3065 | 4TU8 3761 | 83
rr e dal s ®dilaledeld sl sl
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A TABLE OF LOGARITHMS FROM 1 TO 10,000. 15
oo L e S O R o R 0 i e M 3N (2
680 | p4d4s3 | 4522 | 4681 | 4631 | 4680 | 4720 | 4770 | 4808 | 4877
881 4976 | 5025 | BOT4 | 6124 | 5173 | 6222 | 5272 | 5921 | 6370 | 5419 ﬁg
a82 5460 | 5518 | 5567 | 6616 | 5665 | A6715 | &T6L | G813 | BRGZ | 5012 | 40
883 5961 | 6010 | 6050 | G108 | G157 | 6207 | 6206 | 6305 G354 | 0403 | 49
BRL 6452 | 6301 | 6551 | 6000 | GA49 | GOOS | 6747 | 0706 | 0845 | 0804 | 40
885 6043 | eg02 | tod41 | 7Tooo | 7140 | 7180 | 7208 | 7287 | 7as6 | 7385 | 40
858 wiag | 7iss | 7A92 | 7681 | 7630 | TA7O | TT28  TITT | TRZG | VRIS | 40
887 7924 | To13 s070 | 8110 | %168 | 8217 | 8266 | 8815 | 8304 | 49
838 8413 | 8462 | 8511 | 8560 | 8608 | 8657 | 8706 | K766 | S804 | 8563 | 49
880 8002 | 8051 | 8990 | 0048 | 9097 | 0146 | 0105 | 0244 | G202 | 0341 | 40 %
800 | 949300 | 0430 | 9488 | 0558 | 9585 | 0634 | 0683 | O7H1 | 9780 | 0820 | 49 5
801 0578 | 9026 | 9975 | ae2i | eoT3 | o121 | @170 | o210 | 207 | 310 | 40
892 | oposes | o414 | o462 | 0511 | 0860 | 0608 | OB5T | 0706 | 0754 | OR03 | 49
803 o851 | 0000 | 0040 | 0997 | 1046 | 1085 | 1143 | 1302 | 1240 | 1280 [ 49
s04 1338 | 1886 | 1435 | 1483 | 1583 | 1580 | 1620 | 1677 | 1720 | 1775 | 49
805 1893 | 1872 | 1820 | 19e0 | 2017 | 2086 | 2114 | 2163 | 2211 | 2260 | 48
gab | 2308 | 2356 | 2406 | 2453 | 2602 | 2550 | 2500 | 2647 | 2008 | 7L | 48
807 9702 | 2841 | 2880 | 2088 | 2086 8083 | 8131 | 4180 | 8228 | 48
#08 azre | as2s | asra | sazn | ad7o | 8518 | 8566 | 2615 | 3663 | 8711 | 48
809 4700 | 8808 | 3856 | 3005 | 8953 | 4001 | 4040 | 4008 | 4140 | 4104 | 48
o0 | 93243 | 4201 4387 | 4495 | 4484 | 4632 | 4680 4677 | 48
901 1795 | 4773 | 4521 | 480 | 4018 | does | 5014 | G062 | 6110 | 5158 | 48
02 5907 | 5256 | 5308 | 5351 | 5399 | 6447 | 6495 | 5543 | 5602 | GOMD | 48
003 5088 | 5746 | 5784 | psa2 | ssso | sw2s | bove | eo2d | 6072 | G120 | 48
004 o168 | 6216 | 0265 | 6313 | 6341 | 6400 | €457 | 6605 | 6543 | GOOL | 48
005 goo7 | 0745 | 6793 | 6840 | ¢SS | €036 | 6084 | 7032 | T080 | 48
oos | Ties | Tie | To2e | 72r2 | 7820 | 7868 | T416 | 746 | 7512 | 7660 | 48
007 7607 | 7656 | Tr08 | 776l | 7700 | 7847 | TSOL [ 7642 | TOUD 48
008 8086 | B134 | 8181 | §220 | 8277 | 8326 | 8873 | B421 | 8408 | 8516 | 48
800 s504 | 8012 | s659 | 8707 | 8755 | 8803 | 8850 | ‘8808 | 6040 8004 48
o10 | os0041 | poso | o1s7 | o185 | 9332 | o280 | 0328 | 9375 | 9423 | 0471 | 48 ‘
a1t o618 | 0500 | om14 | o6l | 9700 | 9767 'ﬂ% 9852 | 9900 | 0947 | 48 1
a2 sl | weD | @138 | #185 | 233 | o o328 | el70 | o423 48 |
013 | 080471 | 0518 | 0566 | 0613 0700 | 0756 | OS04 | 0851 | 0899 | 48
o4 0046 | 0904 | 1041 | 10897 1184 | 1231 | 1279 | 1826 | 1874 | 47
15 1491 | 1460 | 1516 | 1563 | 1611 | 1668 | 1706 | 1758 | 1801 | 1848 | 47
o16 | 1805 | 143 | 1000 | 2038 | 2085 | 2182 | 210 | 2207 | 2976 | 2322 | A7
o7 oapn | 2417 | 2464 | 2511 | 2560 | 2000 | 2653 | 2rOL | 2048 | 2705 | 47
018 2548 | 2800 | 2087 | 2085 | 3042 | 070 | 8126 | SiT4 | 8221 | 8208 | A7
810 5916 | 2063 | 3410 | 3467 | 3504 | 3362 | 8509 g093 | 8741 | 47
920 asas | sems | sozo | sory | 4024 | do71 | 4118 | 4165 | 4212 | 47
21 4200 d25d | 4401 | 4448 | 4405 | 4542 | 4500 | 4ea7 | 4684 ) 4T
922 m | 4778 | 4825 | 4s7a | do1o | 4968 | 5018 | BOGL | G108 | B155 | 4T
923 to0s | 52p | 5206 | 5343 | 5300 | 547 | 484 | 5SBL | BGTS | 0625 | &7
924 ti72 | £710 | 5706 | 5813 | 5860 | 5007 | 5054 | OOOL | 6048 | G095 &
425 142 | eise | 6236 | 6283 | 6320 | 6476 | 6423 | 6470 | G317 6564 | 4T
026 a611 | 668 | 6705 | €752 | 6790 | 8845 6802 | 6030 | 6OSG | T033 47
o2 voso | 7izr | Ti7a | 7220 | 7267 | 7814 | 7861 | 7408 | T40L TH01L | 47
28 7 %500 | 7ed2 | 7888 | 7735 | 7782 | 7820 | TATS | 7922 | 7000 47
920 016 | so62 | B100 | S156 | 8203 | 8240 | §206 | 8343 | 5390 8430 | 47
020 s5a0 | sove | sezs | sojo | syis | s7ed | es10 | 854 | 8903 | 47
031 850 | 8906 | 9043 | oopo | 9136 | 0183 | 9220 | 0276 0393 | 0369 | 4T
932 0416 | 9463 | 0509 | 9566 | 9002 | 9640 | 0695 | 6742 | 978G oRa5 | 47
33 0882 | 0028 0TS well ] slld #1611 » 207 * 204 wiH) 47
a3i | 070347 | 0393 | 0440 | 0456 | 0583 | 0579 | 0626 | 0672 | 0718 0765 | 46
a35 o812 | 0858 | 0904 | 0951 | oer | 1044 | 1080 | 1187 | 1183 1220 | 46
430 1276 | 1322 | 1369 | 1415 | 1461 | 1508 | 1554 | 1601 | 1647 1603 | 48
o 1740 | 1786 | 1882 | 1s7e | 1025 | 1671 | 2018 | 2064 | 2110 2167 | 46
038 308 | 2249 | 2205 | 2342 | 2388 | 243t | 2481 | 2627 | 2678 2619 | 46
059 Sign | 2712 | 2758 | 2804 | 2851 | 2897 | 2043 | 2080 | 8035 16
N. 0 3 2 3 4 5 6 ¥ 8 9 D.




16 A TABLE OF LOGARITHMS FROM 1 TO 10,000
N. 0 1 2 3 4 b 6 § 8 9 | D
040 | 073128 | 3174 | 8220 a313 | 3350 | 8405 | B4D1 | 3407 3543 46
a4 3500 | 9636 | 3682 | 8728 | 8174 8820 | 4866 | 3013 | 3950 | 4005 4
ois | 4051 | 4007 | 4143 | 4180 | 4235 | 4281 | 4327 | 4874 4466 | 48
i 4512 408 46050 | 4600 4742 AT88 | 4834 | 48580 | 4026 46
b 4972 | G018 | 5064 | H110 | 5156 p202 | 6248 | B2 5388 | 46
M5 p482 | 6478 | 6624 | 6570 | 5616 sof2 | BTOT | 6753 | BT00 | B845 46
646 65891 aoaT H983 | 6020 aTs 6121 6167 6212 | 6258 B304 48
4T 6350 | 6306 | 6442 | 6488 | 6533 | 67D 6625 | 6BTL | 6717 | GV63 46
M5 6508 | G854 | 6000 | 6Odn | GOO2 vos7 | 7083 | 7120 | TATH | 7220 46
: i r ] 7266 | 712 | 7868 | 7403 | VA0 7405 | 7641 | Tos6 | TO32 7678 &6
| as0 | orrras | 7ree | 7815 | 7ee1 | 7908 | 7os2 | 7008 | 8043 | s0% | E35 | 40
951 81R1 | 8226 | 8272 | 8317 | 5963 | 8409 8454 | 8500 8501 46
052 8637 | s083 | 8728 | s774 | 8819 | 886 | 8011 | BUGE oooe | oy | 48
953 ooos | o158 | 0184 | o280 | 9275 | vax | eses | o612 | 657 | 0s03 | A8
051 | o548 | o504 | 9630 | Doss | 9780 | 0776 | 9S2L 7 | 9012 | oess | 48
925 | 630003 | 0049 | 00v4 | on40 | 0185 | 0281 | o2re | 0822 | 0B6T | 0412 | 45
(U] 0458 | 0603 | 0849 | 06OL | 0040 0780 | 0776 | o821 | 0B6T 45
84T 0012 | 0957 | 1003 | 1048 | 1083 1180 | 1184 | 1228 | 1275 | 1320 45
968 1411 | 1456 | 1501 | 1847 | 1602 1687 | 1683 | 1728 | 1778 45
o580 1519 1564 10 1064 2000 204D 2000 2135 2181 2238 45
060 | 082271 2316 23062 2407 2452 | 2407 2543 2688 2033 | 2678 45
F1731 3 2123 260 2814 2860 2004 | 2040 2004 8040 [085 | 3130 45
) 8175 | 4220 | 2285 | 8310 | 5556 8401 | S440 | 8491 | 3536 | 3681 45
Uid 9820 | 8671 a7ie | 3762 | 8807 2562 BEOT a2 2087 | 4082 45
Oid 4077 | 4122 | 4167 | 4212 | 4367 4902 | 4847 | 4902 | 4407 | 4482 45
Q65 4527 | 4572 | 4617 | 4062 4701 | 4762 | 4797 | 4542 | 4SHT 4032 45
906 4077 5022 filllir) H112 B1aT 5202 | DT 5202 5337 | bH282 45
067 5426 | 5471 6616 | HHG1 606 | bASL | BOOG H741 G786 | 6830 45
068 BR75 | 6020 | 5066 | 6010 ( G055 | 6100 6144 | 6180 | 6234 | B270 45
pep | 6a2i | 6360 | 6413 6508 | 6o4s | eoos | oesr | cesz | e | 4
970 | 086772 | 6817 | 6861 | 6006 6051 | 6006 | T Y085 | Ti80 | FIT 45
o1 | "%%o15 | 7est | waoo | 7asa | 7898 | 7as | 74ss | 7o8z | Tor7 | T02 | 40
72 g6 | 7711 | TT66 | TROO 7R45 | 7890 | 7034 | TOT9 45
73 8112 | B167 | 8202 247 | 8201 | 8330 | B3BL 8425 | 8470 | BOl4 44
074 8550 | 8804 | B648 | BED3 | BFST §7R2 | BR26 | BST1 | 8016 | B960 45
15 gous | 0040 | 90b4 | 0138 | D18S | @2 9272 | 9ale 45
oo | o450 | 0404 | 530 | osss | o6zs | wey2 | 717 | G701 | 0806 | 0850 | 44
i 0805 | 0080 | 0083 | ee28 | ee72 | 117 o101 | 200 | «250 | o2 44
a78 0383 | 0428 | 0472 | 0516 | 0561 | O6OD 0650 | 0684 | 0738 +
7o 0783 | 0827 | OBTL | 0916 | 0860 1004 | 1049 | 1003 | 1187 | 1182 4
980 | opi22e | 1270 | 18156 | 1350 | 1408 | 1448 1402 | 1586 | 1580 | 1625 44
P81 1660 | 1713 | 1758 | 1802 | 1848 | 1800 1085 | 1879 | 2023 | 2007 H
982 o111 | 2188 | 2200 | 2244 | 2288 | 2338 | 2T 2421 | 2466 | 2600 44
083 2554 2508 2642 | 2086 | 2780 2774 2810 2863 | 2907 2061 4
Ed 20056 | 8030 | 2083 | 8127 | 4172 @ | 8200 3348 | 3302 H
986 3456 | 0480 | 8524 | 8568 | 8613 | 3667 |- $701 | @746 | 3780 | 3833 44
956 8877 | 3921 | 3065 | 4000 | 4053 | 4007 4141 | 4185 | 4220 | 4273 4
98T 4817 | 4861 | 4405 | 4440 | 4403 | 4537 | 4681 4025 | 4600 | 4713 H
BE8 4757 | 4801 | 4845 | 4880 | 4033 | 4077 | 6021 5065 | B10s | 6162 H
B0 5106 | 5240 | 5284 | 6328 | 53T 6 | 5460 | BGO4 | 6547 | GOO1 +H
900 | 905095 | 5679 | 5723 | OTOT pE11 | 6854 | OROR | HO42 | GOR B30 4
91 8074 | 0117 | @161 | 6206 | 6248 | 6203 | 6337 6380 | 6424 | G468 “
9al 6512 | 6555 | 0000 | 6648 | G087 6731 | o774 | BR1S | 6862 | 6O06 H“
283 6040 603 70T 7080 | 7124 7188 7219 | 7255 | 7290 | T3 H
(2 TH86 7430 7474 7617 ThE1 TH05 TE48 TE02 | 7736 7179 M
@95 wi23 | 7867 | 7910 | To5d | TOOS | 804l 8085 | B120 | 8172 | 8216 u
pob 8250 | 8308 | 8847 | 8300 | 8484 | B477 | 8621 #5604 | B8O8 | 8652 4
a7 8605 | 8730 | 8782 | £826 | S80b | 8013 | 8956 | 0000 | G043 G087 &4
s o131 | o174 | 0218 | 0281 | 94206 0302 | 0435 | 9479 | 9522 A
209 0565 o652 | 0008 | 9730 | 0788 | 0826 | 9870 | 9013 | 9057 43
AFRENENE TN e \ 9 1 D.




A TABLE

OF

LOGARITHMIC SINES AND TANGENTS

FOR EVERY

DEGREE AND MINUTE
OF

THE QUADRANT.




18 (0 DEGREES.) A TABLE OF LOGARITHMIC

M. | Sine D. | Cosine. | D. | Tang. D. | Cotang.
0 0-000000 10+000000 (000000 5 Infinite. | 60
1 | eae372e | BOITIT 000000 | 00 | @468720 | B0LTAT | 13636274 | 5O
2 784756 | 200485 000000 | 00 764756 | 200483 236244 | 58
3 ogos47 | 208281 000000 | <00 40847 | 208281 059163 | BT
4 | 7-oB37se | 161517 000000 | 00 | TO63TS6 | 1615717 | 12934214 | 66
5 162006 | 131968 000000 | 100 162604 | 181600 837304 | 85
& 241877 | 111575 | 000690 | 01 24187 111578 7H8122 | B4
T A0S fol5d gaos08 | 01 BOSRLH 000-53 601176 | 53
8 66516 85254 apegas | 01 BAAELT Bod-5d E1Es | 562
] 417968 T0263 goo9as | 01 417970 70263 482080 | 51
10 464725 BEOEE 00ppos | 01 463727 6588 636273 | B0
1 T-505118 £20:81 9009998 01 T:505120 629-81 12-404880 | 49
12 52906 67936 @99947 | 01 H42000 57033 457001 | 48
13 HTT668 B4l 000007 | 01 BITETE 530-42 420828 | 47
14 BOOS 409:38 pogsat | -0l BONBAT 400-30 390143 | 48
15 30816 40714 ghaoas | 01 467415 SO0180 | 45
16 GOTELS 43881 Ga90a5 | -0l BT84 49882 332151 | &4
17 B04173 41372 ouoeas | 0L 64179 41578 05821 | 43
18 TIR06T 30135 oopend | 01 716004 201-50 280007 | 42
10 42477 871 goonna | -0l 742484 a71:28 267816 | 41
To4754 36815 PUNELd 01 Te47 0L 85136 235239 | 40
21 7785043 85672 009002 | 01 T-T86051 23673 | 12:214040 | 39
22 ROG146 821°75 pLT | 01 8061556 32178 103845 | 88
2 825451 B3OS0 gaga00 | 01 B25460 BOS06 174540 | &7
H 200747 HUODEN 02 843044 20549 156056 | 86
a5 B61662 253-88 POOUSS 02 BE16T4 285-00 155326 | 35
26 BTR605 20317 go00ss | 02 ETRTO8 7318 10202 M
27 BOGORG 263+ ooaesT | 02 805000 26325 104001 | 84
- 010879 2540-09 ugase | 02 010504 26401 083108 | 82
20 926119 246°58 pogass | 02 026154 246-40 o7ases | 81
80 040842 23733 02 040858 297-35 050142 | 80
a 766082 22080 | 00000852 | 02 | TOAGI00 22081 20
22 DORSTO 22573 0pa0s1 | 02 PESESD 29275 031111 | 28
a3 982233 21608 000080 | 02 982253 21610 o4t | o
o 495198 20081 02 995219 200-88 004781 | 20
5 8007757 i o007 | 02 | 800780 20303 | 11-000191 | 256
36 0200 16841 ppoeTe | 02 020045 10603 2%
a7 031010 19802 |, 9009756 | 02 081045 10305 [
a8 043501 18801 gooeTs | 02 045527 18808 050473 | 22
a9 054TEL 188256 oopuTz | 02 054809 18827 45101 | ;0
40 085776 17872 oue9T1 | 02 DE5R06 17874 U3l | %0
41 076500 17441 2-0n0a80 02 8076531 17444 | 11°023400 | 10
42 0 170-81 gap0es | 02 088097 170:84 913003 | 18
43 007183 j (i) GUlHG6 02 0oTaT 16642 P02783 | 17
107163 16285 03 107202 162408 ROATOT 16
45 116826 15908 o063 | 03 118683 15610 883037 | 16
46 126471 15566 Q0961 03 128610 166008 873400 | 14
7 135810 152-58 HOOA50 03 135851 15241 R64140 | 13
44 144063 149-24 009058 | 03 144006 14697 ga6004 | 12
49 152907 146-22 poguna | 03 153052 146:27 840048 | 11
60 162081 14333 gooond | 03 162727 148:86 837278 | 10
i 5171280 140-54 i ield 03 5171428 140e57 11/828672 9
52 170713 13786 03 1749763 14700
5% 187985 15529 D048 03 188036 13582 811604 T
o4 196102 18280 Goa046 03 196156 152-84 S05844 i)
55 204070 12041 GO00HE 08 204126 130:44 THa8T4 ]
&6 211895 12810 000042 | 04 211053 12814 TRA04T 4
67 219581 12587 00040 04 210641 12500 THOGE 3
58 227134 12372 Q0B8R 04 2271056 12376 TT2808 2
9 234557 121-64 DODLGE 04 434021 12168 THH3TH 1
a0 241855 11665 000024 | 241921 11967 ToROTH | 0
peeiy S
Cosine | D, Sing | D. |Cotang.| D. i Tang. l M.

(B9 pEGREES.)




SINES AND TANGENTS. (1 DEGREE.) 19

M. | Sine D. | Cogine | D. | Tang. D. | Cotang.
0 | 8241855 | 11063 | 9009934 | -04 | 824197 | 11907 | 11768079 | 60
1 249033 | 11768 990932 | 04 249102 | 11772 750808 | 59
2 250004 | 11550 090920 | 04 250165 11584 743835 | 58
8 263042 | 11898 999027 | 04 268115 | 11402 796885 | &7
4 2A988L | 11221 999025 | 04 200056 780044 | 56
5 276614 | 110-50 099922 | 04 276691 | 11064 723300 | B4
[ 283243 | 10888 999920 | 04 283323 | 10887 716677 | B4
1 280773 | 10721 900018 | 04 280856 |  107-26 710144 | 538
8 200207 | 10565 909915 | 04 10570 703708 | 62
9 802546 | 10413 990913 | 04 10418 697366 | Ol
10 306794 | 10268 990010 | 04 808884 | 10270 691116 | 50
11 | 8314004 | 10122 | ©090007 | -04 | 8815046 | 10126 | 11684954 | 49
12 321027 9982 000905 | 04 821122 9087 678578 | 48
13 327016 0547 999002 | 04 327114 9851 672886 | 47
14 332024 9714 000899 | 08 833026 9719 666975 | 48
16 335753 9580 999807 | 05 838856 9590 661144 | 45
16 344504 9460 000804 | 05 344610 0466 41
17 350181 93°38 900881 | 06 0343 640711 | 43
18 856783 9219 099388 | 05 855805 9224 644105 | 42
10 361315 0103 90885 | -05 861430 9108 638570 | 41
e 860777 8§9-00 000882 | 03 866505 8985 6353106 | 40
21 | 87Tl 8880 | @ 05 | 8-8T2202 8985 | 11827708 | 30
22 377409 8772 999876 | 06 a77622- 8777 622378 | 28
2 882762 8607 909873 | -0 8 8672 617111 | &1
24 387962 8504 000870 | <08 8570 611908 | 326
25 398101 8404 990867 | 05 203234 8470 606766 | 35
25 498179 8366 900864 | <05 805315 871 e01685 | 84
7 403199 8271 900861 | 08 403338 8270 596662 | 83
28 408161 8177 900858 | 06 408304 §1-82 591606 | 82
29 413068 8086 990854 | 06 413213 80-01 596787 | 81
50 417910 7980 999851 | 06 415008 8 581932 | 30
31 | 842y Te00 | 9999848 | 08 | 84228 7914 | 11677151 | 20
82 497462 7823 909544 | 08 427618 78:30 572382 | 23
23 432160 TT40 909841 | 06 432315 1745 567685 | 2T
34 436800 7657 9008358 | <08 436062 7603 563038 | 26
35 441394 75T 900834 | 08 441560 75'83 568440 | 25
an 445041 7409 990831 | 08 446110 7605 550890 | 24
37 450440 7422 990827 | 08 450613 74:28 sd0asT | 22
33 454803 7846 909823 | 06 455070, 7852 544080 | 22
o0 450301 7273 900820 | 08 459481 7279 540619 | 21
40 483665 72:00 go0s16 | 06 463540 72 526151 | 20
41 | 8467985 7129 | 9900812 | 08 | S408172 7185 | 11691828 | 19
4 472203 7060 900809 | 08 472454 7066 527548 | 18
43 476408 001 999805 | 08 470603 60-08 5: 17
e 480603 60-24 009801 | 06 480802 69-31 519108 | 18
45 484848 6850 999797 | 07 483050 6865 514050 | 15
48 458063 6701 099783 | 07 489170 6501 510830 | 14
4 4053040 6781 999700 | 0T 493250 67+38 506750 | 18
48 407078 660 999786 | 07 407203 6676 s02707 | 12
49 601080 6508 009782 | 0T 501208 6015 405702 | 11
50 503045 6548 999778 | 07 HOG20T 6555 404723 | 10
51 | 8508074 o480 | 9000774 | 07 | 6509200 6406 | 11400800 | 9
52 B12867 eLa1 990760 | 07 513008 6439 486002 | 8
53 516726 6375 890765 | 07 616961 63-82 488030 | 7
5 5205A1 6319 gooTel | 07 520700 63-26 atoz10 | 8
5 HU33 6264 909757 | 0T 524586 6272 asile | B
56 HIR102 8211 999753 | 07 528349 6218 471851 4
&7 521828 6158 200748 | 07 532080 6165 407020 3
54 535623 8106 900744 | 07 535779 6113 dpa221 | 2
0 B3186 A5 900740 | 07 B30T 6062 |, 4080553 | 1
60 542810 6004 000735 | 07 6012 456016 0

Cosine D. Sine Cotang. D. Tang. | M.

(88 pEGREES.)



20 (2 DEGREES.) A TABLE OF LOGARITHMIC

M. | Sine D. | Cosine | D. | Tang. D. | Cotang. 1
o | spizste | 6004 | 9999785 | 07 | 543084 | 6012 | 114G80L0 0
1 B46422 | 5965 w973l | 07 | G460 | 596D 453309 | 59
2 540995 | 6906 ooo726 | -0 | 560268 | 5014 440732 | 58
8 5 6858 wop722 | -08 | 553817 |  bBGG 440183 | &7
4 557054 | 5811 000717 | -08 | 657838 | 6810 a6
H 530640 | 5765 000713 | 08 |  B60828 | 67T 40172 | 85
[ 563009 | 5710 000708 | 08 | &64201 | 6727 435700 | B4
7 507481 |  5OT4 Q00704 | -08 |  B6TTZT | 6OG2 432013 | 58
§ 570886 |  56:30 000609 | -08 | 67118 | 5038 428863 | 52
9 574214 | 5587 900604 | -08 | 574520 | 685 425480 | b1
10 577666 | 55k 000689 | -08 | 6TTSTT | DOB2 422123 | 50
11 | scsossa| ssoz | oosoess | cos | 081208 | 5510 | 11418792 | 49
12 654193 | 5460 000880 | 08 | 584514 |  BA6S 416480 | 48
13 587460 | 5410 040675 5RTTO5 | 6427 412206 | 47
14 sonTal | 6370 papeTd | 08 | 891051 | B3ET 405049 | 48
15 53:30 0pa6es | 08 | 504283 | DGdT 405717 | 45
16 597152 | 5300 08 | 67482 | D308 H
17 Go0332 | 5261 000855 | 08 600077 | 6270 ; 43
18 e03480 | 5228 9ougsD | 08 | GossE9 | 5232 son1el | 42
19 606628 | 5180 600845 | <00 | 606078 | B194 aose22 | 4
20 000734 | 5140 900840 | 00 | 610084 | 5158 260008 | 40
o | seses | maz | ooooess | cop | Seisise | GL: | 11S86SHL G 99
o2 615801 | 5076 000620 | -0p | 616262 | 5OBH 859738 | 88
23 018087 | G041 900624 | -0 | 610313 | BO50 880887 | &7
24 e21062 | 5006 000619 | 00 | 622343 | 5015 BTTesT | 88
25 624005 | 4972 gopeld | 09 | 626852 | 4981 374048 | 85
20 627048 | 4938 fO0E08 | D9 | G28340 | 4947 s71600 | B4
27 630011 | 4004 909603 | 09 631308 | 4913 sosoez | aa
28 63854 | 4871 009507 | 09 | 34266 | 4880 365744 | 82
a9 €36776 | 4889 090502 | 00 | BT84 | 4848 302810 | 81
30 620880 | 4806 909586 | 09 4816 850907 | 30
81 | 8642568 | 47T 09 | 8642082 | 4784 | 11367018 | 20
32 645428 | 4748 9o0GT5 | 09 | 645853 | 4768 354147 | 28
83 o474 | 4713 000570 | -0p | G4sTOL | 4722 951206 | 21
34 651102 | 4682 000504 | «0p |  051GBT | 4601 348465 | 26
a5 11 | 4662 a8 | 10 gadan2 | 460l 345648 | 25
6 636702 | 4022 oo0s68 | 10 | 657148 | 461 342851 | o
a7 0G047h | 4602 90047 | 10 | Boosas | 4002 340072 | 28
38 4563 909541 | <30 | 662089 | 4578 sarsll | 2
a8 004068 | 4585 10 | 6o6ds3 | 4044 234607 | 2
40 067659 | 4500 009520 | 10 | OOSIE0 | 4626 S840 | 20
a1 | serosea | ev7e | oueosas | a0 | s7osTo | 4dss | 11020180 | 19
42 679080 | 4481 $00518 | <10 | 078563 | 446l 18
43 07076l | 4424 908312 | <10 o T T sas7el | 17
a“ 678405 | 4807 990506 | 10 | 678000 | 4417 821100 | 18
5 851043 | 4570 000600 | 10 | 081544 | 4960 518456 | 15
40 683665 | 4344 090493 | 10 684172 | 4854 aisR2s | 14
47 686272 | 4818 90pisT | 10 | eseTR4 | 4328 218216 | 13
48 8963 | 4292 oopds1 | <0 | 6Sousl | 4303 810610 | 12
49 091488 | 4247 009475 | 0 | eorees | 4277 08037 | 11
50 603698 | 4242 10 004520 | 4282 803471 | 10
51 | sesosas | 4217 | oosedss | a1 | seovost | 4298 | 11302010 | O
52 009078 | 4192 900456 | 11 | GODGIT | 4208 500383 | 8
53 701580 | 4148 9opda0 | 1 | TOZI89 | 4178 soeel | 7
54 bl 4144 000443 | 11 | 704646 | 4155 205354 | @
5 706577 | 4121 po0487 | M 707140 | 41:32 22360 | 5
66 700049 | 4097 poa431 | a1 700618 | 4108 2] 4
57 711507 | 4074 900424 | A1 | 712088 | 4085 osTolT | 8
58 718052 | 4051 Q0p418 | 11 4531 | 4062 285485 | 2
59 716383 | 4020 909411 | 11 716072 | 4040 249028 | 1
& 718800 | 40:06 gopdod | 11 T10806 | 4017 200804 | 0
Cosine D. Sine | D. |Cotang.| D. | Tang | M.

A=

(BT DEGREES.)



SINES AND TANGENTS. (3 DEGREES.) L

M. | Sine D. Cosine | D. | Tang. D. | Cotang.
0 | STISS00 | 4008 e000404 | 11 | 8710808 | 4017 11280004 | 80
1 721204 | 8984 090398 | 11 721806 | 89056 278194 | 50
2 723505 | 80062 00301 | 11 724304 | 8974 275796 | 68
8 725072 | 304l oA a1 720588 | 8052 273412 | &7
4 728337 | 8019 00Da78 | 11 728050 | 8930 271041 | 58
B 730888 | 3808 900871 | 11 731317 | 30-00 268683 | 56
(] 733027 | 8877 000384 | 12 733663 | 98-80 266337 | 54
7 785354 | 8857 999357 | 12 735000 | 8808 ]
8 737667 | 8836 000330 | 12 788917 | 9948 1683 | 52
9 730080 | 3816 000343 | 12 Tdo626 | 8827 260374 | 61
10 742250 | 3796 000336 | 12 742022 | 3807 257078 | 50
11 8744536 |  B776 42 BT BTBT 11254708 | 40
12 740802 | 3750 000322 | 12 747470 | 8788 252621 | 48
13 740055 | 38787 090315 | 12 740740 | 8749 ']
14 751207 | 8717 P00308 | 12 751080 | 8720 248011 | 48
18 763628 | 3608 000301 | 12 THA22Y 3710 245773 | 45
18 TH5T4T | 8679 000204 | 12 750453 | 8692 7| 44
17 757065 | 86-6L 000288 | 12 ToRG6S | 3673 241832 | 48
18 760151 | 8642 00R2TD | 12 TOORTZ | 8855 230128 | 42
19 762857 | S6-24 000272 | 12 763065 | 36:38 4
20 764511 | 8606 000265 | 12 765246 | D618 234764 | 40
n §T600TH a5-88 0000257 12 8TOTHT 86-00 11232583 | 39
[ 768828 | 8570 000250 | 18 TEOBTS | 8583 250422 | 88
23 770870 | 8553 po0242 | 13 71727 | 85065 208278 | a7
% 773101 | 8535 009235 | 13 778806 | 8548 226134 | 26
5 76228 85-18 000227 13 175005 25431 224006 ﬁ

20 777888 | 8501 000220 | 413 778114 | 8614 221886
0 70454 84 009212 13 T 0T 219778 43
8 781524 | 8467 9002056 | 13 782820 | 84:80 217680 | 82
29 183605 | | B4:51 ponlaT | 18 TR4408 | 8404 215602 | 81
80 785675 | 8481 000180 | 13 TRG486 | BdAT 213514 | 30
41 | 8487736 | 3418 oo0pisl | 18 | ®T88G54 | 8431 11211446 | 20
82 78OTRT | 3402 000174 | 13 00613 | 8415 28
38 701828 | 8386 000166 | 13 2 207838 | 27
o 703560 | 3370 000158 | 13 704701 | 8383 206200 | 26
3 TH5881 | 89-54 poo150 | 18 [M TeeTs1 | 8368 25
a6 707804 | 8930 0999142 | 13 708762 | 89:52 201248 | 24
b 700807 | 3323 009134 | <18 800763 | 8387 100237 | 28
B8 801502 | 3208 Quo126 | 13 802765 | 8922 107235 | 22
o O34T 4298 990118 | 13 804758 4307 105242 | 21
0 B0GEGZ | 32T 990110 | 13 8067 3202 103258 | 20
4a 8807819 82-63 0000102 18 8808717 3278 11-191283 10
42 8OTTT 3249 L 14 £10083 | 3262 180317 | 18
43 811720 | 3234 09086 | 14 812041 | 8248 187360 | 1T
“ 813667 3219 000077 | ‘14 814580 3233 185411 | 16
4 B15500 000060 | 14 816520 3219 183471 | 16
40 817622 | 3191 00001 | 14 818461 | 8205 181630 | 14
& 819436 | 8177 000053 | 14 820384 ol 170616 | 13
45 821343 | 91-63 009044 | 14 §22208 | 8197 177702 | 12
49 823240 | 3149 000038 | 14 824205 | 81:63 175706 | 11
0 825130 | 8136 gooo2r | 14 820103 | 8160 173807 | 10
Al gR27011 | 8122 gopo01e | <14 | £827002 | 9138 11172008 9
b2 R28Rs4 | G108 900010 | 14 B20874 | 8123 170126 8
63 §30749 | 8095 14 831748 | 8130 168262 7
i 832607 | 5082 008003 | 14 833613 | 80-06 166387 [
B R34450 2069 00sps4 | 14 835471 50-88 1645620 b
o6 836297 | 8056 008976 | 14 837821 | 8070 162679 4
T £39150 8043 poReeT | 15 830163 3057 100837 ]
o8 BApUL6 ans0 goRess | 16 3 30045 1680002 2
5 BATH | 8007 opsosn | +15 | B40825 | 8092 167195 | 1
L] B4358S A0 poso41 | ‘15 B 20:19 155356 ]

- g "
Cosine | D. Sine Cotang. | D. Ta.g | M.
(86 DEGREES.) 28




22 (4 DEGREES.) A TABLE OF LOGARITHMIC
M. | Sine D. | Cosine | D. | Tang. D. " | Cotang.
o | ®8i3sss | Bo05 | ooesedl | 16 | S84ed | 8019 | 11155306 | 60
1 845987 | 2092 008033 | 16 | B46455 | 8007 153545 | 69
2 847183 | 2080 005023 | 16 | 848200 | 2005 1517 a8
8 BAS071 | 2907 405014 | <16 |  8BOOST | 2082 140048 | &7
4 60751 | 2055 998005 | <15 | 851846 | 20470 148154 | 56
8 852020 | 2043 008806 | 15 | 53628 | 2068 146212 | 55
0 Bodz0l | 2081 gusssT | <15 | 853403 | 2046 144607 | 54
7 856049 | 2010 oossTs | <16 |  SsTITI [ 2085 142829 | o
8 857801 | 2007 gossee | <15 | Sosesz | 2093 141068 | 52
o 850540 | 2808 098800 | <15 |  BOOGSG | 2911 130814 | 51
10 §61253 | 2884 998851 | 16 | 862433 | 2000 187507 | 50
11 | ssesote | 2873 | oosss;l | 15 | &fes1vs | 2868 | 11268 | 40
12 BOATAS | 2861 possaz | +15 | 865006 | 2877 134004 | 48
13 866400 | 2850 goss23 | 18 | 8eT32 | 2868 132868 | 47 |
14 | isosies | 2890 ooss1s | <16 |  Sopasl | 2851 130610 | 48 |
15 sopses | 2828 008804 | 16 Ti004 | 2543 128036 | 45
16 871565 | 28T 09sTe5 | 16 | 872170 | 2802 127230 | 44
17 873235 | 2808 908785 | <16 |  ST4deo | 2821 125531 | 48
18 §74038 | 2105 oos7T6 | <16 |  sfelee | 2511 120838 | 42
19 §76615 | 2188 pUSTES | 16 |  877SAD | 2800 122151 | 41
20 878285 | 2073 gos757 | 16| 870520 | 2789 120471 | 40
21 | seropdp | o763 | oDesTdT | 18 | & o770 | 1l1stes | s |
22 B81607 | 2162 9057 16 | ss2sep | 2768 17 | 88
23 gag2s8 | 2743 o08728 | 16 |  BS43%0 | 2768 115470 | a7
24 884008 | 2781 oos7i8 | 16 [ 886185 | 2747 113815 | 36
25 886542 | 2721 9o8708 | <16 |  8s7REy | 2787 12107 | 38
26 888174 | 2711 gosAo0 | 16 | 8sed7E | 2727 110624 | 34
o 850801 | 27-00 gosesy | <16 | so1l1Z | 277 108858 | 33
23 801421 | 2000 p0R670 | <16 | 82742 | 2007 107258 | 82
20 03035 | 2080 908680 | -17 | 894368 | 2697 105 il
80 | s04pd3 | 267 908650 | 17 | 895084 | 26087 104016 | 50
81 | sso6246 | 26:00 9 | <7 | ®8e7506 | 2677 | 10102404 | 20
a2 807842 | 2651 098639 | 17 | 800208 | 2667 100707 | 28
38 26:41 008620 | <17 | 900808 | 2668 090107 | 27
o1 pol0l7 | 2681 908610 | <17 | 902308 | 2648 067602 | 26
85 00 2622 gose09 | <17 7| 2688 096013 | 25
28 004160 | 2612 008500 | <17 | 006570 | 2020 094430 | 24
87 005786 | 2608 908589 | <17 | 907147 [ 2020 092853 | 23
88 go7207 | 2508 098578 | +17 |  908TIO | 2610 o1zl | 22
80 008853 | 2584 17 | 910285 | 2601 080715 | 21
0 pl0404 | 2575 908568 | 17 | 611846 | 2592 0sS164 | 20
41 | soupo | 26568 A7 | 8015401 | 2583 | 11086599 | 19
42 913488 | 2556 008587 | 1T | 914061 | 2674 083040 | 18
43 915022 | 2547 998527 | 17 | 010405 | 2066 17
44 916550 | 2538 008616 | 18 | 01 2550 051966 | 16
45 glso73 | o259 | *9ps5oe | 18 | 010568 | 2047 050432 | 15
48 010501 18 | 21096 | 2538 078004 | 14
41 021108 | 2512 08485 | 18 | 922619 | 2690 077381 | 18
48 022610 | 2508 gord7d | 18 | 924136 | 2621 076864 | 12
13 024112 | 2404 18 | 925640 | 2513 074851 | 11
50 025600 | 2486 905453 | 18 | 'e27156 | 2003 072844 | 10
51 | soorioo | 2477 | 9oosaa2 | (18 | 8928658 | 2405 | 110T1M2 | 9
52 028587 | 2469 908431 | 18 | 9301 2456 060845 | 8
53 030068 | 2460 18 | ealedT | 2478 068333 | 7
54 031544 | 2452 998410 [ 18 | 983134 | 2470 06eses | 6
55 033015 | 2448 18 | gade1e | 2461 06pase | B
56 934481 | 2485 998358 | 18 | 036093 | 2453 063007 | 4
57 oa5042 | 2427 908377 | 18 | 987565 | 2445 062435 | 8
58 937308 | 2419 903366 | <18 | 090032 | 24aT 00008 | 2
59 938850 | 2411 008356 | <18 | 940404 | 2430 0590506 | 1
60 940206 | 2403 908344 | 18 | 41062 [ 2421 0
Cosine | D. Sine Cotang. | D. Tang. | M.
(85 pEGREES.)




SINES AND TANGENTS. (5 DEGREES,)

23
M. | Sine D. | Cosine | D. | Tang. D. | Cotang.
0 S M40206 2403 WOURGA 10 B D1052 24-31 11055048
1 041738 2304 908333 | e B304 2413 056606 g
2 048174 2387 puBax2 | 19 V44862 24006 056148 | 58
3 044606 2579 el | a9 016205 2397 053705 | 87
4 46054 2371 V0E300 | 19 047734 2300 052266 | 56
b 047456 2363 09S250 | 19 949168 2382 50882 | 66
6 048574 2355 08T | 49 OHUBOT 2374 049403 | B4
1 BH028T 2348 PO8206 | a9 052021 2366 047079 | 53
8 851606 23-40 DU8250 19 a6l 23-00 OB55H 52
9 458100 2332 foE24 19 0548566 24-51 da144 5l
10 054400 2325 008232 | 10 050267 2344 043733 | 50
11 | 8055804 2317 0098220 | 19 | 8957674 2387 | 11042326
12 057284 2310 [y 008200 | 19 DHH075H 2329 040025 g
18 058670 | 2302 908107 | 10 000473 | 2323 030527 | 47
14 4295 POR18G 19 Q61866 2314 038154 46
15 061420 2288 008174 | 10 0632556 23-07 086745 | 46
16 DEIROL 22-80 095163 10 64830 23-00 035861 44
17 64170 2273 fo161 | <10 BOB01E 2208 038981 | 43
18 22:66 908139 | 20 067304 22:56 032606 | 42
19 2250 POS128 | 20 VBRT6 2279 031234 | 41
0 068240 2262 0UB116 | 20 070133 227 029807 | 40
21 8069600 9008104 20 8071496 4205 11-028504 30
22 70947 22:38 208002 20 PT2855 2267 027145 38
% 972280 2231 008080 | 20 2251 026701 | 87
24 973028 2224 BUROGE 20 976660 2844 024440 a6
205 74002 2217 QO80HG 20 970006 2287 023004 a5
28 976203 2210 QOR044 20 978248 2230 021752 34
o 977619 2203 008032 | 20 70586 2023 020414 | 28
28 978941 2197 008020 | 20 080021 2217 019079 | 82
0 980258 2190 POS008 <20 982261 22310 017749 a1
30 081673 21:83 007906 | 20 083577 2204 016423 | 30
81 B-O82883 2197 087085 20 SOR4800 a7 11015101 28
bir'd PE4180 2170 Qa70T2 20 eR6217 2191 013783 28
a3 85401 21-63 20768 20 OR7632 21-84 012468 =
- 986780 2157 0TM4T 20 PEEE4D 21-78 011158 260
5 (RR083 21:60 007035 | 21 290149 2171 009851 | 25
an e80374 2144 e T P01451 21465 008540 | 24
a7 QO0GE0 2138 997010 | 21 002750 21:58 007250 | 238
38 1043 2131 9oT8oT | 21 21:62 005055
30 003222 21:25 PATRRS b1 QRHIAT 21-46 004663 o
40 Q04407 2119 eOT872 21 21-40 003376 20
4 §005708 21:12 9007860 -21 8007008 21-34 11-002002 19
42 67038 21-06 007847 | 21 009188 21-27 000812 | 18
8 998200 2100 835 | 21 | 9000465 2121 5 17
+ PROG60 20-04 997822 1§ Q01738 21-16 [O8262 18
45 $000816 2087 |aTR0O a1 o 2108 15
40 Q02069 20-82 PITTIT 21 004272 21-03 §05728 14
47 003318 2076 O7TRL 21 005534 20-97 66 18
438 004563 2070 T | 21 006702 20:61 £03208 | 12
40 Q05805 2064 QUTTHR “21 Q08047 20-85 PH1053 11
b D070 200568 guTT45 a1 009208 20-80 o702 10
i1l 2008278 2052 9087732 21 0010546 20-74 10980454 L]
52 008510 20046 087719 | @1 011790 20068 088210 8
53 010737 20040 007706 | 21 013031 20-82 D606 4
b 011962 20034 007003 | -2 014268 2066 085782 ]
55 013182 20029 297680 | 22 0156502 20:51 DRA408 5
) 014400 20°23 07667 | 22 016732 2045 HRI268 4
a7 015613 2017 Q07854 23 017959 20-40 DE2041 8
a8 010824 212 o071 =232 019183 20-33 280817 2
a9 018031 2006 poTe28 | 22 020403 20-28 78507 1
i} 019255 20700 ouTo14 93 021620 20-23 HT8E80 o
Cosine D. Sine l Cotang.| D. | Tang. | M.
(84 DEGREES.)




24 {6 DEGREES.) A TABLE OF LOGARITHMIC

M. | Sine D. | Cosine | D. | Tang. D. | Cotang.
0 9019285 | 2000 9007614 | 22 | 9021620 2023 | 10978380 | 60
1 020435 1095 007601 | 22 022884 | 2017 oTIBG | 59
2 021632 | 1080 007588 | 22 2011 075956 | 58
3 022525 10-84 907574 | 22 025261 20-06 oT4T40 | 67
4 024016 1978 007561 | 22 026455 2000 18540 | &6
5 025203 1078 007547 | 22 027655 10:05 072346 | Bo
[ 026386 | 1067 007534 | 23 028852 1990 971148 | 54
7 027587 1962 007520 | 23 030048 1985 969054 | 53
8 0287 1967 997507 | 23 031237 1979 908763 | 52
il 020018 19-51 007408 | 23 032425 1974 WTHTH | 61
10 1047 007480 | 23 033609 1669 006301 | 50
1 0032257 1941 | 007466 | 23 | 9084791 1964 | 10965200 | 40
12 033421 10:36 997452 | 23 085960 19°68 084031 | 48
18 084582 | 1930 997439 | 23 057 144 1958 Q628650 | 47
1 085741 | 1925 007425 | 28 038516 10°48 061054 | 46
15 0365068 | 1920 07411 | 28 5 10:43 000515 | 45
18 038048 | 1915 097307 | 28 040651 1088 950540 | 44
17 0301907 1910 997383 | 23 041813 19338 858187 | 48
18 040342 | 1905 087368 | 23 042073 1828 a67027 | 42
19 041485 1899 907356 | 28 044180 1923 965870 | 41
20 18684 907341 | -23 1918 904716 | 40
21 0043762 | 1889 opeTa2T | 24 1918 | 10-053566 | 20
22 044805 1884 007318 | 4 047582 1008 052415 | 98
23 1879 997290 | 24 048727 1908 051273 | 87
2 047154 1875 007285 | 24 1808 050131 | 86
25 1870 997271 | - 051008 1598 2 | 35
26 1865 987257 | - 062144 1880 047850 | 84
an 050519 1560 07242 | 24 053277 1884 0946723 | 83
258 051635 1855 907228 | 24 0F4407 1870 45503 | a2
20 052749 1850 007214 | -4 055585 1874 pai6s | 81
80 053850 1545 007109 | 24 056650 1870 943341 | B0
8l @-054066 1841 09071 24 | 9057781 18:65 | 100942210 | 29
82 066071 1838 07170 | 24 058800 18460 41100 | 28
33 067172 1881 007156 | 24 060016 1865 89084 | 97
84 271 1827 007141 | 24 061130 1851 038870 | 28
8 069867 1822 007127 | 24 062240 1846 037700 | 25
a6 1817 907112 | 24 065348 1842 930052 | 24
87 061561 1813 007008 | 24 084453 1897 085547 | 28
B8 1808 907083 | 25 086656 1533 o3 | 22
89 063724 1804 097068 | 25 066655 18-28 032045 | 2
40 1799 097068 | 25 067752 1824 032248 | 20
41 9065885 1794 007080 | <25 | 9068840 1819 | 10931164 | 19
42 086062 1790 007024 | 25 009058 1815 930062 | 18
E] 1786 007009 | 25 071027 1810 w28078 | 17
44 069107 1751 25 072113 1806 027887 | 18
&b 070176 1777 00979 | 25 078197 1802 026803 | 15
46 071242 1772 op6oeEL | 25 074278 17907 925722 | 14
ﬁ 072306 1768 25 075856 17-08 024644 | 18
073366 1763 006034 | 25 076432 1789 023568 | 12
49 074424 1750 epeo1o | 25 077505 17684 922495 | 11
50 075480 1766 096004 | 25 078576 1750 021424 | 10
ﬁ 0076538 17-50 | 0900880 | 25 0644 1776 | 1